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In this issue, Wang et al. report on the generation of a non-
human primate model of Hutchinson-Gilford progeria syn-
drome (HGPS) using a base editor. Base editing is an
emerging novel genome editing technique for modifying a
single base pair at specific sites in the genome. Base editors
(BEs) have two principal components, a catalytically inactive
or single strand cleaving Cas-variant, which binds to the
guide RNA and a nucleobase deaminase domain to convert
specific base pairs at the target loci (Komor et al., 2016;
Nishida et al., 2016; Gaudelli et al., 2017). Cytosine base
editor (CBE) and adenine base editor (ABE) are two base-
editors, which convert Cytosine-Guanine (C-G) to Thymine-
Adenine (T-A) and A-T to G-C, respectively. Likewise, RNA
base editor (RBE) was created by fusing nucleobase
deaminases with the Cas13 protein, which allows for a base
substitution of A to inosine (I) or C to uracil (U) in the targeted
RNA (Cox et al., 2017). Recently, a dual base editor was
developed that can catalyze both cytosine and adenine base
conversions at the same time, broadening base editing
capability (Zhang et al., 2020).

Compared to other gene-editing approaches, BEs have
several advantages 1) they can induce a single base-pair
substitution precisely and efficiently at the targeted loci, mak-
ing BE an ideal candidate for correcting pathogenic mutations,
2) they have a higher editing efficiencywithout the necessity of
a DNA template and 3) single nucleotide conversions do not
requireanydouble-strandedbreaks (DSBs),whichmay lead to
frequent insertions and deletions or larger-scale genomic
rearrangements (Ceccaldi et al., 2016; Liang et al., 2019). For
these reasons, CRISPR-guided base editing is particularly
attractive and has been widely applied to generate point
mutations in animal models and to correct genetic mutations.

For the first time, Wang et al., have generated a non-
human model of HGPS in the monkey using the newly
developed base editor. HGPS is a rare disorder caused by a

mutation in LMNA, which leads to a premature cryptic
splicing site and production of a truncated protein called
progerin (Eriksson et al., 2003). The truncated protein lacks
the endoproteolytic cleavage site and prevents the removal
of a farnesylated tail. Eventually, the accumulation of
abnormal protein on the nuclear envelope leads to the
manifestation of phenotypes such as nuclear abnormalities,
increased DNA damage, and loss of epigenetic marks.
Although the use of farnesyltransferase inhibitors to slow
down this process showed some promising results in animal
models, the long-term effects from the use of inhibitors are
still under study (Fong 2006; Young et al., 2013).

During the last several years, the use of HGPS patient-
derived fibroblasts and induced pluripotent stem cells
(iPSCs) have greatly advanced our understanding of cellular
and molecular defects caused by the accumulation of pro-
gerin (Zhang et al., 2011; Liu et al., 2011). Interestingly, due
to the absence of Lamin A/C and progerin expression in
pluripotent stem cells, the nuclear abnormalities and epige-
netic alterations were not observed. However, differentiation
of iPSCs to smooth muscle cells (SMCs), the primary cell
type affected in the patients, lead to the reappearance of
cellular defects due to the re-expression of the LMNA gene
(Liu et al., 2011). Similarly, isogenic human stem cell lines for
HGPS and Werner syndrome were created using a genome
editing approach to compare the aging kinetics (Wu et al.,
2018).

To better understand the pathological phenotypes of
LMNA splicing, a genetically modified mouse model carrying
the Lmna A mutation similar to humans was generated
(Osorio et al., 2011). These mice showed several pheno-
types observed in human HGPS, including shortened lifes-
pan and cardiovascular abnormalities. Moreover, these mice
phenocopied the HGPS phenotypes better than other mouse
models, such as Zmpste24-deficient mice. Although the

© The Author(s) 2020

Protein Cell 2020, 11(12):862–865
https://doi.org/10.1007/s13238-020-00765-z Protein&Cell

P
ro
te
in

&
C
e
ll

http://crossmark.crossref.org/dialog/?doi=10.1007/s13238-020-00765-z&amp;domain=pdf


mice carry a Lmna A mutation similar to human HGPS,
physiological differences between mice and humans can
limit a complete understanding of mechanisms underlying
this disease in humans. For this reason, a non-human pri-
mate model genetically engineered to develop HGPS was
much needed for basic and biomedical research.

CRISPR-Cas9 is currently the most widely used genome
editing tool for performing knockout or knock-in of genes. It
was also successfully used in monkey zygotes to generate
genetically modified animals (Niu et al., 2014; Wan et al.,
2014; Zuo et al., 2017; Zhang et al., 2018). Nevertheless, a
low rate of homologous recombination of the donor DNA
template limits the introduction of specific genetic changes,
especially at the single-nucleotide level. Wang et al.,
demonstrate the use of base editor in zygotes of monkey
and opened new avenues for the application of base editors
in medicine. The authors introduced the C>T conversion in
the LMNA gene at 1824 in Macaca fascicularis (cynomolgus
monkey) using the recently developed base editor, BE4max,
to generate an HGPS monkey model. The authors co-in-
jected a single guide RNA and BE4max into the zygotes,
which were later transferred to surrogate females. Five live
births were obtained, and two monkeys died after 5-months.
The sequencing results showed that all the monkeys had the
expected C>T conversion at the target locus, and three
monkeys were homozygous for the mutation.

Importantly, the expression of progerin was observed in
different tissues from homozygous and heterozygous mon-
keys, and similar to human HGPS, it was highly expressed in
skin, heart, and blood vessels. Moreover, HGPS monkeys
were healthy at birth but failed to gain weight during their
early life. Also, HGPS monkeys suffered from loss of hair
and subcutaneous fat. Interestingly, similar to human HGPS
patients, the mutant monkeys developed physical changes,
including a prominent forehead, protuberant eyes, and
hypoplastic mandible. Furthermore, mutant monkeys also
had increased vascular wall fibrosis. Notably, the fibroblasts
of mutant monkeys also showed a range of well-defined
cellular defects such as lower proliferation, increased
senescence, and loss of heterochromatin. Finally, tran-
scriptomic analysis of skin samples from 5-month old HGPS
monkeys showed upregulation of genes associated with an
inflammatory response and cytokine receptors compared to
the WT monkeys. Collectively, all the features observed in
mutant monkeys recapitulate the clinical descriptions seen in
human HGPS patients. Another clinical feature of HGPS
patients is a shorter lifespan; comprehensibly, the authors
need more time to report on this in the HGPS monkeys.

The HGPS monkey model developed by Wang et al.
constitutes a breakthrough to understand the HGPS disease
phenotypes in a higher animal that are not fully manifested in
the mouse models. Moreover, different types of drugs have
been tested in HGPS mouse models to restore the expres-
sion of genes and reduce progerin levels; although they
have shown promising results in mice, they have not been
effective in clinical trials. HGPS is a rare disease, and a

small patient number is a challenge to test all the promising
strategies; the HGPS monkey model developed by Wang
et al. will be of paramount importance to overcome these
problems.

Among the different hallmarks of aging observed in
HGPS, cellular senescence is a major one, which is also
seen during normal aging and is considered to contribute to
the aging of the whole organism significantly (Ribes et al.,
2019). To eliminate the senescent cells, several small
molecules called senolytics have been identified by large-
scale screening and after showing promising results in mice,
they have entered clinical trials for treating age-associated
diseases such as osteoarthritis (Gorgoulis et al., 2019; Ribes
et al., 2019). Moreover, antisense oligonucleotides were
recently tested to knockdown the telomeric non-coding
RNAs, which are induced by progerin, to control the DNA
damage response and cellular senescence (Aguado et al.,
2019). Similarly, an antisense oligonucleotides approach
was also used to reduce the levels of progerin, which led to
an extension of the lifespan of HGPS mice (Osorio et al.,
2011). These strategies are promising interventions to pre-
vent senescent phenotypes and alleviate some of the HGPS
symptoms.

Additionally, epigenetic dysregulation is a major hallmark
of normal and premature aging that leads to the manifes-
tation of other age-associated cellular phenotypes. Notably,
cellular reprogramming of aged or HGPS fibroblasts to
pluripotency reset the epigenome of the cells and erased
aging hallmarks (Zhang et al., 2011; Liu et al., 2011).
Similarly, short-term expression of reprogramming factors
without losing cellular identity led to the restoration of his-
tone marks and significantly increased the lifespan of
HGPS mice (Ocampo et al., 2016). These results demon-
strate that controlled in vivo partial cellular reprogramming
can have a considerable beneficial effect in ameliorating
HGPS phenotypes. It is tempting to speculate that by
delivering the reprogramming factors using adeno-associ-
ated viruses, partial reprogramming could be performed in
HGPS monkeys and may have beneficial effects similar to
HGPS mice.

Correction of a disease-causing mutation in vivo is
another promising avenue. Genome editing strategies based
on the CRISPR-Cas9 system were used recently in the
HGPS mouse model to correct the mutation or prevent the
expression of progerin (Beyret et al., 2019; Santiago-Fer-
nández et al., 2019; Suzuki et al., 2019). Although the fre-
quency of in vivo genome editing is low, encouraging
observations, including improved health and lifespan, were
made in the HGPS mice. The HGPS monkeys can be an
ideal model to validate and further develop in vivo genome
editing approaches.

All previous interventions in HGPS mouse models have
shown favorable results. However, for successfully translat-
ing these strategies to the clinic, it is essential to validate
these data in large animal models. Along this line, HGPS
monkeys are an ideal model due to similar disease features
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and the fact that they are physiologically closer to humans.
Moreover, HGPS models are routinely used for under-
standing the molecular mechanisms that are responsible for
the manifestation of aging phenotypes. Hence, HGPS
mouse models are widely used in aging studies, but their use
is routinely criticized as they do not completely recapitulate
the features observed during aging. Therefore, it will be
interesting to see whether HGPS monkeys develop aging
phenotypes that are similar to normal aging.

In conclusion, Wang et al. have demonstrated, for the first
time, the feasibility of using the base editor in monkey
zygotes to introduce single-base pair changes at the tar-
geted loci precisely and at a higher frequency. As the mouse
models do not entirely recapitulate the human disease
phenotypes, there is a pressing need for better models.
BEs have expanded the tools for generating non-human
primate models, which are invaluable for both basic and
translational research.
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