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ABSTRACT

Inflammatory bowel disease (IBD) has become a global
disease with accelerating incidence worldwide in the
21st century while its accurate etiology remains unclear.
In the past decade, gut microbiota dysbiosis has con-
sistently been associated with IBD. Although many IBD-
associated dysbiosis have not been proven to be a
cause or an effect of IBD, it is often hypothesized that at
least some of alteration in microbiome is protective or
causative. In this article, we selectively reviewed the
hypothesis supported by both association studies in
human and pathogenesis studies in biological models.
Specifically, we reviewed the potential protective bac-
terial pathways and species against IBD, as well as the
potential causative bacterial pathways and species of
IBD. We also reviewed the potential roles of some
members of mycobiome and virome in IBD. Lastly, we
covered the current status of therapeutic approaches
targeting microbiome, which is a promising strategy to
alleviate and cure this inflammatory disease.
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INTRODUCTION

Inflammatory bowel disease (IBD), including ulcerative colitis
(UC) and Crohn’s disease (CD), has become a global dis-
ease with accelerating incidence worldwide in the 21st
century (Ng et al., 2018). IBD is characterized by chronic
immune-mediated intestinal inflammation that is driven by
genetic susceptibility, environmental and microbial factors
(Ni et al., 2017; Imhann et al., 2018).

Microbial factors have been historically proven to be
indispensable for the onset of IBD (Alhagamhmad et al.,

2016) and advances in high-throughput sequencing has
enabled us to elucidate the gut microbiome in IBD. Study of
microbial etiology of IBD has been mainly focused on three
directions: 1) the persistent pathogen theory 2) the exces-
sive bacterial translocation theory and 3) the dysbiosis the-
ory (De Hertogh et al., 2008; Kalischuk and Buret, 2010).
The persistent pathogen theory hypothesizes IBD can be
caused by persistent infection of an enteric pathogen like
Mycobacterium avium subspecies paratuberculosis,
Clostridium difficile, and adhesion-invasive Escherichia coli
(AIEC). The excessive bacterial translocation theory sug-
gests the excessive level of translocation of intestinal bac-
teria across the intestinal barrier is a cause of IBD. While, the
dysbiosis theory hypothesizes that the shift of balance
between “beneficial” vs. “detrimental” commensal bacteria
can cause IBD.

The three theories are not mutually exclusive. For
example, AIEC can be considered as both a persistent
pathogen and detrimental commensal bacteria. The first two
theories were comprehensively reviewed elsewhere (De
Hertogh et al., 2008; Kalischuk and Buret, 2010); while in this
review, we summarize the emerging evidences that imply the
roles of dysbiosis in pathogenesis of IBD and the potential
therapeutic options that target the gut microbiome to allevi-
ate IBD.

POTENTIAL ROLES OF DYSBIOSIS IN
PATHOGENESIS OF IBD

IBD is characterized by chronic immune-mediated intestinal
inflammation that attacks the bowel. IBD has been consis-
tently shown to be associated with gut dysbiosis (Kostic
et al., 2014; Lynch and Pedersen, 2016). Although many
IBD-associated dysbiosis have not been proven to be a
cause or an effect of IBD, it is often hypothesized that at
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least some of alteration in microbiome is protective or
causative.

Metagenomic studies have revealed microbial composi-
tional changes in patients with IBD (Franzosa et al., 2019;
Lloyd-Price et al., 2019) and metabolomic studies have
revealed many defined microbial metabolites are depleted in
individuals with IBD versus control individuals (Franzosa
et al., 2019). Some of the depleted metabolites and related
species are found to have anti-inflammatory effects and
therefore are hypothesized to be protective; on the other
hand, pro-inflammatory bacterial metabolites and species
that are enriched in IBD patients are hypothesized to be
causative, in terms of IBD.

In this review, we mainly focus on hypothesis that has
both types of supporting evidences: 1) at least one associ-
ation study in human IBD (rather than animal models); and 2)
at least one pathogensis study in human, animal models, or
cell models that explains the result in the association study.

Potentially protective bacterial pathways and species

The metabolic pathways encoded by the human gut micro-
biome produce numerous bioactive molecules that interact
with the host. Typical bioactive molecules include short-
chain fatty acids (SCFAs) and tryptophan derivatives that are
produced by bacteria from dietary components, as well as
secondary bile acids (BAs) that are bacteria-modified host
products (Postler and Ghosh, 2017).

SCFAs (primarily acetate, propionate, and butyrate) pro-
duced by gut bacteria regulates protective immunity and
reduces tissue inflammation (Furusawa et al., 2013; Kim
et al., 2013). One study found that 12% of metabolic path-
ways were significantly different between IBD patients and
healthy controls, and it confirmed a decrease in butanoate
and propanoate metabolism genes in CD (Morgan et al.,
2012). Another case-control analysis using shotgun
metagenomic sequencing of stool samples from 1,792 indi-
viduals suggests the fermentation of pyruvate to butanoate,
a butyrate precursor, was decreased in patients with IBD
(Vich Vila et al., 2018). When looking at the bacterial species
composition, a decreased amount of the commensal bac-
terium Faecalibacterium prausnitzii was reported in IBD
patients compared with controls (Sokol et al., 2009; Hedin
et al., 2016; Lloyd-Price et al., 2019). In vitro peripheral blood
mononuclear cell stimulation by F. prausnitzii led to signifi-
cantly lower IL-12 and IFN-γ production levels and higher
secretion of the anti-inflammatory cytokine IL-10 (Sokol
et al., 2008b). Additionally, various F. prausnitzii isolates
have abilities to simulate IL-10 secretion by dendritic cells
(DCs) (Rossi et al., 2016), which suggests the anti-inflam-
matory role of F. prausnitzii in colitis. A 15 kDa protein with
anti-inflammatory properties, produced by F. prausnitzii,
could alleviate colitis in mice by inhibiting the NF-κB pathway
(Quevrain et al., 2016). Some F. prausnitzii strains are con-
sidered as candidates of next-generation probiotics (Martin
et al., 2017).

Roseburia were also significantly reduced in IBD (Morgan
et al., 2012), and IBD-genetic risk score was significantly
associated with a decrease of Roseburia in healthy controls
(Imhann et al., 2018). The depletion Roseburia hominis was
observed in CD (Franzosa et al., 2019; Lloyd-Price et al.,
2019) and UC (Machiels et al., 2014). In stool samples from
patients with CD or UC, the strain abundance of Roseburia
intestinalis decreased (Vich Vila et al., 2018). R. intestinalis
are further reported as acetate-to-butyrate converters that
reside in the intestinal mucus layer, where their anti-inflam-
matory effects may occur (Vich Vila et al., 2018).

In addition to reduced SCFA levels, decreased tryptophan
metabolism levels were associated with a compromised
epithelial barrier in IBD (Schirmer et al., 2019). Tryptophan
can be converted by bacteria into bioactive indole-containing
molecules that activate the aryl hydrocarbon receptor and
down-regulates inflammation (Zelante et al., 2013). Indo-
leacrylic acid that promotes mucus production and sup-
presses inflammatory cytokine production was found
reduced in patients with IBD (Wlodarska et al., 2017).
Tryptophan-metabolizing pathways have been identified in
some members of the human gut microbiota such as
Clostridium sporogenes and E. coli (Williams et al., 2014;
Dodd et al., 2017; Agus et al., 2018).

Primary BAs (PBAs) are produced by the host and then
modified by bacteria into secondary BAs (SBAs) which
mainly have anti-inflammatory activities. A normal bacterial
BA metabolism plays an important role in modulating the
host regulatory T (Treg) cell homeostasis (Song et al., 2020),
as well as TH17 and Treg cell differentiation (Hang et al.,
2019). Disrupted BAs metabolism has been observed in IBD
patients, with fecal BAs pools skewed toward decreased
SBAs and increased PBAs relative to healthy controls
(Duboc et al., 2013; Franzosa et al., 2019). A more recent
study also found that fecal BAs composition was altered
(dominated by PBAs) in a sub-group of CD patients who did
not sustain remission (Connors et al., 2019). PBAs cholate
and its glycine and taurine conjugates were enriched in
dysbiotic samples from participants with CD, and by con-
trast, the SBAs lithocholate and deoxycholate were reduced
in dysbiosis (Lloyd-Price et al., 2019). Moreover, levels of
lithocholic acid and deoxycholic acid (the most abundant gut
SBAs), and genes required to convert PBAs to SBAs were
reduced in stool from UC relative to familial adenomatous
polyposis (FAP) (Sinha et al., 2020). Members of the
Roseburia and unclassified Subdoligranulum species were
associated with BAs metabolism, and they were both
markedly reduced in IBD (Lloyd-Price et al., 2019).
Ruminococcaceae was reduced in IBD compared to healthy
people (Vich Vila et al., 2018; Lo Presti et al., 2019; Yilmaz
et al., 2019) and is known to contain members (particularly
Clostridium leptum) capable of SBAs generation, which
ameliorate intestinal inflammation in a process reliant on the
TGR5 bile acid receptor (Sinha et al., 2020). Supplementa-
tion of SBAs also reduces intestinal inflammation in three
murine colitis models (Sinha et al., 2020).
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Polysaccharide A (PSA) produced by Bacteroides fragilis
directs the development of CD4+ T cells and induces the
anti-inflammatory function of Tregs (Mazmanian et al., 2005;
Round et al., 2011). PSA protects animals from experimental
colitis depending on IL-10-producing CD41 T cells (Maz-
manian et al., 2008). Individuals with IBD had a significantly
lower percentage of the B. fragilis population with PSA pro-
moter orientated “ON” (Blandford et al., 2019). Moreover,
sphingolipids produced by B. fragilis regulate homeostasis of
host intestinal natural killer T cells and confer protection
against oxazolone-induced experimental colitis (An et al.,
2014).

Recent research on Akkermansia muciniphila revealed
another potential protective pathway against IBD. Initially, a
study of 46 IBD and 20 control patients showed that the
abundance of Akkermansia muciniphila reduced many fold
in CD and in UC (Png et al., 2010). Although a contradictory
research indicated A. muciniphila was sufficient for promot-
ing intestinal inflammation in both specific-pathogen-free and
germ-free IL10(− /−) mice model of IBD (Seregin et al.,
2017), in a follow-up study, A. muciniphila strain ATCC BAA-
835 was examined in gnotobiotic IL10(−/−) mice, and it did
not promote short-term intestinal inflammation (Ring et al.,
2019). A. muciniphila was shown to improve the gut barrier
partially via its outer membrane protein Amuc_1100 that
interacts with Toll-like receptor 2 (Plovier et al., 2017). The
roles of A. muciniphila in modulating human immunological
homeostatic was further demonstrated by the recent report
that A. muciniphila induce homeostatic IgG production and
antigen-specific T cell responses in mice (Ansaldo et al.,
2019) and that A. muciniphila treatment ameliorated Dextran
Sulfate Sodium (DSS)-induced UC in mice (Bian et al.,
2019).

Potential causative bacterial pathways and species

The integrated human microbiome project has revealed a
few metabolites, notably nicotinuric acid, taurine, and acyl-
carnitines are more abundant in IBD patients than controls
(Lloyd-Price et al., 2019). Interestingly, taurine has been
previously identified as a mucosal inflammasome activator
(Levy et al., 2015). Therefore, these metabolites were sug-
gested as potential causative metabolites and therapeutic
targets. The acylcarnitines-related species are Roseburia
hominis, Klebsiella pneumoniae, Haemophilus parainfluen-
zae, and Clostridium bolteae (Lloyd-Price et al., 2019).
Bacterial genes with virulence-related functions were enri-
ched in IBD patients (Erickson et al., 2012; Morgan et al.,
2012), presumably due to overgrowth of functionally altered
commensals termed pathobionts. Escherichia coli revealed
an increased amount in patients with IBD (Lloyd-Price et al.,
2019; Pittayanon et al., 2019) and the adherent invasive
E. coli (AIEC) pathovar are associated specifically with ileal
mucosa in IBD (Darfeuille-Michaud et al., 2004; Sepehri
et al., 2011), suggesting AIEC may contribute to IBD
pathogenesis (Mylonaki et al., 2005; Garrett et al., 2010).

The frequent recovery of E. coli adhering to intestinal
mucosa of patients with CD (Darfeuille-Michaud, 2002;
Martin et al., 2004; Prorok-Hamon et al., 2014) and UC
(Kotlowski et al., 2007) has stimulated great interest. Inter-
action of AIEC with intestinal mucosa in the context of IBD
include: (1) AIEC cross the mucous layer and resist antimi-
crobial peptides; (2) AIEC adhere to intestinal epithelial cells
(IECs) via FimH and carcinoembryonic antigen related cell
adhesion molecule 6 (CEACAM6), and lead to colonisation
of the gut mucosa; (3) AIEC enter lamina propria and Peyer’s
patches across M cells via long polar fimbriae (LPF)
expression, and interact with immune cells (Palmela et al.,
2018). AIEC can promote inflammation, survive and repli-
cate, and escape autophagy when inside macrophages
(Bringer et al., 2006). Besides, AIEC also have the ability to
evade the host immune response by suppressing IFN-γ
mediated signal transducer and activator of STAT1 in IECs,
preventing an appropriate antimicrobial response (Ossa
et al., 2013). AIEC strain NC101 harbors the pks
pathogenicity island that encodes the biosynthetic machin-
ery for synthesizing the genotoxin colibactin (Nougayrede
et al., 2006). Monocolonization with the commensal NC101
promoted invasive carcinoma and tumorigenesis in azox-
ymethane-treated IL-10(−/−) mice (Arthur et al., 2012; Eaton
et al., 2018).

In a recent study, an Enterococcus faecium strain that has
adhesion gene was isolated from the feces of UC patients,
promotes colitis and colonic cytokine expression (Seishima
et al., 2019). A previous research showed colonic inflam-
mation in IL10(−/−) mice inoculated with Enterococcus fae-
calis and faecium strains is associated with gene expression
changes similar to those of human IBD (Barnett et al., 2010).

Another pathobiont that associated with IBD is entero-
toxigenic Bacteroides fragilis (ETBF) (Prindiville et al., 2000;
Zamani et al., 2017). ETBF induces focal colonic Stat3
activation and Th17 immune responses and then promotes
mucosal permeability (Wick et al., 2014; Chung et al., 2018;
Dejea et al., 2018). Genes for B. fragilis toxin (bft) encode
secreted oncotoxins, and increase IL-17 in the colon (Dejea
et al., 2018). Besides promoting IBD, ETBF are also possibly
driving FAP and CRC (Thiele Orberg et al., 2017; Garrett,
2019).

Campylobacter concisus is another adherent, invasive
proteobacterium that has been associated with IBD (Zhang
et al., 2009; Man et al., 2010; Mahendran et al., 2011;
Mukhopadhya et al., 2011; Kirk et al., 2016; Underwood
et al., 2016). Although the natural colonization site of
C. concisus is oral cavity, C. concisus can also colonize the
intestinal tract. Intestinal colonization by bacteria from the
oral cavity has been suggested to be extensively involved in
inflammatory diseases (Cao, 2017; Dickson, 2018). Some
C. concisus strains acquired zonula occludens toxin (zot)
gene from a phage, and increased intestinal membrane
permeability by affecting the tight junctions (Zhang et al.,
2014). C. concisus Zot may have enteric pathogenic
potential by damaging intestinal epithelial barrier, inducing
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intestinal epithelial and macrophage production of proin-
flammatory cytokines in particular TNF-α (Mahendran et al.,
2016), thus triggering the relapse of IBD. C. concisus cause
epithelial sodium channel dysfunction via IL-32-regulated
ERK1/2, as well as claudin-8-dependent barrier dysfunction,
both of which contribute to Na(+) malabsorption and enteritis
(Nattramilarasu et al., 2020).

Another oral cavity and gastrointestinal bacterium, Fu-
sobacterium varium, may be one of the pathogenic factors in
UC. F. varium bacteria were present at a higher abundance
in the colonic mucosa of patients with UC compared to
healthy controls (Ohkusa et al., 2002). When administered
by rectal enema in mice, F. varium was able to cause colonic
mucosal inflammation (Ohkusa et al., 2003). F. varium
invaded host intestinal epithelial cells, significantly increased
the concentrations of IL-8 and TNF-α, and triggered host
inflammatory reactions (Ohkusa et al., 2009). Genome
analysis of a F. varium strain showed it possesses multiple
virulence factors, including type V secretion system (T5SS)
and Fusobacterium adhesion (FadA) paralogs, which involve
in potential mucosal inflammation (Sekizuka et al., 2017).

Ruminococcus gnavus is part of the healthy gut micro-
biota in humans, but it is enriched in IBD (Png et al., 2010;
Willing et al., 2010; Joossens et al., 2011; Nishino et al.,
2018; Franzosa et al., 2019; Lloyd-Price et al., 2019). The
increased level of R. gnavus has also been linked to
spondyloarthritis (Breban et al., 2017), pouchitis in UC
patients who have undergone a total colectomy (Machiels
et al., 2017), and allergic diseases (Chua et al., 2018). 199
strain-specific genes involved in oxidative stress responses,
adhesion, iron-acquisition, and mucus utilization were iden-
tified, potentially conferring an adaptive advantage for the
R. gnavus clade in the IBD gut (Hall et al., 2017). R. gnavus
produce and metabolize 2,7-anhydro-Neu5Ac to achieve
nutritional competitive advantage in mucus against other
bacteria (Tailford et al., 2015; Owen et al., 2017; Bell et al.,
2019). In addition, R. gnavus synthesizes and secretes a
pro-inflammatory complex polysaccharide, which potently
induces TNF-α secretion by DCs via TLR4 (Henke et al.,
2019).

Non-pylori Helicobacter also has numerous associations
with IBD. In a cross-sectional study of 73 CD and 92 con-
trols, CD is associated with the presence of enterohepatic
Helicobacter spp. species DNA in intestinal biopsies (La-
harie et al., 2009). Enterohepatic Helicobacter including
H. hepaticus (Kullberg et al., 2001, 2006; Yang et al., 2013)
and H. bilis (Jergens et al., 2007; Liu et al., 2011; Atherly
et al., 2016) are often referred as pathobionts (Chai et al.,
2017), because they have been shown to be capable of
causing IBD-like disease in mice. H. hepaticus predomi-
nantly induces inflammatory TH17 cells in disease-suscep-
tible IL-10-deficient animals and contributes to spontaneous
colitis (Xu et al., 2018). Helicobacter pylori infection was
reported to be negative associated with IBD (el-Omar et al.,
1994; Sonnenberg and Genta, 2012; Rokkas et al., 2015),
supporting a possible protective benefit of H. pylori infection

against the development of IBD. Alternatively, IBD could be a
protective factor against H. pylori infection. The presence of
IBD-associated gastric mucosal lesions may create an
inhospitable environment for H. pylori colonization (Castano-
Rodriguez et al., 2017).

Dysbiosis in mycobiome

Besides bacterial dysbiosis, alterations in the eukaryotic
fungal community (the “mycobiome”) are also important.
Fungal composition in IBD is characterized with an
increased Basidiomycota/Ascomycota ratio (Sokol et al.,
2017), which was also skewed with higher values in CRC
than control (Coker et al., 2019).

Candida spp. is significantly more abundant in patients
with CD (Li et al., 2014; Lam et al., 2019) or IBD (Chehoud
et al., 2015). In particular, Candida albicans were enriched in
CD (Li et al., 2014), UC (Mar et al., 2016), as well as the
general IBD patients (Sokol et al., 2017). Candida tropicalis
are pathogenic fungus found in mouse intestine and when
SPF mice were colonized with them, Clec7a(−/−) mice
developed much severe colitis compared with uncolonized
Clec7a(−/−) mice or colonized WT mice (Iliev et al., 2012;
Tang et al., 2015). These findings suggest that fungal dys-
biosis is associated with IBD and that Candida species are
consistently associated with the inflamed gut (Li et al., 2019).
In addition, a common skin resident fungus Malassezia
restricta is specifically abundant in CD patients, and exac-
erbates colitis in mouse models through mechanisms
requiring CARD9, a signaling protein involved in antifungal
immunity (Limon et al., 2019).

Additionally, there was a decreased proportion of Sac-
charomyces cerevisiae compared with healthy subjects in
IBD (Sokol et al., 2017), and S. cerevisiae were depleted in
CRC (Coker et al., 2019). S. cerevisiae UFMG A-905
showed protective potential in a murine model of acute UC
(Tiago et al., 2015). S. cerevisiae CNCM I-3856 had been
shown to reduce AIEC-induced ileal colitis in a mouse
model, by inhibiting AIEC adhesion to enterocytes and
restoring barrier function (Sivignon et al., 2015). In another
study, however, S. cerevisiae colonization exacerbated
intestinal disease and increased gut barrier permeability in a
mouse model of colitis (Chiaro et al., 2017).

Dysbiosis in virome

Enteric virome is mainly consisted of bacteriophages.
Among IBD subjects, the changes in virome composition
reflected alterations in bacterial composition (Clooney et al.,
2019). Caudovirales phage sequences were detected in
intestinal washes and biopsy tissues of Australian pediatric
CD patients (Wagner et al., 2013), and they were also
observed in IBD patients from a UK cohort and two US
validation cohorts (Norman et al., 2015). The abundance of
intestinal Caudovirales phage families, including Siphoviri-
dae, Myoviridae and Podoviridae, were elevated in a mouse
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model of colitis (Duerkop et al., 2018). Recent study showed
phages from active UC patients induced more IFN-γ via a
TLR9-dependent pathway, which is linked to aggravated
intestinal inflammation and colitis (Gogokhia et al., 2019),
suggesting that certain phages may trigger intestinal
inflammation in the gut and contribute to IBD.

THERAPEUTIC APPROACHES TARGETING
MICROBIOME

Probiotics, prebiotics and postbiotics

Probiotics are defined as live microorganisms which when
administered in adequate amounts confer a health benefit on
the host (Hill et al., 2014). Prebiotic is a substrate that is
selectively utilized by probiotics conferring a health benefit
(Gibson et al., 2017), while postbiotic is referring a bioactive
molecule produced by a probiotic. American Gastroentero-
logical Association Institute advised that probiotics may be
considered for treatment of functional symptoms in IBD
(Colombel et al., 2019). Probiotics could induce anti-inflam-
matory effects, improve (or restore) barrier function, and
beneficially modulate the composition of the microbiome by
inhibiting the growth of detrimental bacteria and promoting
the growth of beneficial species (Abraham and Quigley,
2017).

As a prebiotic, inulin acts on IBD by retaining microbial
populations, supporting epithelial barrier function, and
defending against invasion and pathogens translocation
(Akram et al., 2019).The probiotic cocktail VSL#3 (a mix of 4
lactobacilli, 3 bifidobacteria and 1 strain of Streptococcus)
reduced recurrence and maintain remission in patients with
CD (Fedorak et al., 2015) and UC (Bibiloni et al., 2005; Miele
et al., 2009). A meta-analysis showed that probiotic cocktail
VSL#3 was effective in inducing remission of active UC, and
the probiotics may be as effective as 5-aminosalicylates (5-
ASAs) in preventing relapse of quiescent UC (Derwa et al.,
2017). Moreover, probiotic Lactobacillus reuteri ATCC 55730
(Oliva et al., 2012), and E. coli strain Nissle 1917 (Scaldaferri
et al., 2016; Sonnenborn, 2016) also have shown efficacy in
the treatment of UC; however, a percentage of adverse
events such as diarrhea and abdominal pain were reported
in patients treated with E. coli strain Nissle 1917 (Kruis et al.,
2004; Sassone-Corsi et al., 2016). In contrast, Lactobacillus
acidophilus La-5 and Bifidobacterium animalis subsp. lactis
BB-12 (Probio-Tec AB-25) was demonstrated with no sig-
nificant clinical benefit in comparison with placebo for
maintaining remission in patients with UC (Wildt et al., 2011).
Additionally, several randomized, double-blind trials indi-
cated administration of Lactobacillus rhamnosus in children
with gastroenteritis did not have better outcomes than those
who received placebo (Freedman et al., 2018; LaMont,
2018; Schnadower et al., 2018). More recently, a multi-strain
probiotic (Lactobacillus rhamnosus NCIMB 30174, Lacto-
bacillus plantarum NCIMB 30173, Lactobacillus acidophilus
NCIMB 30175 and Enterococcus faecium NCIMB 30176) is

associated with decreased intestinal inflammation in patients
with UC, but not with CD (Bjarnason et al., 2019).

In addition to the traditional probiotics mentioned above,
next-generation probiotics (NGPs) including F. prausnitzii
and A. muciniphila were proposed (O’Toole et al., 2017).
Oral administration of either live F. prausnitzii or its super-
natant (containing its postbiotics) markedly reduced the
severity of TNBS colitis, partly due to secreted metabolites
able to block NF-κB activation and IL-8 production (Sokol
et al., 2008a). C57BL/6 male mice administered
A. muciniphila once daily by oral gavage for 14 days
improved DSS-induced colitis, which was evidenced by
colon length shortening, histopathology scores and
enhanced barrier function (Bian et al., 2019). A. muciniphila
or a specific outer membrane protein Amuc_1100 (as a
postbiotic) blunted colitis, with a reduction in infiltrating
macrophages and CD8(+) cytotoxic T lymphocytes (CTLs) in
the colon (Wang et al., 2020). In addition to looking for new
probiotic species, synthetic biology techniques were used to
improve existing probiotics. A recent research showed an
E. coli Nissle 1917 strain, engineered to secrete the curli-
fused trefoil factors, promotes intestinal barrier function and
epithelial restitution, and enhance protective effects against
colitis in mice (Praveschotinunt et al., 2019).

Phage therapy

Phages are highly specific and typically lyse a subgroup of
strains within one bacterial species, indicating they have a
limited impact on the overall composition of the subject’s
microbiome and are likely to have a better safety profile than
antibiotic therapy. A randomized trial of oral T4-like col-
iphages or a commercial Russian coliphage product therapy
in 120 children with acute bacterial diarrhea in Bangladesh
did not report any adverse events but failed to improve
diarrhea outcome (Sarker et al., 2016). Another two clinical
trials also showed oral bacteriophage are safe in healthy
children and adults (McCallin et al., 2013; Sarker et al.,
2017). Though they demonstrated the safety feature of
phage therapy, more knowledge is needed on in vivo phage-
bacterium interaction and assessing the efficacy in reducing
severity of gastrointestinal diseases.

In recent years, phage therapy has re-gained attention as
a therapeutic approach to combat infectious disease and
non-communicable diseases. For instance, engineered
phages was used for a human mycobacterial infection that
are resistant to antibiotics (Dedrick et al., 2019), and phages
that specifically targets cytolytic E. faecalis attenuated
alcoholic liver disease in a recent study (Duan et al., 2019).
AIEC are abnormally predominant on the ileal mucosa of IBD
patients, and they bind to the CEACAM6 receptor expressed
on the surface of epithelial cells (Barnich et al., 2007).
Bacteriophages that targets AIEC reduced DSS-induced
colitis symptoms on AIEC strain LF82-colonised CEABAC10
transgenic mice, expressing the human CEACAM6 receptor
for AIEC, and significantly decreased the number of AIEC in
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faeces and in the adherent flora of intestinal sections (Galtier
et al., 2017). Therefore, phages targeting AIEC strains are a
promising new treatment for IBD.

Fecal microbiota transplantation (FMT)

FMT, where fecal microbiota from a healthy donor is trans-
planted into a patient’s GI tract, is already a successful
therapy for recurrent Clostridium difficile infection (CDI)
(Hamilton et al., 2012; van Nood et al., 2013; Hvas et al.,
2019). The prevailing hypothesis is that FMT might correct
the dysbiosis associated with IBD, leading to a restoration of
the gut microbial homeostasis (Burrello et al., 2018). The
restored colon microbial community could inhibit C. difficile
by multiple mechanisms: competition for nutrients; direct
suppression by antimicrobial peptides; bile-acid-mediated
inhibition of spore germination and vegetative growth; and
activation of immune-mediated colonization resistance
(Khoruts and Sadowsky, 2016).

It also has received extended attention in the treatment of
CD (Zhang et al., 2013; Cui et al., 2015) and UC (Moayyedi
et al., 2015; Paramsothy et al., 2017a, 2019). Improved
remission rates for patients treated with FMT, possibly
dependent on donor fecal composition, the use of multiple
FMTs, and early treatment (Moayyedi et al., 2015). FMT
appears effective in UC remission induction, but long-term
durability and safety remain unclear (Paramsothy et al.,
2017b). A significant fraction of patients with recurrent CDI
have IBD, and FMT is somewhat less effective in clearing
CDI from patients with IBD compared with patients without
IBD (Khoruts et al., 2016).

Some key issues should be followed: FMT indications;
donor selection; preparation of faecal material; clinical
management and faecal delivery; registries, monitoring of
outcomes and ethical issues; basic requirements for imple-
menting an FMT centre (Cammarota et al., 2017, 2019).
Moreover, the gut fungal together with viral community in
donor stool may affect the FMT outcome of treating IBD. It
has been reported high abundance of Candida albicans in
donor stool reduce FMT efficacy in CDI (Zuo et al., 2018).
And when studying viral transfer following FMT, multiple
recipients from a single donor displayed highly individualised
virus colonisation patterns (Draper et al., 2018).

CONCLUSION AND PERSPECTIVE

In the past decade there have been major advances in
pathogenesis, pharmacological, and surgical interventions
for both UC and CD. Current clinical applications for IBD
diagnosis and treatment has been extensively reviewed by
British Society of Gastroenterology consensus, and it high-
lights the importance of multidisciplinary research (Lamb
et al., 2019). In this review we summarized the potential
protective and causative microbial pathways and species in
IBD (Fig. 1) as well as current status of therapeutic
approaches targeting microbiome. Understanding of

dysbiosis and the microbial pathways of specific microor-
ganisms has suggested multiple strategies for modifying the
intestinal microbiota to prevent or ameliorate IBD.

Some symbiotic organisms such as AIEC, Campylobacter
concisus, Fusobacterium varium, Ruminococcus gnavus,
and Helicobacter species, are often referred to as patho-
bionts because they may cause disease under certain con-
ditions. For AIEC, potential therapeutic strategies include
targeting bacterial colonization of gut mucosa, such as the
use of phage therapy, bacteriocins and anti-adhesion mole-
cules. Bacteroides fragilis produce PSA and sphingolipids,
which regulate homeostasis and protect animals from
experimental colitis. In contrast, ETBF induce IL-17 in the
colon and DNA damage in colonic epithelium, promoting IBD
or even FAP and CRC.

Precise targeting of the metabolic pathways that are used
by harmful bacteria may provide a new strategy to treat IBD.
For example, tungstate-mediated microbiota editing reduced
the severity of intestinal inflammation in mouse models of
colitis (Zhu et al., 2018), and oral administration of sodium
tungstate inhibited molybdoenzymes selectively decreased
gut colonization with genotoxin-producing Enterobacteri-
aceae, thus reducing carcinogenesis in mouse models of
colitis-associated CRC (Zhu et al., 2019).

Prebiotics are promising approaches to modify human
microbiome. In the context of IBD, dietary fibers promote a
selected group of SCFA-producing strains and regulate BAs
profiles. SCFAs, particularly butyrate, promote the develop-
ment of Treg cells and mucus production to down-regulate
inflammatory signaling pathways and to strengthen the
epithelial barrier. Restoration of SCFA producers by selected
dietary fibers is a promising approach for managing IBD.

Traditional probiotics including Bacillus spp., Bifidobac-
terium spp., Lactobacillus spp., and S. cerevisiae have
showed variably ameliorative effects on IBD; however, the
number of patients in these trails are relatively small. Addi-
tionally, the major challenge of utilization traditional probi-
otics is that we do not understand the precise probiotic
mechanisms of these bacteria in the context of IBD. In
contrast, next-generation probiotics (NGPs or sometimes
called live biotherapeutics) are based on the outcomes of
mechanism studies. Some F. prausnitzii, Roseburia and
A. muciniphila strains represent promising next-generation
probiotic candidates. Notably, a normal bacterial BAs meta-
bolism, especially SBAs, also play an important role modu-
lating the host immunological homeostasis. The therapeutic
potential of Clostridium sporogens and other SBA producing-
species in IBD warrants additional investigations.

The safety of phages targeting intestinal pathogens is well
documented for adults and children, based on data for
several clinical trials in which no adverse events were
reported. This is not surprising as phages are the most
abundant viruses present in the human gastrointestinal tract.
Phage-mediated targeting of E. faecalis ameliorated alco-
holic liver disease, indicating precisely editing the intestinal
microbiome is another promising direction. It would be
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Potentially causative microbial pathways and species

•  SCFAs ↓ 
•  Tryptophan derivatives ↓ 
•  SBAs ↓ 
•  PSA genes expression ↓ 
•  Taurine ↑ 
•  Microbial virulence genes ↑

•  Normal SCFAs levels
•  Normal tryptophan metabolism
•  Normal SBAs levels
•  Normal PSA levels 

•  Taurine production: (species to be identified)
•  Pathobionts: adherent-invasive E. coli (AIEC)

enterotoxigenic Bacteroides fragilis (ETBF)
Campylobacter concisus
Fusobacterium varium
Ruminococcus gnavus
Helicobacter hepaticus and H. bilis
Candida albicans

Normal gut 
Immunological homeostasis

IBD gut
Excessive inflammation

Potentially protective microbial pathways and species

•  SCFAs production: Faecalibacterium prausnitzii and Roseburia
•  Tryptophan metabolism: Clostridium sporogenes and others
•  BAs metabolism: Clostridium leptum and others
•  PSA production: non-toxigenic Bacteroides fragilis (NTBF)
•  Amuc_1100-TLR2: Akkermansia muciniphila

Probiotics, prebiotics and postbiotics?

Phage therapy?

Anti-inflammatory

Pro-inflammatory

Figure 1. Graphical summary of potentially protective and causative microbial bacterial pathways and species in IBD.

SCFAs, tryptophan derivatives, secondary BAs and PSA gene expression are found depleted in human IBD gut. They are also

proved to have anti-inflammatory effects in biological models and therefore are often proposed as protective factors. Prebiotics,

probiotics or postbiotics targeting these factors are promising strategies to alleviate IBD. In contrast, taurine is found enriched in the

metabolome and virulent genes are found enriched in microbiome of human IBD gut. Taurine and the virulence-gene-containing

pathobionts also have pro-inflammatory effects in biological models and therefore are proposed as potentially causative factor for

IBD. Phage therapies that target these factors are promising strategies to alleviate IBD. SCFAs, short-chain fatty acids; SBAs,

secondary bile acids; PSA, polysaccharide A.
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interesting to test whether IBD could be treated by phages
that target potentially causative bacteria reviewed in this
article including AIEC. Besides bacteria, Candida species
are consistently more abundant in IBD. Mycophage that
targets Candida species may inhibit their colonization and
contribute to the alleviation of IBD.

FMT can be used as a therapeutic option to treat CDI in
the context of IBD when first line antibiotics are ineffective.
The impact of phage on microbial dynamics is a factor that
should be considered. Caudovirales phage are more signif-
icantly enriched in the intestine of individuals with IBD, which
supports the notion that elevated Caudovirales phages might
predict FMT failure and need for additional maintenance
FMT delivery or escalation of treatment. Furthermore, Can-
dida albicans, the fungal community that are more abundant
in IBD patients compared to healthy individuals, compro-
mises FMT efficacy in a mouse model of CDI. Therefore,
further research is needed to explore whether pre-FMT
eradication of C. albicans in some recipients might increase
FMT success rates in some cases. US FDA recently issued
a safety alert about the potential risk of transmission of
pathogenic bacteria by FMT products and the resultant
serious adverse reactions that may occur. It’s important to
implement Shiga toxin-producing E. coli and enteropatho-
genic E. coli screening into the quality and safety protocols.
Overall, FMT shows some evidence of benefit in IBD; how-
ever, it should only be used in the context of clinical trials
until further high-quality evidence clarifies optimal adminis-
tration protocol.

To conclude, we are excited to see the recent advances in
microbiome research in IBD and anticipate studies in IBD
pathogenesis provide more insights to facilitate therapeutic
efforts to ameliorate this increasingly common disease.
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