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The last two decades of the 21st century have seen
emerging zoonotic coronavirus (CoV) diseases, including
severe acute respiratory syndrome (SARS) (Holmes 2003),
Middle East respiratory syndrome (MERS) (Graham et al.,
2013) and coronavirus disease 2019 (COVID-19) (Jiang
et al., 2020), all posing a devastating threat to global public
health and economy. Human common coronavirus 229E
(HCoV-229E), HCoV-NL63 and HCoV-OC43 can cause
upper respiratory infection in adults and children, even
leading to fatal diseases (Morfopoulou et al., 2016; Konca
et al., 2017; Veiga et al., 2020). Moreover, recent studies
suggested that some bat-derived SARS-related coron-
aviruses (SARSr-CoVs) have the potential to cause new
CoV diseases in the future (Cui et al., 2019). This calls for
the development of pan-CoV inhibitors to combat both cur-
rent and future pandemics or epidemics of CoV diseases.

CONSERVED TARGET SITE IN CORONAVIRUS S
PROTEIN

The development of pan-CoV inhibitors depends on identi-
fying a conserved target site. As an enveloped virus, human
coronavirus (HCoV) presents a spike protein (S) on the viral
membrane surface. S protein plays key roles in virus entry,
including receptor recognition, binding, and membrane
fusion (Fig. 1A). It is a class I transmembrane glycoprotein,
which includes two subunits, S1 and S2. S2 subunit consists
of fusion peptide (FP), heptad repeat 1 and 2 domains (HR1
and HR2), transmembrane domain (TM), and cytoplasmic
domain (CP) (Fig. 1B). After binding between the receptor
binding domain (RBD) in S1 subunit and a cellular receptor,
a series of conformation changes in the S2 subunit are
triggered. FP is exposed and inserts into the cell membrane.
Then, three HR1 domains associate with each other to form
an internal trimer with three exposed hydrophobic grooves.
The internal trimer is maintained by the interaction between

residues located at the “a“ and “d“ positions in HR1 helices,
and their “e”, “g” positions are exposed and interact with “a”,
“d” positions in the HR2 helices to form a six-helix bundle (6-
HB) (Fig. 1C), which brings the viral and target cell mem-
branes into close proximity for fusion. The 6-HB formation is
a conserved and critical mechanism for viral fusion and
entry, and it is shared by all coronaviruses, mainly mediated
by HR1 and HR2 regions. Sequence analysis, however,
discovered that two α-coronaviruses (HCoV-229E and
HCoV-NL63) have 14 amino acid insertions in both HR1 and
HR2 regions comparable to those of β-coronavirus (HCoV-
OC43, MERS-CoV, SARS-CoV, and SARS-CoV-2) (Fig. 1B).
Crystal structure analysis of HR1-HR2 complexes has con-
sistently indicated that the HR1-HR2 of those HCoVs
showed similar 6-HB structures, but that the 6-HB of HCoV-
229E and HCoV-NL63 exhibited much longer and bending
helix in the HR2 domain (Xia et al., 2020b) (Fig. 1D).

ANTI-CORONAVIRUS PEPTIDE FUSION INHIBITORS

Similar to the first HIV-1 fusion inhibitory peptide, SJ-2176,
derived from the HIV-1 gp41 HR2 domain (Jiang et al.,
1993), numerous HCoV fusion inhibitory peptides derived
from their S protein HR2 domains have been identified
(Fig. 1E), such as SARS-CoV fusion inhibitory peptide, CP-1
(Liu et al., 2004), MERS-CoV fusion inhibitory peptide,
MERS-HR2P (Lu et al., 2014), and SARS-CoV-2 fusion
inhibitory peptide, 2019-nCoV-HR2P (Xia et al., 2020a).
Nevertheless, most of these HR2-derived fusion inhibitors
showed little, or no, cross inhibitory activity against infection
of heterologous HCoV, mainly because of the sequence
difference in HR1 regions of these HCoVs. Sequence anal-
ysis of HR2 region showed that some residues belong to
MERS-CoV are different from SARS-CoV and SARS-CoV-2.
MERS-CoV has residues of M16, V22, Y29 at “a” position
and L12 at “d” position, while these residues of SARS-CoV
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and SARS-CoV-2 are I12, I16, A22 and L29 (Fig. 1B). These
differences may affect its interaction with the HR1 region of
other CoVs to form the 6-HB core region, causing low inhi-
bitory activity, which limits the broad-spectrum anti-CoVs
activity. The secondary structure and chemical modification
of peptide may also affect its anti-CoVs activity.

THE DEVELOPMENT OF PAN-COV FUSION
INHIBITORS AND THEIR ANTIVIRAL MECHANISM

After a series of screening and optimization, we found a
peptide derived from the HR2 domain of HCoV-OC43, des-
ignated OC43-HR2P, showing broad fusion inhibitory activity
against all five pseudotyped human coronaviruses (HCoVs)
tested, including HCoV-229E, HCoV-NL63, HCoV-OC43,
SARS-CoV and MERS-CoV. We then modified OC43-HR2P

by introducing negatively and positively charged amino acids
Glu (E) and Lys (K), respectively, at the i to i + 3 or i to i + 4
positions in a helix, to allow them to form intramolecular E–K
or K–E salt bridges. The resultant optimized peptide EK1 has
shown significantly improved fusion inhibitory activity against
the above 5 HCoVs. EK1 also potently inhibits cell-cell fusion
mediated by S proteins of the SARS-CoV-2 and 3 SARSr-
CoVs (Rs3367, WIV1, SHC014) tested (Xia et al., 2019,
2020b). Furthermore, it is effective in inhibiting infection of
above 6 pseudotyped HCoVs and SARSr-CoVs (Rs3367,
WIV1), as well as five live HCoVs (HCoV-229E, HCoV-NL63,
HCoV-OC43, SARS-CoV-2, and MERS-CoV) (Xia et al.,
2020b).

Based on the crystal structures, we found that EK1
properly fits into the hydrophobic groove formed by two HR1
helices and that the binding site is consistent with those of
native HR2s, forming a similar 6-HB structure. Some
hydrophobic residues of EK1, such as L12, M16, L19, I23,
L26, as shown in red font in Fig. 1B, formed direct and
extensive hydrophobic interactions with HR1, while some
residues with long side chains, such as E15, K18, E27, and
Y30, also formed reliable hydrophilic interactions with HR1.
Moreover, the hydrophobic residues of EK1, e.g., L36, can
insert deeply into hydrophobic pockets formed by adjacent
HR1s, promoting the terminal region of EK1 to adhere to
3HR1 cores. Interestingly, the residues on HR1 mediating
the hydrophobic interaction with EK1 are conserved across
all HCoVs, including both α-HCoV and β-HCoV. Meanwhile,
those studies also confirmed that HCoV-HR2 regions could
serve as conserved targeted sites for the development of
broad-spectrum antiviral agents against multiple HCoV
infections (Xia et al., 2019).

We then designed and synthesized a lipopeptide, EK1C4,
by conjugating a cholesterol to the C-terminus of EK1 in
order to improve the antiviral activity and half-life of EK1.
Previous study has shown that conjugation with cholesterol
is an effective strategy to enhance activity of HIV-1 fusion/
entry inhibitors (Hollmann et al., 2013), possibly because the
cholesterol group in the lipopeptide anchors to the target
membrane or binds to the hydrophobic groove on HR1-tri-
mer (Xia et al., 2020b). Surprisingly, the inhibitory activity of
EK1C4 is about 241- and 149-fold more potent than EK1
against SARS-CoV-2 S protein-mediated membrane fusion
(IC50: 1.3 nmol/L vs. 315 nmol/L) and pseudovirus infection
(IC50: 15.8 nmol/L vs. 2,375 nmol/L), respectively. Its inhibi-
tory activity against live SARS-CoV-2 infection (IC50: 36.5
nmol/L) is about 30-fold and 20-fold more potent than
chloroquine (IC50: 1,130 nmol/L) and remdesivir (IC50: 770
nmol/L), respectively (Wang et al., 2020). EK1C4 also
exhibits highly improved inhibitory activity against all the
above HCoVs and SARSr-CoVs tested, suggesting that
EK1C4 has the potential to be developed as a pan-coron-
avirus prophylatic or therapeutic to prevent or treat infection

b Figure 1. Research and development of peptide-based virus

fusion inhibitors. (A) The structural protein of coronavirus.

There are three transmembrane proteins, including spike

protein (S; celadon), membrane protein (M; orange), and

envelope protein (E; blue) on the surface of envelope, in

addition to a nucleocapsid protein (N; cyan) inside the virion.

(B) Alignment of the conserved HR1 and HR2 sequences of

human CoVs. Spike (S) protein consists of signal peptide (SP),

receptor-binding domain (RBD), fusion peptide (FP), heptad

repeat 1 domain (HR1), heptad repeat 2 domain (HR2),

transmembrane domain (TM), and cytoplasmic domain (CP).

The amino acid sequence of EK1 is also shown in the figure.

(C) The model of 6-HB formation between HR1 and HR2 in S2

subunit of human CoV S protein. In the 6-HB formation process,

three HR1 helices form inter trimer by the interaction of residues

at “a” and “d” position (shown as the blue ball), resulting in the

exposure of three hydrophobic grooves where HR2 helices will

bind. Then, the residues at “e” and “g” position (shown as the

green ball) in HR1 helices interact with the residues at “a” and

“d” position (shown as the pink ball) in HR2 helices to form 6-HB

structure. (D) The crystal structure of 6-HB formed by HR1 and

HR2 domains of different human CoVs. (E) Milestones of the

peptide-based virus fusion inhibitors. (F) The mechanism of

human CoV S protein-mediated virus attachment and fusion

and the mechanism of action of the attachment and fusion

inhibitors. In the native state, the S2 subunit is encapsulated in

the S1 subunit. After receptor engagement by viral RBD,

several conformation changes occur in the S2 subunit. Three

HR1 molecules form HR1-trimer core structure, and three HR2

molecules interact with HR1-trimer to form 6-HB, mediating

membrane fusion. An RBD-specific neutralizing antibody

inhibits viral infection by blocking the binding of RBD to the

cellular receptor. A fusion inhibitor inhibits the membrane fusion

process by blocking 6-HB formation.
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by the current SARS-CoV-2 and other emerging and
reemerging SARSr-CoV and SARS-CoV (Xia et al., 2020b).

COMBINATORIAL USE OF A PAN-COV FUSION
INHIBITOR WITH A POTENT NEUTRALIZING
ANTIBODY TARGETING RBD IN S PROTEIN OF
A CORONAVIRUS

A potent neutralizing antibody targeting the RBD in S protein
of SARS-CoV-2 has the potential to prevent and treat
COVID-19 (Wu et al., 2020). However, RBD is a highly
mutable region in the coronavirus S protein. Indeed,
numerous studies have shown that a large number of
escape mutations are enriched in HCoV RBD (Wong et al.,
2017; Kleine-Weber et al., 2019; Ou et al., 2020). Therefore,
the combinatorial use of an RBD-specific neutralizing anti-
body and a pan-CoV fusion inhibitor is expected to be
effective against a coronavirus with mutations in RBD. It may
also show potent synergistic antiviral effect against divergent
HCoVs. For example, combining the fusion peptide HR2P-
M2 derived from the MERS-CoV HR2 domain and RBD-
specific neutralizing antibody m336 showed synergism
against MERS-CoV with or without mutations in the RBD
region (Wang et al., 2019). Therefore, combining a pan-CoV
fusion inhibitor, EK1 or EK1C4, with an RBD-specific neu-
tralizing antibody (Fig. 1F) can combat pandemics or epi-
demics of COVID-19, SARS, MERS or the emerging and
reemerging coronavirus diseases that may be caused by a
SARSr-CoV in the future.

PROSPECTS FOR FUTURE

In the last two decades, we have seen the continuous
emergence of novel highly pathogenic HCoVs to seriously
threaten global public health and economy, while some
animal coronaviruses, such as bat-SARSr-CoVs, still have
the potential to cross the species-barrier to infect humans in
the future. This reality calls for the development of potent
and broad-spectrum antiviral agents against current, as well
as the emerging and reemerging, HCoVs. We have identified
highly potent pan-CoV fusion inhibitors, EK1 and EK1C4,
which target the conserved HR1 region in S protein of
HCoVs, with several advantages, including low immuno-
genicity, good safety and druggability, particularly useful for
short-term application in the early stage of coronavirus
infection to save patients’ lives (Fosgerau and Hoffmann
2015; Xia et al., 2019, 2020b). However, this target is not
good for developing pan-CoV neutralizing antibodies
because: 1) the HR1-trimer has low immunogenicity since it
is only instantly exposed to immune system during the
membrane fusion stage, and 2) becuase of the steric hin-
drance, the antibody IgG (∼150 kDa) is too big to access to
the transitly exposed HR1-trimer, which is accessible to a
molecule ranging from 6 to 41 kDa (Hamburger et al., 2005).
Since a single-domain antibody, e.g., a nanobody, with a

molecular weight of ∼15 kDa (Wu et al., 2020) can access to
the HR1-trimer, it is possible to develop pan-CoV neutraliz-
ing nanobodies targeting the HR1-trimer of coronaviruses.
Another disadvantage of a peptide drug is its relative short
half-life. Therefore, it is still necessary to optimize the pan-
CoV fusion inhibitor to further improve its antiviral potency
and half-life. Our previous study has shown that conjugation
of an IgG Fc-binding motif to an HIV-1 fusion inhibitory
peptide can significantly improve the peptide’s half-life (Bi
et al., 2019; Xia et al., 2020b). The strategy of designing
cyclic peptides (Nielsen et al., 2017) may further improve
stability, even making oral administration available. The
combination of a pan-CoV fusion inhibitor with a potent RBD-
specific neutralizing antibody with strong synergism is
expect to reduce the dosage of antibody and peptide used,
thus reducing the cost to patients, in addition to the benefits
of combination (or cocktail) therapy mentioned above.
Overall, the pan-CoV fusion inhibitors show promise for
further development to combat present and future coron-
avirus pandemics.
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