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Frequent RNF43 mutation contributes
to moderate activation of Wnt signaling
in colorectal signet-ring cell carcinoma

Dear Editor,

Signet-ring cell carcinoma (SRCC) is a rare subtype of col-
orectal cancer (CRC) characterized histologically by the
accumulation of mucins in the cytoplasm and displacement
of nuclei to the cellular periphery, accounting for about 1%
CRC (Fig. S1A) (Borger et al., 2007). Compare to common
subtypes of CRC, such as adenocarcinoma (AC) and
mucinous adenocarcinoma (MAC), SRCC is associated with
aggressive behaviors and younger age at presentation
(Kang et al., 2005; Sung et al., 2008; Nitsche et al., 2013;
Hugen et al., 2014; Inamura et al., 2015). A retrospective
analysis of CRC patient’s data at Fudan University Shanghai
Cancer Center (FUSCC) also indicated a worse overall and
disease-free survival of SRCC patients (Fig. S1B and S1C,
Table S1). Due to low incidence and occasionally mixed
presence of SRCC with AC or MAC, genome-wide charac-
terization of SRCC at a large scale is challenging. Limited
whole-exome sequencing (n = 5) and gene panel sequenc-
ing (n = 35) results indicate that, most driver mutations
associated with CRC, such as APC, KRAS, and PIK3CA, are
mutated at lower rates in SRCC (Nam et al., 2018; Kor-
phaisarn et al., 2019). Mutations and signaling pathways
responsible for the tumorigenesis of SRCC remains to be
uncovered.

Following microscopic analysis of 4,000 CRC specimens,
we identified 29 SRCCs with a high percentage (>70%) of
signet-ring cells. To gain a better understanding of genomic
alterations in SRCC, we performed WES on these SRCCs
and paired normal tissues (Tables S2 and S3). WES data of
AC and MAC from the Cancer Genome Atlas (TCGA) were
analyzed for comparison (Tables S4 and S5) (TCGA, 2012).

We identified 9,752 non-silent somatic mutations in
SRCC samples, with dominant C>T/G>A substitutions enri-
ched at CpG islands (Fig. S2 and Tables S6–9). The overall
mutation rate of SRCC is 9.65/Mb (medium mutation rate is
3/Mb), and 3 cases (10.3%, with POLE mutation or
microsatellite instability-high) were considered as hypermu-
tated (Fig. 1A and Table S3). In total, there were 34 recurrent
alterations, with TP53 (55.2%), RNF43 (34.5%), MUC16
(31.0%), TTN (31.0%), PCDH17 (27.6%), KMT2D (24.1%),

and SMAD4 (20.7%) as most frequently mutated genes
(Fig. 1B and Table S10). Mutations on critical cancer drivers
were validated by Sanger sequencing (Fig. S3 and
Table S11). By comparing mutated genes in different cancer
signaling pathways, we noticed that genes in p53 (e.g.,
TP53) and TGF-β (e.g., SMAD4) pathways were mutated at
similar frequencies cross CRC subtypes, however the
mutation burden in WNT, MAPK, and PI3K pathways were
dramatically lower in SRCC, suggesting subtype-specific
molecular signatures (Figs. 1C and S4).

The WNT pathway is instrumental to intestinal home-
ostasis and the initiation of AC (Nusse and Clevers, 2017). A
striking difference between SRCC and AC/MAC was the
mutated genes in the WNT pathway (Figs. 1C,1D, S4 and
S5). APC mutation was most prevalent in AC (∼80%) and
MAC (∼70%) (TCGA, 2012), whereas it only occurred in one
(3.4%) hypermutated SRCC, this is consistent with recent
reports (Nam et al., 2018; Korphaisarn et al., 2019). Inter-
estingly, SRCC was associated with frequent mutations in
RNF43, with nonsense mutations (p.Glu43* and p.Arg132*)
enriched at the N-terminus, regardless of mutation burden
(Fig. 1D and 1E). In AC/MAC, most RNF43 mutations
occurred in hypermutated tumors, with a hotspot at C-ter-
minal (p.Gly659 frameshift) (Fig. 1E and Table S12) (Gian-
nakis et al., 2014; Yan et al., 2017). Both APC and RNF43
are key regulators of the WNT pathway, their inactivation
leads to stabilization and nuclear translocation of β-catenin
(Nusse and Clevers, 2017). Almost all SRCC, AC, and MAC
samples showed discernable nuclear staining of β-catenin
by immunohistochemistry (IHC) (Fig. 1F). It appeared that,
different mechanisms are employed by CRC subtypes to
activate β-catenin, in which SRCC prefers a complete inac-
tivation of RNF43 (N-terminal nonsense mutation), whereas
AC and MAC prefer APC mutation. In addition, DKK4
amplification and mutations on FZD10, AMER1, and AXIN2
were identified in SRCCs, which may also contribute to β-
catenin activation in the absence of RNF43 and APC
mutation (Fig. S5).

MAPK and PI3K pathways are also important in the
development of AC (Fearon and Vogelstein, 1990; TCGA,
2012; Sanchez-Vega et al., 2018). SRCC presented a lower
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mutation load in MAPK (20.7%, 60.5%, and 84.7% in SRCC,
AC, and MAC respectively) and PI3K pathways (6.9%,
46.1%, and 49.2% in SRCC, AC, and MAC respectively)
(Figs. 1C, S4 and S6). The mutation rates of several cancer
driver genes were dramatically different across different
subtypes. For instance, mutations in PIK3CA, PTEN, IRS2
were enriched in AC and MAC, whereas almost absent in
SRCC; and KRAS mutation rate in SRCC was about 4-fold
lower than that in AC or MAC (Fig. 1D). Lower mutation rates
of PIK3CA and KRAS in SRCC have also been reported
recently (Korphaisarn et al., 2019). The phospho-ERK and
phospho-S6 signals, indicators of MAPK and PI3K activities
respectively, were much lower in SRCC, which was consis-
tent with mutation data (Fig. 1F).

To identify subtype-specific gene expression signatures,
we performed RNA-seq with SRCC, MAC and AC samples
(n = 6 per subtype) (Table S13). The gene expression pat-
tern of SRCC was drastically different from that of AC and

b Figure 1. WES and pathway analysis of colorectal SRCC.

(A) The tumor mutation burden (TMB) in colorectal SRCC (n =

29) from FUSCC and adenocarcinoma (AC, n = 458) and

mucinous adenocarcinoma (MAC, n = 59) from the Cancer

Genome Atlas (TCGA) cohort. (B) Top mutated genes and

mutational landscape in 29 samples of colorectal SRCC.

Different types of mutation were distinguished by colors.

Frequency of each significant alteration was shown on the

right of the heatmap. TMB, demographic, and clinical informa-

tion for each patient were illustrated on the top of the heatmap.

(C) Comparison of the alteration frequencies of top CRC-

associated signaling pathways in SRCC, AC and MAC.

(D) Comparison of mutation rates of cancer drivers in SRCC,

AC, and MAC, all samples and non-hypermutated samples

were analyzed. (E) Distribution and types of RNF43 mutations

in SRCC, AC and MAC. (F) The activating status of WNT (β-

catenin), MAPK (pERK Thr202/Tyr204) and PI3K (pS6 Ser240/

244) pathways were assessed by immunohistochemistry (IHC,

left), and quantified (right). Scale bar, 20 μm.
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Figure 1. continued.
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MAC (Fig. 2A and Table S14), largely consistent with a
previous study (Nam et al., 2018). Two mucin genes, MUC2
and MUC5AC, were highly expressed in SRCC and MAC,
which may contribute to elevated production of mucin
(Fig. 2B). Pathway enrichment analysis showed that upreg-
ulated genes in SRCC were associated with cell adhesion
and calcium signaling pathways, while downregulated genes
were associated with cell cycle and cellular metabolism
pathways (Fig. 2C). Similar results were obtained when
SRCC and MAC expression data were compared (Fig. S7).

Using the gene set enrichment analysis (GSEA), the dif-
ferentially expressed genes in SRCC (compared to AC) were
negatively correlated with E2F signaling, MTOR signaling,
and metabolism (Figs. 2D and S8), which may underpin the
slower proliferation of SRCC, as indicated by significantly
lower Ki-67 expression in SRCC (Fig. 2E). On the other
hand, the expression profile of SRCC was positively asso-
ciated with terms of EMT and angiogenesis, which may
contribute to the aggressiveness and local metastasis of
SRCC. The negative association between proliferation and
metastasis appears counterintuitive, however as reported
previously, slow proliferation may gain ability to spread or
survive outside of original microenvironment (Anjomshoaa
et al., 2009).

Another term negatively associated with genes expres-
sion in SRCC was Wnt-β-catenin signaling (Fig. 2F). Many
β-catenin target genes, such as LGR5, SOX9, AXIN2, and
MSI1, were expressed at lower levels in SRCC compared to
those in AC (Table S14). The relatively lower expression of
LGR5 and SOX9 in SRCC was further verified by quantita-
tive PCR, in situ hybridization, or IHC (Fig. 2F–H). Com-
paring to APC mutations in AC or MAC, RNF43 mutations
may moderately activate β-catenin, which in turn promote
tumorigenesis of SRCC.

In summary, as indicated by genomic and transcriptomic
profiling, SRCC represents a molecularly distinct subtype of
CRC. Our findings will serve as a blueprint for dissecting
pathogenic mechanisms of SRCC, and provide insights in
developing molecularly-targeted therapies for SRCC
patients.
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