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ABSTRACT

The serine/threonine p21-activated kinases (PAKs), as
main effectors of the Rho GTPases Cdc42 and Rac,
represent a group of important molecular switches
linking the complex cytoskeletal networks to broad
neural activity. PAKs show wide expression in the brain,
but they differ in specific cell types, brain regions, and
developmental stages. PAKs play an essential and dif-
ferential role in controlling neural cytoskeletal remod-
eling and are related to the development and fate of
neurons as well as the structural and functional plas-
ticity of dendritic spines. PAK-mediated actin signaling
and interacting functional networks represent a com-
mon pathway frequently affected in multiple neurode-
velopmental and neurodegenerative disorders.
Considering specific small-molecule agonists and inhi-
bitors for PAKs have been developed in cancer treat-
ment, comprehensive knowledge about the role of PAKs
in neural cytoskeletal remodeling will promote our
understanding of the complex mechanisms underlying
neurological diseases, which may also represent
potential therapeutic targets of these diseases.
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INTRODUCTION

Most neurons receive information from other neurons via
synapses mainly formed on the surface of dendritic spines.
Thus, the morphological plasticity and density of dendritic
spines are crucial for the physiological functions of neurons.
Dendritic spines consist of a network of actin filaments,
whose polymerization and depolymerization can govern
spine function and regulate synaptic plasticity. Dysfunction of
synaptic cytoskeletal remodeling is closely related to diverse
brain disorders (Yan et al., 2016). As the initially identified
and main downstream effectors of the Rho family small
GTPases Cdc42 and Rac1, PAKs (p21-activated kinases)
represent a family of serine/threonine kinases that can
connect cytoskeletal dynamics, mechanical forces, and
neuron morphology (Daniels and Bokoch, 1999; Nobes and
Hall, 1999). It is widely recognized that PAKs play a potent
and diversified role in controlling the morphology, motility,
and fate of neurons to maintain the normal function of den-
dritic spines (Manser et al., 1994; Jaffer and Chernoff, 2002;
Rane and Minden, 2014).

To date, six PAKs have been identified in mammals.
Based on their structural differences and sequence
homologies, PAKs are classified into two groups. PAK1,
PAK2, and PAK3 belong to group I, whereas PAK4, PAK5,
and PAK6 belong to group II (Fig. 1) (Sells and Chernoff,
1997; Knaus and Bokoch, 1998; Daniels and Bokoch, 1999).
Overall, group I PAKs have higher sequence similarity than
group II PAKs in the PBD (p21-binding domain) and kinase
domains, but differ throughout their other domains (Eswaran
et al., 2008). Specifically, group I PAKs contain one PBD that
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overlaps an AID (autoinhibitory domain) in the N-terminus,
and one serine/threonine kinase domain in the C-terminus
(Knaus and Bokoch, 1998). The PBD serves as the binding
site of active Cdc42 and Rac GTPases (Jaffer and Chernoff,
2002). The AID binds to the kinase domain of another PAK to
form an inactive homodimer (Rane and Minden, 2014). The
homodimer is dissociated once Rho GTPases bind to the
PBD domain, which then leads to conformational reorgani-
zation and subsequent autophosphorylation at multiple sites
(Rane and Minden, 2014). The autophosphorylation in the
kinase domain allows the binding of group I PAKs to the
substrate and exerting of its catalytic function in a mono-
meric conformation (Jaffer and Chernoff, 2002). There are
other domains in the N-terminal of group I PAKs, including
conserved SH3 (Src homology 3)-binding motifs for binding
to adaptor proteins, such as NCK1 (NCK adaptor protein 1)
and GRB2 (growth factor receptor-bound protein 2), and the
PIX binding domain for PAK-interacting exchange factor/
Cool (PIX/Cool), such as nucleotide-exchange factor PIX
(Lei et al., 2000; Parrini et al., 2002; Pirruccello et al., 2006).
In contrast, group II PAKs contain a PBD and an AID (for
PAK5) or a PSD (pseudosubstrate domain) (for PAK4 and
PAK6) in the N-terminus, and a serine/threonine kinase

domain in the C-terminus (Ha et al., 2012; Tabanifar et al.,
2016). Group II PAKs are monomers in the inactive state,
and the PSD or AID mediates this inactive state by pre-
venting their substrates from entering the catalytic site (Gao
et al., 2013; Wang et al., 2013). Group II PAKs show greater
binding affinity to Cdc42 than to Rac1 (Arias-Romero and
Chernoff, 2008). Although the PBD is present in group II
PAKs, whether its role is similar to that in group I PAKs
remains debatable. Normally, the contact between Cdc42
and the PBD of group II PAKs alters their intracellular loca-
tion (Chenette et al., 2006). In addition to the PBD, additional
interactions of Cdc42-PAK may suppress the kinase activity
and contribute to the regulation of its inactive state (Fig. 1).
For example, Cdc42 binds to the PBR (polybasic region) and
C-terminal lobe of PAK4 and inhibits the kinase activity
in vitro (Ha and Boggon, 2018).

PAKs serve as key regulators of cell growth, cytoskeletal
dynamics, cell morphology, cell migration, and cell cycle
progression, as well as of death and survival events. Previ-
ous studies have indicated that dysfunction of PAKs can
result in cancer development and progression, and small
molecules that regulate PAK activity have been used for the
treatment of multiple cancers (Radu et al., 2014). Recently,

Figure 1. Domains and structural features of PAKs. (A) Schematic representation of domains of PAKs; PAKs are classified into

two group, group I PAKs and group II PAKs. All members of PAKs contain a conserved N-terminal p21-binding domain (PBD) and a

C-terminal kinase domain (KD). (B) Protein structure of PBD and KD in PAK1. PBD binds Cdc42/Rac1. (C) Protein structure of PBD

and KD in PAK4.
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emerging evidence indicates that PAKs are essential for
spine morphogenesis, neural plasticity, and brain-related
functions and behaviors. In particular, the actin signaling
networks mediated by PAKs represent a common pathway
frequently affected in multiple neurodevelopmental and
neurodegenerative disorders, including autism, mental
retardation, and schizophrenia (Allen et al., 1998; Zhao
et al., 2006; Huang et al., 2011; Dolan et al., 2013; Hayashi-
Takagi et al., 2014; Harms et al., 2018; Wang et al., 2018;
Horn et al., 2019). In this review, we summarize the recent
findings about the functions of PAKs in the nervous system,
including the structures and expression patterns of PAKs
during brain development. We then discuss the specific
functions of PAKs in neural development, migration, polarity,
differentiation, and cell fate determination, as well as
synaptic and neural cytoskeleton-related synaptic plasticity.
Neurological disorders associated with PAK dysfunction are
also discussed by integrating multiple levels of evidence
from mouse models and human genetics. A comprehensive
review of the function of PAKs in synaptic cytoskeleton-re-
lated neural function will promote our understanding of the
complex molecular mechanisms underlying neurological
diseases and help us determine the series of events that
lead to the progression of these diseases.

EXPRESSION OF PAKS IN THE NERVOUS SYSTEM
DURING BRAIN DEVELOPMENT

Considering little is known about the expression of PAKs at
different developmental stages in the nervous system, we
characterized the expression patterns of PAK genes in the
human brain by analyzing data from the HBT (Human Brain
Transcriptome) database (Johnson et al., 2009; Kang et al.,
2011; Pletikos et al., 2014) from the fetal period to after birth.
We downloaded transcriptome expression data with the probe
IDs corresponding to the PAK gene profiling by array on the
Affymetrix Human Exon 1.0 ST Array [transcript (gene) ver-
sion] Platform in the HBT database from 6 brain regions of 59
donors. The expression value of each PAK gene was aver-
aged using data from both the left and right brain hemispheres
of same-age donors. We found that most PAK levels showed
a decrease at the late prenatal stage, but each PAK presented
a differential pattern in different brain regions, including the
DFC (dorsolateral prefrontal cortex), hippocampus, amygdala,
mediodorsal nucleus of the thalamus, cerebellar cortex, and
striatum, from 40 weeks before birth to 40 years after birth
(Fig. 2A). Specifically, PAK1 was highly expressed at every
stage of life, especially after birth until adulthood, and it
showed a slightly decreasing trend in the striatum, but a
generally increasing trend in other regions of the brain during
development. In contrast, PAK2 showed high expression
levels during the fetal period that were gradually decreased
and maintained at a stable low level after birth. PAK3 showed
low expression in the striatum and high expression in other
brain regions during the fetal period but an obvious

decrease in the cerebellar cortex during development. In
general, PAK4 expression was relatively stable during the
fetal period and after birth. The expression trend of PAK5 was
similar to that of PAK2, with the exception that its decline
range was slightly lower than that of PAK2. In contrast to
PAK3, PAK6 showed relatively high expression in the striatum
and low expression in other brain regions at every stage of life
(Fig. 2A). We also analyzed the expression patterns of Pak
genes in the adult mouse brain by analyzing the data from
in situ hybridization dataset in the Mouse Brain module from
the Allen Brain Atlas database (Lein et al., 2007) and found
that the expression pattern of Paks at the adult stage in the
mouse brain was generally similar to the pattern in the human
brain. For example, Pak1 was highly expressed in all detected
brain regions; however, the Pak2 level was relatively low in
the adult mouse brain (Fig. 2B).

To analyze the cell-type-specific expressions of PAKs in
the human brain, we downloaded RNA-Seq data of 99 human
postmortem brains and seven cell-type samples from the
BRAINcode database (Dong et al., 2018). We found that
PAKs were highly expressed in the clusters of SNDA (sub-
stantia nigra dopamine neurons) and TCPY (temporal cortex
pyramidal neurons), but relatively low expression was found in
the clusters of PBMC (peripheral blood mononuclear cells),
MCPY (motor cortex pyramidal neurons), and FB (fibroblast)
(Fig. 3A). To analyze the cell-type-specific expressions of
Paks in the mouse brain, the single cell RNA-seq data from
Mousebrain.org, including 133 mouse samples from 19
regions in the central nervous system and peripheral nervous
system, were analyzed by droplet microfluidics (10× Geno-
mics Chromium) (Zeisel et al., 2018). We first calculated Paks
expression in seven cell types, including astrocytes,
ependymal cells, immune cells, neurons, oligodendrocytes,
peripheral glial cells, and vascular cells (Fig. 3B and 3C).
While Pak1 and Pak3 were highly enriched in the cluster of
neurons, Pak2 expression showed relatively higher levels in
ependymal cells, neurons, and vascular cells than in other cell
types. Notably, Pak1, Pak4 and Pak5 also exhibited relatively
high expression in oligodendrocytes (Fig. 3B and 3C), sug-
gesting their functions in non-neuronal cells. To provide more
specific cell-type information, Pak expression in 20 cell types
was also analyzed and calculated using the same data
(Fig. 3D and 3E). We found that Paks were expressed in
various neuronal and non-neuronal cells, including cholinergic
and monoaminergic neurons, hindbrain excitatory neurons,
oligodendrocytes and telencephalon excitatory neurons.
Specifically, Pak1 was relatively enriched in hindbrain exci-
tatory neurons, Pak2 in the clusters of cholinergic and
monoaminergic neurons and enteric neurons, Pak3 in
cholinergic and monoaminergic neurons, Pak4 in oligoden-
drocyte clusters, Pak5 in the clusters of oligodendrocytes and
telencephalon excitatory neurons, and Pak6 in the clusters of
hindbrain excitatory neurons and telencephalon excitatory
neurons. These findings suggest that different PAKs may
exert different functions in the brain.
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8 © The Author(s) 2020

P
ro
te
in

&
C
e
ll



FUNCTION OF PAKS IN NEURAL CYTOSKELETAL
REMODELING

The F-actin (filamentous actin) cytoskeleton is the main
driving force behind dendritic spine remodeling and mainte-
nance of synaptic plasticity. Cofilin is a major actin-depoly-
merizing factor that regulates the actin cytoskeleton
dynamics and phosphorylation of serine residue at 3 (Ser 3)
can inhibit its actin-depolymerizating activity (Yang et al.,

1998). PAK can phosphorylate cofilin at Ser3 via LIMK1/2
(LIM motif-containing protein kinases 1 and 2) to prevent
F-actin depolymerization (Arber et al., 1998; Yang et al.,
1998; Li et al., 2013; Wang et al., 2018). Due to their high
expression in the adult brain, the group I PAKs, particularly
PAK1 and PAK3, are the most extensively studied mam-
malian PAKs for their function in brain and behavior. How-
ever, emerging studies indicate that other PAKs also play
important roles in the formation and maintenance of dendritic

Figure 2. PAKs show a differential expressional pattern from the fetal period to after birth in the human and mouse brain.We

downloaded transcriptome expression data profiling in the HBT database, with the transcriptome data read by R package “oligo”.

(A) Scatter plot representation of PAKs expression using transcriptome data. DFC, dorsolateral prefrontal cortex; HIP, hippocampus;

AMY, amygdaloid complex; MD, mediodorsal nucleus of thalamus; CBC, cerebellar cortex; STR, striatum. (B) Heatmap presents the

expression of each Pak in adult mouse brain in the sagittal plane. OLF, olfactory areas; HPF, hippocampal formation; CTXsp, cortical

subplate; STR, striatum; PAL, pallidum; TH, thalamus; HY, hypothalamus; MB, midbrain; P, pons; MY, medulla; CB, cerebellum.
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spines and activity-dependent synaptic plasticity via regu-
lating actin cytoskeleton dynamics (Manser et al., 1994;
Rane and Minden, 2014). To date, PAKs have been found to
be involved in diverse neural developmental processes,
such as PAK1/2/3/6 in neuronal migration (Causeret et al.,
2009; Pensold et al., 2017; Wang et al., 2018; Liu et al.,
2019), PAK1/3/6 in neurite outgrowth (Cobos et al., 2007; Li
et al., 2013; Civiero et al., 2015), PAK1 in neuronal polarity
(de la Torre-Ubieta et al., 2010), PAK1/3 in neuronal differ-
entiation (Li et al., 2013; Maglorius Renkilaraj et al., 2017),
and PAK1/4 in axonal development (Hing et al., 1999; Qu
et al., 2003; Chen et al., 2009). In the following sections, we
summarize how PAKs are involved in maintaining the
structural and functional plasticity of dendritic spines by
regulating actin cytoskeletal networks. A detailed summary
of the function of each PAK in neural development and
processes is summarized in Table 1. Established mouse
models for each member of the PAK family are also sum-
marized in Table 2.

Synaptic plasticity

Synaptic plasticity is closely related to the morphology and
density of dendritic spines, wherein F-actin is highly
expressed and forms a complex cytoskeletal network. PAKs
can control the polymerization and depolymerization of
F-actin and play an indispensable role in synaptic plasticity
(Kreis and Barnier, 2009). Abnormal activation of Rac-PAK
or Rac-GEF/PAK signaling can result in aberrant actin
polymerization, increased spine density, and the suppres-
sion of spine maturation (Nobes and Hall, 1995; Nobes and
Hall, 1999; Byrne et al., 2016). Mice overexpressing an
autoinhibitory-negative PAK in the postnatal forebrain
showed fewer spines, and synapse distribution in these mice
exhibited a shift toward synapses of larger size, suggesting
the direct contribution of PAK catalytic activity to synaptic
plasticity (Hayashi et al., 2004). The Rac/PAK signaling
pathway is also required for the rapid stabilization of newly
formed polymers of actin filaments induced by stimulation,
and thus for activity-induced changes of spine morphology
and synaptic plasticity (Chen et al., 2010). In addition to its
regulation of actin dynamics at postsynaptic spines, PAK
activation also regulate presynaptic actin network and is
required for the formation of actin-based filopodia in presy-
naptic terminals related to long-term memory (Udo et al.,
2005).

PAKs dysfunction has induced abnormal synaptic mor-
phology and functional impairments in synaptic plasticity and
behavior in mice. For example, Pak1 knockout mice showed
deficits in spine actin filaments and NMDA-induced cofilin
activity as well as dramatically reduced hippocampal LTP
(long-term potentiation) (Asrar et al., 2009). Mice lacking the
gene Pak3 exhibited reduction in phosphorylated CREB
levels but normal actin cytoskeleton, possibly due to the
compensatory roles of other PAK family members in the
brain (Meng et al., 2005). Consequently, a selective deficit in

hippocampal late-phase LTP as well as deficiencies in hip-
pocampus-independent learning tasks were found in the
Pak3 knockout mice (Meng et al., 2005). PAK3 can be
specifically recruited to the head of the activated spine by
activity to control activity-mediated local spine growth and
synaptic connectivity. Inhibition of PAK3 in a rat hippocampal
slice induced the growth of new, unstable spines and an
impairment of activity-dependent spine stabilization (Dubos
et al., 2012). Notably, Pak1/Pak3 double-knockout mice
showed a robust microcephaly phenotype in postnatal brain
growth (Huang et al., 2011). Increased neural and glial cell
density but reduced dendritic arbors and axons and enlarged
individual synapses in the CA1 region of the hippocampus,
along with enhanced basal synaptic transmission and
reduced LTP and LTD (long-term depression), were also
evident in the double-knockout mice (Huang et al., 2011).
Moreover, our recent study indicated that PAK2 dysfunction
resulted in decreased synapse densities, attenuated LTP,
and autism-related behaviors in mice (Wang et al., 2018).

In addition to neuronal morphology, PAKs regulate
synaptic transmission and trafficking. For example, PAK3
controls the surface trafficking of the major excitatory
receptor GluA1 AMPAR (AMPA receptor) subunit in neurons
(Hussain et al., 2015). PAKs can interfere with Shank3 to
regulate NMDAR membrane delivery or stability (Duffney
et al., 2013). PAKs can also control synaptic GABA(A)R
surface stability via GIT1 (G protein-coupled receptor kinase
interacting ArfGAP 1)/βPIX signaling (Smith et al., 2014).
PAK signals function as the downstream of the scaffolding
protein SAP102 and EphB2 to regulate synaptic AMPAR
trafficking and localization in the neonatal cortex of mice
(Murata and Constantine-Paton, 2013). Moreover, PAKs can
function downstream of AMPK (AMP-activated protein
kinase) and regulate the activity of excitatory synapses in
AgRP (agouti-related peptide) neurons to produce fasting-
induced plasticity (Banko et al., 2011; Kong et al., 2016).
When AgRP neurons are activated, AMPK can phosphory-
late PAK2 and its target LIMK2. Inhibition of PAK by over-
expressing AID in the arcuate nucleus greatly decreased
AgRP neuron activity, mEPSCs (miniature excitatory post-
synaptic currents) frequency and body weight of fasted mice,
suggesting that PAKs is required for fasting- and AMPK-
induced effects on excitatory synaptic plasticity (Kong et al.,
2016). PAK1 can maintain the balance of excitation and
inhibition through endocannabinoid signaling (Xia et al.,
2016). PAK1 up-regulates synaptosomal COX-2 (cyclooxy-
genase-2) expression, which then decrease endocannabi-
noid signaling and facilitate inhibitory synaptic transmission
by increasing GABA transmission. PAK1 disruption in mice
resulted in suppressed inhibitory neurotransmission through
reducing COX-2 expression and increasing endocannabi-
noid secretion (Xia et al., 2016). PAK-cofilin-mediated actin
PAK signaling regulates synaptic function in the entorhinal
cortical to dentate gyrus circuit (EC-DG) and play a critical
role in social recognition memory retrieval (Leung et al.,
2018). Inducible disruption of PAK signaling impairs synaptic

REVIEW Kaifan Zhang et al.
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transmission at the EC-DG terminals and selectively impairs
social recognition memory (Leung et al., 2018). Moreover,
PAK5 can phosphorylate Pacsin1 and Synaptojanin1, two
proteins that regulate synaptic vesicle endocytosis and
recycling, suggesting the role of PAK5 in synaptic vesicle
trafficking (Strochlic et al., 2012).

PAKs can regulate synaptic plasticity by affecting impor-
tant signaling pathways. For example, the scaffolding pro-
teins MAGUKs (membrane-associated guanylate kinases),
such as SAP102, can interact with EphB2 and Kalirin-7, a
neuronal exchange factor for small GTPase, to activate their
key downstream PAK signals (Murata and Constantine-Pa-
ton, 2013). The EphB/SAP102/PAK signaling can regulate
synaptic AMPAR trafficking and localization in the neonatal
cortex of mice and thus has critical roles in cortical synapse
development (Murata and Constantine-Paton, 2013). The
FMRP-CYFIP1-eIF4E inhibitory complex can maintain the
appropriate polymerization and stabilization of actin fila-
ments in response to synaptic activity by inhibiting Rac1-
PAK1/2 activation, which is fundamental for generating
multiple forms of long-term synaptic plasticity at gluta-
matergic synapses (Santini et al., 2017). The GIT1/βPIX/
Rac1/PAK pathway can modulate F-actin and plays a crucial
role in maintaining surface GABA(A)R levels and thus inhi-
bits synaptic plasticity in the brain (Smith et al., 2014). PAK1
also plays key roles in synaptogenesis and spine morpho-
genesis by participating in ephrinB-EphB receptor signaling
(Penzes et al., 2003). PAKs can also form a complex with
pre/postsynaptic proteins to regulate synaptic plasticity. For
example, PAKs can form a complex with Scribble, β-PIX,
and GIT1, to regulate dendritic spine development via MLC
(myosin II regulatory light chain). This complex can bind to
NOS1AP, leading to Rac activation and altered spine mor-
phology (Richier et al., 2010). Similarly, in Drosophila, Neto
(neuropilin and tolloid-like)-β can regulate the accumulation
of PSD-associated PAKs by interacting with a large protein
complex containing dPIX and Dock, which are crucial to the
composition of neural circuits and the long-term plasticity of
learning and memory at the neuromuscular junction (Ramos
et al., 2015). However, most of the mechanisms underlying
the relationship between PAKs and pre/postsynaptic pro-
teins remain unclear. Figure 4 shows the detailed signaling
pathways mediated by the PAK-related cytoskeleton in
dendritic spines.

Neuronal migration

Neuronal migration from the birthplace to final location
occurs in newly formed neurons and is critical for nervous
system development (Guo et al., 2007; Marin et al., 2010).
During the key stages of cortical development, group I PAKs
are activated and expressed in migrating neurons, thereby
regulating neuronal migration. For example, PAK1 controls
the correct orientation and morphology as well as radial
migration of neurons in the developing cerebral cortex
(Zhong et al., 2003). PAK1 also promotes the formation of

polarized lamellipodia in migrating neurons and is essential
for maintaining correct neocortical laminar organization
(Causeret et al., 2009). Inhibition of PAK1 changes the
morphology of migrating neurons, causing them to accu-
mulate in the intermediate zone and deep layers of the
cortex of mice (Causeret et al., 2009). The binding of the Ras
prenylation sequence (CAAX-box) to the C-terminus of
PAK1 is essential for its membrane activity (Jacobs et al.,
2007). Overexpression of PAK1-CAAX caused neurons to
reside in the intermediate zone of mice (Causeret et al.,
2009). Notably, we found that PAK2 regulated the migration
of neurons to the cortical plate in the developing cortex.
PAK2 deficiency resulted in a dampened actin network and
fewer neurons to migrate into the cortical plate (Wang et al.,
2018).

RGCs (radial glial cells) are the principal subtype of
neuronal progenitors and can produce most cortical neurons
in the neocortex (Gotz and Barde, 2005). Zeb1 is expressed
in RGCs during neocortical neurogenesis. It can bind to
PAK3, which is relatively enriched in RGCs (Fig. 2B), and the
methyltransferase PRMT5 to form a repressing complex that
regulates radial migration and neuronal multipolar-bipolar
transition in the developing mouse cortex (Liu et al., 2019).
PAK3 is dramatically upregulated in Zeb1 knockout mice.
Overexpression of PAK3 in wild-type cortical neurons
showed the same phenotype as those in Zeb1 knockout
mice, whereas Pak3 knockout rescued the abnormal
migration of cortical neurons in Zeb1 knockout mice (Liu
et al., 2019). Moreover, PAK3 expression is absent in MGE
(medial ganglionic eminence)-derived migratory interneu-
rons, but is upregulated as neurons differentiate (Cobos
et al., 2007). PAK3 overexpression in the MGE can inhibit
the tangential migration of interneurons to the neocortex
(Cobos et al., 2007). In humans, a recent study highlighted

cFigure 3. The expression of PAKs in specific cell type

and brain region. (A) Heatmap shows the cell number of

each PAK in five specific cell types in the human brain

using the R package “pheatmap”. FB, fibroblast; MCPY,

motor cortex pyramidal neurons; PBMC, peripheral blood

mononuclear cells; TCPY, temporal cortex pyramidal

neurons; SNDA, substantia nigra dopamine neurons.

(B) Violin plotting shows the expression level of each

Pak in seven cell types in the mouse brain. The Y-axis

represents the expression level of cell type. (C) Dot plotting

shows the mean expression and fraction levels of each

Pak in seven cell types in the mouse brain. (D)Violin

plotting shows the expression level of each Pak in 20

specific cell types in the mouse brain using the Python

package ‘scanpy’ versions 1.6.0 and 1.5.1. MSN, medium

spiny neurons. (E) Dot plotting shows the mean expression

and fraction levels of each Pak in 20 specific cell types in

the mouse brain. MSN, medium spiny neurons.
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that the function of PAK3 in cell migration was associated
with brain morphological changes in patients with intellectual
disability and corpus callosum agenesis (Duarte et al.,
2020).

Migration of GABAergic interneuron from their origin sites
in the subpallium of the embryonic POA (preoptic area) to
distant targets, such as the cerebral cortex, is a critical step
in GABAergic interneuron development (Martini et al., 2009;
Cooper, 2013). DNA methylation by DNMTs (DNA methyl-
transferases) is increased during the migration of active
immature GABAergic interneurons (Pensold et al., 2017).
DNMT1-positive cells showed significantly reduced levels of
PAK6 expression, but cells expressing Pak6 were presented
in later stages of maturation of postmigratory POA-fated
neurons. Suppression of PAK6 by DNMT1 in POA-derived
migrating GABAergic cells can prevent premature neurito-
genesis and preserve their migratory morphology (Pensold
et al., 2017). The results suggest that PAK6 is involved in the
migration of GABAergic interneurons.

In addition to mammalian systems, PAKs regulate neural
migrations in other species. For example, PAK3 can promote
neuronal differentiation and migration in Xenopus laevis
(Souopgui et al., 2002). PAK1 regulates the migration of
HSNs (hermaphrodite-specific neurons) in Caenorhabditis
elegans. The transcription factor DAF-16/FOXO, a known
target of IGF-1 (insulin/insulin-like growth factor-1) signaling,

regulates the posterior-to-anterior migration of HSNs in
developing embryos (Henderson and Johnson, 2001; Lee
et al., 2001; Lin et al., 2001). PAK1 is a downstream regu-
lator of insulin/IGF-1-DAF-16 signaling during HSN migration
(Kennedy et al., 2013). Considering PAK1 can help guide the
migration of HSNs by remodeling the actin cytoskeleton and/
or regulating cell adhesion at hypodermal cell boundaries,
the roles of PAK1 and FOXO in neuronal migration in higher
organisms deserve further investigation (Kennedy et al.,
2013). Whether other PAKs family members also function as
the downstream of FOXO in neural migration remain to be
investigated.

Neurite outgrowth

The movement and dynamics of growth cones, which guide
the rate and direction of neurite outgrowth, are largely
dependent on the assembly and reorganization of filopodia
and lamellipodia (Brown et al., 2000). Rho GTPases, such
as Rac1 and Cdc42, mediate the formation of lamellipodia
and filopodia. As the main downstream effectors of Rac1 and
Cdc42, PAKs play an important regulatory role in neurite
growth in diverse species.

In the growth cones of neurons, PAK1 can interact with
the NCAM (neural cell adhesion molecule), a member of the
Ig superfamily, to induce the activation of the PAK1-LIMK1-

Table 2. PAK Mutations identified in patients with diverse neurological diseases

Chr. Position Alleles Origin Consequence Diseases/Phenotypes References

PAK1 Chr11 77336213 T>C De novo Missense ID with macrocephaly,
seizures, speech
delay

Harms et al., 2018;
Horn et al., 2020

77379288 T>C

77474957 G>A /
G>T

– Intron variant SCZ Jiang et al., 2017

77322663 A>C /
A>G

3′ UTR
variant

PAK2 Chr3 q29 Deletion De novo/
inherited

– 3q29 microdeletion
syndrome

Willatt et al., 2005

196554151 C>T De novo Nonsense Autism Wang et al., 2018

196555271 C>T Maternal
inherited

Missense

196555271 G>A Paternal
inherited

PAK3 ChrX 111142119 C>T – Missense X-Linked MR, ID Bienvenu et al.,
2000

111194402 C>A Paternal
inherited

Gedeon et al.,
2003

111196488 C>T – Nonsense Allen et al., 1998

111196570 G>C Inherited Missense Peippo et al., 2007

111142200 A>G Splice region
variant

Rejeb et al., 2008

Notes: –, not determined; MR, mental retardation; SCZ, schizophrenia; ID, intellectual disability; Chr, chromosome.
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cofilin pathway and promote cytoskeletal remodeling pro-
cesses and filopodium mobility (Li et al., 2013). NCAM
activation results in the dephosphorylation of PAK1 at
Thr212 and hyperphosphorylation of PAK1 at Ser199/204
and Thr423, which are beneficial to the promotion of PAK1
activity and the formation of the PAK1/PIX/Cdc42 complex
(Nikolic et al., 1998; Rashid et al., 2001; Parrini et al., 2009).
After autophosphorylation, activated PAK1 phosphorylates
LIMK at Thr508, which in turn phosphorylates cofilin at Ser3,
followed by a reduction in its actin-depolymerizing activity (Li
et al., 2013). Increased actin polymerization promotes the
movement of the growth cone and the generation of traction
forces needed for neurite outgrowth (O’Donnell et al., 2009).

PAK3 contributes to the neurite outgrowth of cortical
GABAergic and MGE-derived interneurons. Pak3 knockout
inhibits neurite growth in cortical GABAergic interneurons
during their migration (Cobos et al., 2007). Downregulation
of PAK3 rescues the inordinate growth of neurites in post-
migratory MGE-derived interneurons in Dlx1/2 mutants

(Cobos et al., 2007). PAK6 plays an essential role in
cytoskeletal organization, thereby affecting cell shape,
motility, and adhesion (Civiero et al., 2015). PAK6 promotes
neurite outgrowth in postmitotic POA cells, which are char-
acterized by a significantly high expression of PAK6. PAK6
also promotes neurite complexity and outgrowth in cortical
projection neurons (Pensold et al., 2017).

Neuronal differentiation

Rac1 and Cdc42, which are downstream of NGF, are nec-
essary for regulating various aspects of neuronal differenti-
ation (Lamoureux et al., 1997; Yasui et al., 2001). As an
effector of Rac1 and Cdc42, PAK1 controls the morphology
and differentiation of cortical neurons via regulating
cytoskeletal reorganization. PAK1 can also interact with
NCAM to activate actin polymerization and promote neu-
ronal differentiation (Li et al., 2013). In mice, PAK3 expres-
sion is upregulated as GABAergic interneurons differentiate.

Figure 4. Graphic models of PAK signaling pathways in synaptic plasticity. The upstream activators of PAKs include Cdc42,

Rac1, Dock, p75NTR, DAF-16 and PIX/GIT1 and the downstream factors contain GPM6A, GluA1 and LIMK (Henderson and

Johnson, 2001; Kennedy et al., 2013; Li et al., 2013; Murata and Constantine-Paton, 2013; Gu et al., 2014; Hussain et al., 2015;

Kamiyama et al., 2015; Ramos et al., 2015; Byrne et al., 2016; Kim et al., 2017; Santini et al., 2017; Leung et al., 2018; Feng et al.,

2019). The main effect of PAKs is to regulate the formation of the cytoskeleton by activation of the LIMK-Cofilin pathway. The

disruption of PAKs-related pathways is closely associated with diverse neurological disorders.
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High PAK3 expression is associated with increased neurite
length and decreased neurite branching of cortical
GABAergic interneurons in mice (Cobos et al., 2007). PAK3
is also highly expressed in OPCs (oligodendrocyte precur-
sors) and shows decreased levels in mature oligodendro-
cytes (Maglorius Renkilaraj et al., 2017). Loss of Pak3 gene
has reduced the density of differentiated oligodendrocytes in
the developing white matter, suggesting that the expression
of PAK3 in OPCs may be essential for the transformation
from a proliferative to a differentiation stage (Maglorius
Renkilaraj et al., 2017). Although the mechanism by which
PAK3 promotes OPC differentiation remains unknown, one
hypothesis is that PAK3 may control OPC differentiation by
regulating the subcellular localization of LIMK1. This is
because oligodendrocyte maturation depends on intracellu-
lar protein shuttling, and the accumulation of nuclear LIMK1
inhibits OPC differentiation (Gottle et al., 2015). In addition,
Pak4-null embryos have shown defects in the differentiation
of both spinal cord motor neurons and ventral interneurons.
In particular, the lack of neuronal differentiation has been
observed throughout the neural tube of Pak4-null embryos
(Qu et al., 2003).

Axonal development

PAKs can also regulate axonal function and process, such
as axonal transport, growth, and guidance. In Drosophila,
PAK1-regulated actin cytoskeleton is essential for the axon
guidance of photoreceptor cells (Hing et al., 1999). In mice,
NCAM can interact with PAK1 and promote axonal growth in
hippocampal neurons (Li et al., 2013). Other adhesion
molecules, such as DSCAM, also interact and activate PAK1
to regulate cell migration and neuronal differentiation and to
induce axonal guidance (Rashid et al., 2001). PAK4 also
plays an important role in axonal outgrowth and neuronal
development by regulating actin cytoskeletal reorganization
in neural progenitor cells (Jaffer and Chernoff, 2002; Qu
et al., 2003). Pak4-deficient mouse embryos displayed
impaired axonal outgrowth and neurons, including interneu-
rons and spinal cord motor neurons, which failed to migrate
to their proper locations in these mice (Qu et al., 2003).

The GEF domain of UNC-73, a Trio-like guanine
nucleotide exchange factor, can specifically interact with Rac
and activate UNC-73-Rac-PAK1 signaling, which has been
found to contribute to the induction of motor commissural
axons in C. elegans (Lucanic et al., 2006). In mice, TRIO, an
UNC-73 mammalian homolog, can bind to DISC1, which
results in the activation of TRIO-Rac1-PAK1 signaling that
regulates axonal connectivity and guidance in the develop-
ing brain (Chen et al., 2011). Rac-PAK signaling also regu-
lates the interaction between Schwann cells and axons in
the peripheral nerves (Nakai et al., 2006). Before differenti-
ation, cytoskeleton remodeling in Schwann cells is required
for their expansion and migration towards the direction of
axons (Nakai et al., 2006). Inhibition of Rac-PAK can restore
neuronal interactions and promote aligned processes with

neurites in Schwann cells (Nakai et al., 2006). Moreover,
loss of MOCA (Modifier of Cell Adhesion), a guanine
nucleotide exchange factor for Rac1 and a presenilin binding
protein, results in altered PAK signaling, abnormal aggre-
gation of neurofilament proteins, and disorganization of the
axonal cytoskeleton, as well as axonal degeneration (Chen
et al., 2005). In contrast, activation of MOCA-PAK-LIMK
signaling can increase cofilin phosphorylation and have a
regulatory effect on actin dynamics to prevent axonal
degeneration (Chen et al., 2009). Axonal dysfunction, such
as impaired axonal transport in the dystrophic axons and
abnormal axonal growth and synaptogenesis, caused by
abnormal gene expression or mutations in the Rac-PAK-re-
lated signaling pathway, have been observed in patients with
schizophrenia, neurodegenerative diseases, and psychiatric
disorders (Aston et al., 2005).

Other functions of PAKs in nervous systems

Neuronal polarity, such as axo-dendritic polarity, which
allows the undifferentiated neurites to form the typical neu-
ronal shape with short dendrites and a long axon, is critical to
proper neuronal connectivity (Jan and Jan, 2003). FOXO
transcription factors are widely activated in the developing
mammalian brain and promote a switch from a nonpolarized
state to a polarized morphology in neurons (Brunet et al.,
1999; Hoekman et al., 2006). PAK1 is a direct target for
FOXO transcription factors to control both actin and micro-
tubule dynamics in neurons. In vivo knockdown of FOXO in
the developing rat cerebellar cortex induced a robustly
downregulation of PAK1 and impaired neuronal polarity in
primary granule neurons (de la Torre-Ubieta et al., 2010).
Moreover, PAK1 functions downstream of the Par polarity
complex Par3/Par6/aPKC, which is also regulated by FOXO
proteins (de la Torre-Ubieta et al., 2010). The FOXO-PAK1
pathway represents an important transcriptional mechanism
that establishes neuronal polarity (de la Torre-Ubieta et al.,
2010).

Precise positioning of dendritic branches is essential for
establishing neuronal circuitry during development. Previous
studies have shown that the Dscam1 (Down syndrome cell-
adhesion molecule), the receptor of anterior corner cells in
the motor neurons, can recruit Dock and PAK1 to the plasma
membrane and define the precise positioning of dendrito-
genesis in Drosophila (Kamiyama et al., 2015). Similarly, in
mammals, PAK1 interacts with the SH2-SH3 domain of the
NCK protein, an ortholog of Drosophila Dock (Kamiyama
et al., 2015). Pak1 mutation reduces the number of anterior
corner cell dendritic branches and causes the misplacement
of remaining branches (Kamiyama et al., 2015).

PAKs can regulate nerve conduction in non-neuronal
cells. One of the few studies indicates that PAKs regulate the
formation of the myelin sheath that wraps around axons in
both the CNS (central nervous systems) (Maglorius Renki-
laraj et al., 2017) and PNS (peripheral nervous systems) (Hu
et al., 2016), the deficits of which can impair the nerve
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conduction of electrical impulses and have been reported in
many neurological diseases. Oligodendrocytes are the
myelin-forming cells of the CNS. One study showed that
PAK3 was highly expressed at the OPC stage, and its
expression decreased in differentiated and mature oligo-
dendrocytes. Pak3 knockout mice displayed delayed OPC
differentiation and consequently myelination defects in the
corpus callosum (Maglorius Renkilaraj et al., 2017), sug-
gesting that PAK3 is a new regulator of OPC differentiation.
Schwann cells form the myelin in the PNS. Establishment of
Schwann cell polarity includes the regulation of actin
cytoskeleton. Schwannomas containing Schwann cells that
show high Rac activity and disorganized cytoskeleton
structure fail to interact with axons (Nakai et al., 2006).
Moreover, increased F-actin levels correlated with enhanced
PAK1 activity were found in a mouse model with disruption of
myelin junctions in Schwann cells (Hu et al., 2016). The
abnormal F-actin levels, myelin junction disruption, and
nerve conduction failure in the mice can be completely res-
cued by pharmacological inhibition of PAK1 (Hu et al., 2016),
suggesting a potential therapeutic approach for demyelinat-
ing diseases.

NEUROLOGICAL DISEASES ASSOCIATED
WITH PAK DYSFUNCTION

Due to their crucial function in neural cytoskeleton regula-
tion, PAKs play an indispensable role in brain development
and behavior, and are involved in diverse neurological dis-
eases, including both neurodevelopmental and neurode-
generative diseases. The identified mutations of PAKs
in diverse neurological diseases have been summarized in
Table 3.

Autism spectrum disorders (ASDs)

ASDs are a group of complex neurodevelopmental disorders
characterized by abnormal social interaction and communi-
cation and restricted repetitive behavior (de la Torre-Ubieta
et al., 2016). To date, approximately 1000 ASD-related
genes have been added to the database (Pereanu et al.,
2018), suggesting the high heterogeneity of this disease.
Several recent studies have demonstrated the pathogenic
mechanisms of PAK dysfunction and the impairment of its
regulated-cytoskeletal dynamics in ASD etiology. For
example, we found that PAK2 haploinsufficiency resulted in
autism-related behaviors in both mice and humans. PAK2
dysfunction decreased the phosphorylation levels of LIMK1
and cofilin and their regulated actin networks related to
ASDs (Wang et al., 2018). Functional annotations of PAK2-
regulated genes have shown that actin dysregulation rep-
resents a common pathophysiological mechanism in ASD
(Wang et al., 2018). Moreover, Deficiency of Shank3, a
known autism candidate gene that encoded synaptic scaf-
fold, caused a strong in F-actin and NMDAR-mediated
synaptic current by interfering with PAK signaling, which

resulted in synaptic dysfunction and abnormal social
behaviors in mice (Duffney et al., 2013). Notably, PAK1-
mediated actin dynamics can partially rescue ASD-related
synaptic and behavioral phenotypes induced by Shank3
mutations in mice (Bozdagi et al., 2010; Peca et al., 2011).
Recently, gain-of-function PAK1 mutations have also been
identified in patients with neurodevelopmental phenotypes,
including intellectual disability, macrocephaly, speech delay,
seizures, and seizures (Harms et al., 2018; Horn et al.,
2019). The finding suggests the direct contribution of PAK
signaling to the pathology of the neurodevelopmental
disease.

Alzheimer’s disease (AD)

AD is characterized by the accumulation of excessive Aβ
(amyloid beta) and tau proteins, which trigger a complex
cascade resulting in synaptic loss and neurotransmitter
deficiencies (Sivanesan et al., 2013). When Aβ accumulates
in the brain, it interacts with PAKs by binding to p75NTR (a
nerve growth factor receptor) to promote the activation of
PAKs and phosphorylation of cofilin, eventually promoting
NMDA excitotoxicity, a trigger of AD (Gu et al., 2014). A
substantial loss of total PAKs has been detected in the
cortex and hippocampus of patients with advanced AD
(Zhao et al., 2006; Ma et al., 2008; Nguyen et al., 2008).
Moreover, aberrant translocation of PAK1 from cytoplasm to
membrane and reduced postsynaptic PAK3 levels were also
found in the brains of AD patients (Ma et al., 2008; Lauter-
born et al., 2020), suggesting that PAK dysfunction impaired
the stabilization of actin network and resulted in deficiencies
in synaptic plasticity and behaviors. In the mouse model,
PAK levels varied with age and were associated with the
progression of AD (Ma et al., 2008). Loss of PAK expression
specifically in the forebrain altered cortical synaptic mor-
phology and prevented memory consolidation in mice (Dai
et al., 2014). Considering the molecular pathways involved in
PAK signaling are critical to synaptic function, PAKs are
considered potential therapeutic targets for AD. Notably,
although PAK inactivation decreased drebrin expression and
impaired social recognition, it failed to further enhance
Aβ/tau pathology in AD mice (Arsenault et al., 2013). Thus,
the reduction of PAKs is a consequence of the neu-
ropathology of AD rather than a cause; thus, therapeutic
activation of PAKs may only have symptomatic benefits for
brain function in AD (Arsenault et al., 2013).

Mental retardation (MR)

Fragile X syndrome (FXS), the most common genetic form of
MR, is caused by repeated CGG amplification of the FMR1
(fragile X mental retardation 1) gene on the X chromosome
(O’Donnell and Warren, 2002; Darnell et al., 2011). Patients
with FXS showed mental retardation, language disorder,
appearance change, and behavioral disorder (Darnell and
Klann, 2013). Similarly, an animal model of FXS exhibited
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multiple neuronal and behavioral abnormalities (Bhat-
tacharya et al., 2012). Previous studies have consistently
found that impaired RAC/PAK signaling and abnormal PAK
expression were associated with abnormal dendritic spine
architecture, neuronal development, and aberrant behaviors
in Fmr1mice (Chen et al., 2010; Santini et al., 2017). In Fmr1
mice, TBS (theta-burst stimulation) failed to activate and
induce PAK phosphorylation in the spine, and newly formed
actin filaments induced by theta stimulation remained
unstable (Chen et al., 2010). Correspondingly, TBS induced-
Schaffer-commissural fEPSP (fleld exciatatory postsynaptic
potential) slopes were vulnerable to the treatment that dis-
rupts dynamic actin filaments and showed a gradual decay
in a short period, suggesting that LTP stabilization was
abnormal in the mutants (Chen et al., 2010). Due to the lack
of FMRP, CYFIP1 cannot inhibit Rac1 activity in Fmr1 mice,
resulting in activation of the Rac1-PAK pathway and actin
dynamic changes (Santini et al., 2017). Unusually elevated
Rac1-PAK1 signaling results in a balance breakdown (F-
actin/G-actin) of the actin cytoskeleton and an immature
spine phenotype in Fmr1 mice (Pyronneau et al., 2017).
Notably, the morphological and behavioral phenotypes of
Fmr1 mice are rescued either by expressing a dominant-
negative form of PAK in the forebrain or by pharmacological
inhibition of PAK (Hayashi et al., 2004; Hayashi et al., 2007;
Dolan et al., 2013), suggesting the therapeutic potential of
PAKs.

PAK3-related mental retardation also represents a rare
cause of X-linked MR. Several loss of function and splice

mutations in the PAK3 gene have been identified in different
families of X-linked mental retardation with certain specific
clinical features, such as microcephaly, mild to moderate
mental retardation, oral motor dysfunction and aggressive
behavior (Allen et al., 1998; Bienvenu et al., 2000; Gedeon
et al., 2003; Peippo et al., 2007; Arsenault et al., 2013).
Notably, clinical features usually observed in MR, such as
autistic features, epilepsy or sleep disorder, have not been
frequently observed in PAK3-related disorders (Rejeb et al.,
2008), suggesting the distinguishable phenotypes of PAK3-
related MR from other X-linked MR syndromes.

Schizophrenia

Schizophrenia is a severe neuropsychiatric disorder with
complex polygenic genetic patterns and affects approxi-
mately 1% of the world population (Lewis and Levitt, 2002;
Ross et al., 2006). Patients with schizophrenia showed
neurologic symptoms (delusions, hallucinations, and lack of
motivation), and cognitive symptoms (poor executive func-
tioning, trouble thinking, and working memory deficits)
(Glantz and Lewis, 2001; Lewis et al., 2003; Sullivan et al.,
2003). Several studies consistently found that the brain of
patients with schizophrenia showed a reduction in dendritic
spine density (Glantz and Lewis, 2001). Recent exome
sequencing studies of de novo in schizophrenia trios and
disruptive mutations in schizophrenia sporadic cases have
revealed that genes related to activity-regulated cytoskeleton
complex contributed to the high ranked genesets for

Table 3. Rodent models of Pak members

Genotype Features Phenotypes Impaired Signals References

Pak1−/− A part of the ATG exon and adjacent
upstream intronic sequence were replaced
by a PGK-NRG cassette

Deficit in E/I
balance, deficit
in LTP

↓synaptic COX-2
levels, ↑tonic AEA
signaling, ↓p-CFL

Xia et al., 2016;
Asrar et al., 2009

Pak2−/− Pak2 knockout Lethal at E8.5 – C.H., Z. M. Jaffer
and J.C.,
unpublished

Pak2+/− A poly-A and a PGK promoter were inserted
before the exon 2 of Pak2 to terminate the
transcription

Autism-related
behaviors

↓pLIMK1/CFL Wang et al., 2018

Pak3−/− A part of the coding and adjacent
downstream intronic sequence were
replaced by a PGK-NRG cassette

Defects in LM,
myelin defects
in CC

– Meng et al., 2005;
Maglorius
Renkilaraj et al.,
2017

Pak1−/−;
Pak3−/−

DKO LM defects;
hyperactivity

↓p-CFL Huang et al., 2011

Pak4−/− The exon 1 was replaced with a PGK-NPG
cassette flanked with 5’ and 3’ homology
regions.

Lethal at E10.5;
heart and neural
tube defects

– Qu et al., 2003

Pak5−/−;
Pak6−/−

DKO Impaired learning
and locomotion

– Nekrasova et al.,
2008

Note: PGK-NRG, PGK-neomycin resistant gene; E/I, excitation and inhibition; LTP, long-term potentiation; CC, corpus callosum; LM, learning &

memory; E, embryonic day; p-CFL, phospho-cofilin; DKO, double knockout; –, not determined.
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schizophrenia (Fromer et al., 2014; Purcell et al., 2014),
suggesting that dysfunction of actin skeletal dynamics con-
tributed to the loss of dendritic spines in schizophrenia. In the
ACC (anterior cingulate cortex) and DFC of patients with
schizophrenia, PAK1 phosphorylation levels were reduced
(Rubio et al., 2012). PAK1 phosphorylation inhibits MLCK
(myosin light chain kinase), an enzyme that phosphorylates
MLC (Sanders et al., 1999). However, the levels of pMLC
(phosphorylated MLC), which is crucial for the structural
actin cytoskeleton stability, were only increased in the ACC,
and its expression in the DFC remained unchanged, sug-
gesting that the PAK1 downstream pathways are distin-
guishingly affected in the cortical regions of patients with
schizophrenia (Rubio et al., 2012). The increase in pMLC
levels in the ACC has been linked to the shrinkage of the
dendritic spine, suggesting a PAK1-related mechanism that
regulates dendritic spine loss in schizophrenia (Rubio et al.,
2012). Moreover, the schizophrenia risk gene DISC1 affects
axonal guidance by activating the Rac-PAK signaling path-
way (Kamiya et al., 2005). In patients with schizophrenia,
abnormal expression of DISC1 can decrease PAK activity
and cause defects in axonal guidance and neuronal con-
nectivity (Chen et al., 2011). GIT1, a gene that regulates
actin filament dynamics associated with schizophrenia, can
bind to Rac/Cdc42 and interacts with PAKs. Most
schizophrenia cases carrying GIT1 variants fail to induce
PAK3 activation and GAD1, the key enzyme in GABA
biosynthesis, in neurons (Kim et al., 2017), suggesting the
contribution of PAK3 dysregulation in the synaptic deficits in
schizophrenia.

Parkinson’s disease

Parkinson’s disease is a movement disorder characterized
by the degeneration of dopaminergic neurons in the sub-
stantia nigra and reduction of dopamine in the striatum
(Dauer and Przedborski, 2003). Among group II PAKs, PAK4
activity was significantly reduced in the substantia nigra of
patients with and rodent models of Parkinson’s disease
(Won et al., 2016). Decline of PAK4 expression and activity
in the human midbrain during aging can lead to a pre-
parkinsonian state (Won et al., 2016). Overexpression of
constitutively active PAK4 can protect dopaminergic neurons
and preserve motor function (Won et al., 2016). PAK4 may
promote the survival of dopaminergic neurons through the
AKT signaling pathway (Kuijl et al., 2007; Tyagi et al., 2014).
As an endogenous neuroprotective kinase, PAK4 and the
PAK4-CRTC1S215-CREB pathway may be useful therapeutic
targets for alleviating the symptoms of Parkinson’s disease
(Won et al., 2016). Moreover, PAK6 can bind to LRRK2
(leucine-rich repeat kinase 2), which is a cause of Parkin-
son’s disease, and is required for LRRK2 to regulate neurite
outgrowth (Civiero et al., 2015). The aberrant activation of
PAK6 in the striata of patients with LRRK2-linked Parkin-
son’s disease supports the role of PAK6 in the pathogenesis
of Parkinson’s disease (Civiero et al., 2015).

Neurofibromatosis type 1

NF1 (neurofibromatosis type 1) has an autosomal dominant
pattern of inheritance (Barton and North, 2004; Noll et al.,
2007). One altered copy of the NF1 gene can cause the dis-
ease (Pride et al., 2014). Over half of patients with NF1 have
deficits in social behaviors and social information processing
(Huijbregts et al., 2010; Huijbregts and de Sonneville, 2011),
and around one-third of patients present with a severe clinical
diagnosis of ASD (Garg et al., 2013; Walsh et al., 2013).
Further analyses of patients with NF1 and social deficits
showed that they also had problems with facial emotion
recognition, a function linked to the human amygdala (Hui-
jbregts et al., 2010;Garg et al., 2013; Lehtonen et al., 2013). In
mice with a loss of a single NF1 allele, neurofibromin levels
were reduced in several brain regions, including the hip-
pocampus, amygdala, and frontal cortex, as observed in
patients with NF1 (Costa et al., 2002; Cui et al., 2008; Molosh
et al., 2014). Moreover, abnormal GABA and glutamate neu-
rotransmission and MAPK pathways, disruptive LTP, and loss
of expression of the synaptic protein disintegrin and Adam22
(Fukata et al., 2006) and Hsp70 (Molosh et al., 2014) were
found in the amygdala of mice. Notably, although no obvious
alterations in PAK activity or expression were observed, the
social behavior deficits and amygdala disruptions in Nf1+/−

mice can be rescued by pharmacological blocking PAK1
activity in the amygdala or by the additional deletion of the
Pak1 gene (Molosh et al., 2014), suggesting an indirect con-
tribution of PAKs to the disease. Further study should inves-
tigate the molecular mechanism underlying the interaction
between PAK1 and NF1 to better support the potential thera-
peutic role of PAKs in NF1.

3q29 microdeletion syndrome

3q29 microdeletion syndrome is a rare chromosomal disor-
der caused by the deletion at the long (q) arm of chromo-
some 3. Approximately 80%–99% of people with the 3q29
microdeletion have mild to moderate intellectual disabil-
ity. They also have an increased risk of behavioral or psy-
chiatric disorders, including autism, bipolar disorder, and
schizophrenia (Willatt et al., 2005). The most frequently
deleted segment of chromosome in patients with 3q29
microdeletion contains about 20 genes (Quintero-Rivera
et al., 2010). De novo copy-number variations that contain
PAK2 were found in children with 3q29 microdeletion syn-
drome (Willatt et al., 2005). Notably, our study also found
another de novo copy-number deletion containing the PAK2
gene in a patient with ASD (Wang et al., 2018), suggesting
the contribution of PAK2 gene deletion in 3q29 microdeletion
syndrome.

CONCLUSIONS AND PERSPECTIVES

PAKs are widely present in neuronal and non-neuronal cells
in the central and peripheral nerve system. In neuronal cells,
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each PAK/Pak shows different expression pattern thus
exerts differential roles during brain development. Paks are
also highly expressed in non-neuronal cells, such as oligo-
dendrocytes, astrocytes, and peripheral glial cells. In par-
ticular, PAKs in oligodendrocytes have found to regulate
myelin sheath formation to contribute to nerve conduction.
Thus, whether the PAK-regulated cytoskeleton in non-neu-
ronal cells (such as oligodendrocyte and astrocytes) affects
neuronal function and how it contributes to neurodevelop-
ment and brain function requires further investigation.

PAKs regulate synaptic plasticity by regulating both spine
morphology and synaptic transmission/trafficking. PAKs can
also regulate diverse neural functions and processes and
are involved in broad neural activities in the brain. PAKs
participate in various signaling pathways related to
cytoskeletal remodeling and thus are involved in the
molecular pathology of neurological disorders at different
neurodevelopmental stages. PAKs thus have been found to
play both direct (such as ASD, MR and AD) and indirect
roles (NF1) in the pathology of neurological diseases.
Although some of the molecular mechanisms remain
unknown, PAKs, possessing specific small-molecule inhibi-
tors in cancer treatment, also represent potential therapeutic
targets of neurological diseases involving PAK dysfunction,
which necessitates further investigation. Moreover, consid-
ering the differential roles of PAKs in neural function, small
molecules specific for each PAK rather than a group of PAKs
may provide more precise and accurate improvement for
PAK-related neurological diseases.
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hermaphrodite-specific neurons; IGF-1, insulin-like growth factor-1;

LIMK1/2, LIM motif-containing protein kinases 1 and 2; LRRK2,

leucine-rich repeat kinase 2; LTD, long-term depression; LTP, long-

term potentiation; MCPY, motor cortex pyramidal neurons; MGE,

medial ganglionic eminence; MLC, myosin II regulatory light chain;

MLCK, myosin light chain kinase; MOCA, modifier of cell adhesion;

MR, Mental retardation; mEPSCs, miniature excitatory postsynaptic

currents; NCAM, neural cell adhesion molecule; Neto, neuropilin and

tolloid-like; NCK1, NCK adaptor protein 1; NF1, neurofibromatosis

type 1; OPCs, oligodendrocyte precursors; PAKs, p21-activated

kinases; PBD, p21-binding domain; PBMC, peripheral blood

mononuclear cells; PBR, polybasic region; PNS, peripheral nervous

systems; POA, preoptic area; PIX, PAK-interacting exchange factor;

pMLC, phosphorylated MLC; RGCs, radial glial cells; SNDA,

substantia nigra dopamine neurons; TBS, theta-burst stimulation;

TCPY, temporal cortex pyramidal neurons.
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