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ABSTRACT

Identification of the precise molecular pathways
involved in oncogene-induced transformation may help
us gain a better understanding of tumor initiation and
promotion. Here, we demonstrate that SOX2+ foregut
epithelial cells are prone to oncogenic transformation
upon mutagenic insults, such as KrasG12D and p53
deletion. GFP-based lineage-tracing experiments indi-
cate that SOX2+ cells are the cells-of-origin of

esophagus and stomach hyperplasia. Our observations
indicate distinct roles for oncogenic KRAS mutation and
P53 deletion. p53 homozygous deletion is required for
the acquisition of an invasive potential, and KrasG12D

expression, but not p53 deletion, suffices for tumor
formation. Global gene expression analysis reveals
secreting factors upregulated in the hyperplasia induced
by oncogenic KRAS and highlights a crucial role for the
CXCR2 pathway in driving hyperplasia. Collectively, the
array of genetic models presented here demonstrate
that stratified epithelial cells are susceptible to onco-
genic insults, which may lead to a better understanding
of tumor initiation and aid in the design of new cancer
therapeutics.
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INTRODUCTION

Cancer arises from a progressive accumulation of genetic
mutations in proto-oncogenes and tumor suppressor genes
(Visvader and Lindeman, 2012; Blanpain and Simons,
2013). For example, the oncogene Kras and the tumor
suppressor gene p53 are frequently mutated in a wide range
of human cancers (Serrano et al. 1997; Kuilman et al., 2010)
and are known to induce tumor initiation in a variety of
mouse models (Jackson et al., 2001; Singh et al., 2010).

Abnormal proliferative signals of oncogenic insults
including oncogenic KRAS are known to activate a senes-
cent phenotype in cells, presumably designed to prevent the
growth of oncogene-transformed cells and to preserve the
tumor in a non-aggressive state (Collado and Serrano,
2006). Senescent cells, in turn, secrete large amounts of
cytokines and chemokines in a phenomenon known as
Senescence-Associated Secretory Phenotype (SASP).
Among SASP-related factors, CXC chemokines that bind to
CXC chemokine receptor 2 (CXCR2) have been shown to
reinforce senescence, which results in growth arrest, further
preventing tumor progression (Acosta et al., 2008). However,
SASP components can also dangerously stimulate a
malignant phenotype and have tumor-promoting responses.
Some of the factors secreted by senescent cells such as
GROα, CXCL-12 or IL-8 lead to activate proliferation in the
surrounding epithelial cells (Krtolica et al., 2001; Coppé
et al., 2008). Therefore, the effect of SASP on cell behavior
is context-dependent.

Not only is the specific genetic mutation a determining
factor for tumor initiation but the cell type from which the
tumor originates is also important. Cellular populations that
seem to have particularly high tumorigenic potential include
adult stem cells (ASCs) and progenitor cells (PCs), which
normally play crucial roles in tissue homeostasis and repair
(Huels and Sansom, 2015; Sanchez-Danes et al., 2016; Zhu
et al., 2016). These cells might be ideal candidates to serve
as the cells-of-origin for cancers and as such ASCs/PCs
have been intensively studied. However, it still remains to be
fully understood which cell population is prone to oncogenic
transformation and what kind of oncogenic insults induce
tumor initiation from certain ASCs/PCs.

Here, we sought to identify proliferative ASCs/PCs that
are the most susceptible to oncogenic mutations. By initially
focusing on oncogenic Kras, together with the loss of p53,
we found that foregut basal cells that express SOX2 effi-
ciently proliferated to hyperplasia in response to oncogenic
mutations. We also revealed distinct roles of oncogenic
KRAS and P53 deletion in driving hyperplasia. Furthermore,
oncogenic Kras elevated expression of SASP-related
chemokines, which contributed to the oncogenic proliferation
through a CXCR2-dependent signaling pathway. Taken
together, these results suggest that SOX2+ epithelial basal
cells in the esophagus and stomach are highly susceptible to
oncogenic stimuli. Our findings may help elucidate early
events in tumor formation and the cells-of-origin of tumors,

which could in turn provide insights towards a better under-
standing of neoplasia.

RESULTS

Expressing oncogenic Kras and p53 deletion in SOX2+

cells induces hyperplasia in the esophagus
and forestomach

To determine which stem cell populations are the most vul-
nerable to oncogenic transformation, we expressed onco-
genic Kras (G12D) and deleted one copy of the p53 gene in
dividing cells of the adult mouse. Oncogenic Kras and p53
mutations were chosen because they are frequently observed
in a wide range of human cancers (Serrano et al., 1997;
Kuilman et al., 2010). We targeted proliferative cell popula-
tions using Mcm2-CreER knock-in mice (Mcm2CreER/WT), in
which CreER expression is controlled by the Mcm2
promoter. MCM2 is a component of the DNA replication
licensing complex and localizes exclusively to proliferating
cells. Mcm2 expression is known to be downregulated when
homozygous Mcm2-CreER mice (Mcm2CreER/CreER) are
used, resulting in the loss of ASCs/PCs and the formation of
cancer (likely because of genome instability) (Pruitt
et al., 2007). Mcm2CreER/WT mice were bred with mice car-
rying a loxP-STOP-loxP (LSL)-oncogenic Kras (G12D)
(KrasLSL-G12D/WT) and loxP-p53-loxP mice (p53Flox/Flox)
(Marino et al., 2000; Jackson et al., 2001). Upon genotyping,
we verified and selected mice carrying the appropriate
genetic modifications, namely Mcm2CreER/WT; KrasG12D/WT;
p53Flox/WT (hereafter referred to as MKPFlox/WT mice).
MKPFlox/WT mice allow for the selective induction of KrasG12D

expression and the heterozygous deletion of p53 in all
dividing cells upon tamoxifen (TAM) administration. These
mice also carried an LSL-luciferase (Luc) transgene in the
ROSA26 gene locus (ROSALSL-Luc/WT) to allow for the
visualization of Cre-expressing cells via bioluminescence
imaging (BLI) (Fig. 1A). One month after TAM administration,
we performed BLI of MKPFlox/WT mice carrying
ROSALSL-Luc/WT and noticed high levels of Luc expression,
primarily in digestive tissues, including the small intestine
(Fig. 1B). We also observed a prominent hyperplastic
forestomach with abnormal proliferation of stratified epithelial
layers (Fig. 1B and 1C). We repeated the experiments giving
TAM intraperitoneally and the same phenotype was
observed (data not shown). We then repeated this experi-
ment using Cre lines restricted to stem cell populations,
namely Sox2-CreER (SKPFlox/WT) and Lgr5-CreER
(LKPFlox/WT), because SOX2 and LGR5 are known to mark
ASC/PC populations in stratified epithelial squamous layers
and in lower digestive tracts, respectively (Barker et al.,
2007; Arnold et al., 2011). BLI revealed that Luc signals were
specifically observed in the esophagus and stomach of
SKPFlox/WT mice, whereas LKPFlox/WT mice exhibited strong
Luc signals in the duodenum, small intestine, and colon
(Fig. S1A), in agreement with previous reports (Feng et al.,
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2011; Snippert et al., 2014). We did not observe any
hyperplasia in animals that lacked the CreER drivers
(Fig. S1B).

Although SOX2 is expressed in a broad array of tissues,
including lung, trachea, testis, tongue, pituitary gland, eye

and brain (Que et al., 2009; Arnold et al., 2011), we did not
see any hyperplasia in these tissues in the Sox2-CreER
mice (Figs. 2A–C and S2, data not shown). Instead, we
observed tissue-specific phenotypes, namely KRAS/P53-
driven hyperplasia was generally restricted to the
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Figure 1. Susceptibility of proliferating cells to oncogenic stimuli. (A) Schematic representation of the genetic strategy for Kras

and p53 modifications in MCM2+ cells (MKP mouse model). (B) BLI analysis of Mcm2CreER/WT or MKPFlox/WT 4 weeks post tamoxifen

(TAM) administration. Li: Liver; H: Heart; E: Esophagus; St: Stomach; Du: Duodenum; SI: Small intestine; C; Colon; Sp: Spleen; Lu:

Lung; K: Kidney; P: Pancreas; B: Brain. (C) H&E on paraffin-embedded sections fromMcm2CreER/WT mice and MKP mice. Scale bars,

100 μm.
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Figure 2. Cell susceptibility of foregut epithelial basal cells to oncogenic stimuli. (A) Schematic representation of SKP mouse

carrying ROSALSL-GFP for lineage tracing purposes. (B) Stomachs collected from SKPFlox/WT with or without treatment with TAM.

(C) Lineage tracing experiment of SOX2+ cells in SKPFlox/WT mice 3 weeks post TAM administration. Co-staining for GFP with KI67, a

proliferative marker. Scale bars, 100 μm.
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forestomach and esophagus with abnormalities in the glan-
dular stomach. The hyperplasia was observed even in the
older (3–4 month old) mice without any difference from the
younger ones. We thus focused our attention on SOX2+

cells. SOX2 localizes to basal cells in the esophagus and
forestomach, which are known to be progenitor cells with a
high proliferative potential (Arnold et al., 2011; Doupe et al.,
2012). To characterize hyperplasia in the esophagus and
forestomach in more detail, we repeated the SOX2 experi-
ment using a GFP marker (rather than the Luc marker) to
allow for immunohistochemistry (IHC)-based lineage tracing
of the SOX2+ ASCs/PCs in the esophagus, stomach, and
lung (Fig. S3) after TAM administration. We confirmed the
appearance of GFP+ cells 1 week after TAM administration
in both the esophagus and forestomach (Fig. S4). IHC-
based analysis of SKPFlox/WT mice revealed GFP+ cells in
the hyperplastic squamous region of the esophagus and
forestomach and some of GFP+ cells were positive for KI67,
a marker of proliferation (Fig. 2C). Analysis of the abnor-
malities found in the glandular stomach of SKPFlox/WT mice
revealed the presence of high amounts of mucosa, as
assessed by Periodic acid-Schiff (PAS) staining (Fig. S5A).
The alterations observed in the glandular region, however,
were not directly linked to SOX2+ cells because we did not
detect a clear increase in the GFP+ population with and
without induction of oncogenic activity or a change in the
expression pattern of differentiation markers of the glandular
stomach proton-pump and gastrin (Fig. S5B). We next asked
if oncogenic insults affected the differentiation potential of
SOX2+ cells. These GFP+ cells were heterogeneous, with
subpopulations expressing markers of undifferentiated (P63)
or differentiated (CK13 and LORICRIN) cell types (Fig. S6),
suggesting that the KRAS/P53 oncogenic stimulus does not
affect the ability of these cells to differentiate, in contrast to
what has been observed following Sox2 overexpression (Liu
et al., 2013). Previous reports showed that KrasG12D does
not seem to be commonly mutated in human esophageal
squamous cell carcinoma (ESCC) (Shigaki et al., 2013),
although related pathways are often activated (Lin et al.,
2014) and this mutation is also observed in the Chinese
population (Liu et al., 2011). Therefore, we next examined
the effect of PIK3CA (H0147R), which is a mutation asso-
ciated with ESCC (Lin et al., 2014; Song et al., 2014).
Hyperplasia was also observed in the esophagus and
forestomach when oncogenic PIK3CA was expressed
together with heterozygous p53 deletion (Fig. S7). Together,
these results indicate that SOX2+ cells can be the cells-of-
origin of forestomach and esophagus hyperplasia and sug-
gest that SOX2+ basal cells in the esophagus and
forestomach seem more susceptible to oncogenic stimuli
than SOX2+ cells from other tissues in the body, implying
tissue-specific vulnerabilities upon oncogenic insults.

Differential impacts of oncogenic KRAS and P53
deletion on gene expression signature

To ascertain whether oncogenic Kras, heterozygous loss of
p53, or both were responsible for induced hyperplasia in this
context, we analyzed transgenic mice in which Kras and/or
p53 were manipulated using different combinations in
SOX2+ cells. Upon TAM administration, stomach hyperplasia
was only observed in animals that expressed mutant Kras,
indicating that KrasG12D expression, but not p53 heterozy-
gous deletion, was sufficient to induce the hyperplastic
phenotype. Notably, hyperplasia was observed in almost all
SKPFlox/WT mice whereas lower rates were observed in mice
carrying only mutant Kras (Fig. 3A), suggesting that deletion
of one copy of p53 accelerates tumorigenic proliferation by
expanding SOX2+ cells, as supported by our BLI measure-
ments (Fig. 3B) and IHC observations (Fig. S8). To charac-
terize the molecular events that contribute to abnormal
proliferation in the presence of oncogenic Kras, we next
performed RNA-Sequencing (RNA-Seq) analysis using
samples from the forestomach, esophagus, and lungs of
Sox2-CreER mice with/without KrasG12D and with/without
one copy of the p53 gene (see Fig. 3C). Clustering analysis
revealed that gene expression signatures of esophagus and
stomach tissue were altered by KrasG12D expression with or
without heterozygous p53 deletion. In contrast, these genetic
manipulations did not affect gene expression signatures in
the lung, where proliferation was not observed. Gene
ontology enrichment analysis further indicated a distinct
impact of oncogenic KRAS versus P53 deletion (Fig. 3D).
Because Kras mutation was sufficient to initiate hyperplasia
in SOX2+ cells, we sought to identify specific KRAS target
genes. Comparing esophagi and stomachs in which Kras or
Kras/p53 were manipulated to controls that did not express
Kras (false discovery rate (FDR) < 5%), we identified 13
genes that were upregulated. These included Keratin 17
(Krt17), which is a known marker of malignancy (Du et al.,
2013). Of note, some of these KRAS target genes encode
secreted factors (Serpine1, Il1b, Cxcl1, Cxcl3, Cxcl5 and
Cxcl7) (Fig. 3C and 3E). Importantly, a large fraction of these
genes are associated with SASP (Coppe et al., 2008). These
genes were upregulated by oncogenic KRAS rather than by
P53 modification (Fig. 3E), recapitulating the different
impacts of oncogenic KRAS and P53 deletion.

SASP-related factors are involved in oncogenic Kras-
mediated cellular proliferation

Previous reports have indicated that SASP accelerates the
proliferation of tumor cells while inhibiting the proliferation of
surrounding wild-type cells (Acosta et al., 2008; Coppe et al.,
2008; Kuilman et al., 2008). Therefore we first asked if the
CXC chemokines pathway is activated in foregut epithelia.
As shown in Fig. 4A, CXCL7, encoded by Cxcl7, which is
one of the upregulated SASP-regulated genes, and CXCR2,
which is a receptor for the CXC family of chemokines, are
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expressed in stratified epithelia of the esophagus and
forestomach. This led us to examine the effect of CXC
chemokines on cell proliferation. For mouse primary eso-
phageal epithelial cells (mpEECs), chemokine treatment
accelerated proliferation, highlighting the involvement of
these factors in hyperplasia (Fig. 4B). More importantly,
chemical inhibition of the CXCR2 signaling pathway with the
compound SB225002 (White et al., 1998) in SKPFlox/WT mice
(1-week following TAM exposure) resulted in a marked
decrease in proliferating cells (BrdU+ cells) and in a thinner
hyperplastic layer, to levels comparable to the control mice
(Figs. 4C and S9). Analyses of RNA-Seq data from ESCC

samples available in public datasets (Tong et al., 2012)
showed upregulation of CXC ligands and IL1b (Fig. S10).
The ability of CXC ligands and IL1b to enhance tumor effects
was also observed in a soft-agar assay utilizing human pri-
mary esophageal epithelial cells (Fig. 4D). We next tested
CXCR2 inhibitor on human esophageal cell lines: human
primary esophageal epithelial cells (hpEECs); non-neoplas-
tic, immortalized esophageal epithelial cells (Het-1A); and
ESCC line (OE21). We noticed that CXCR2 inhibitor nega-
tively affected esophageal cell proliferation while not affect-
ing human dermis skin fibroblast (HDF) (Fig. S11),
highlighting the importance of CXCR2 in ESCC, consistent
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with previous report (Wang et al., 2006). Collectively, these
data indicate that SASP-related factors play crucial roles in
tumorigenesis caused by oncogenic KRAS.

p53 deletion results in an invasive phenotype

The observation that a p53 heterozygous background
potentiated KrasG12D-induced hyperplastic proliferation led
us to further explore the impact of homozygous p53 deletion
on tumor progression. We therefore generated Sox2CreER/WT;
KrasLSL-G12D/WT; p53Flox/Flox (SKPFlox/Flox) mice and treated
them with TAM for 1 week. Almost all SKPFlox/Flox mice (7 of
8 TAM-treated mice) died within 2 weeks of TAM treatment.
This is in contrast to SKPFlox/WT mice, which generally sur-
vived 4 weeks. SKPFlox/Flox mice that died following TAM
treatment had a much larger esophagus than those of any
other genotypes, including SKPFlox/WT mice (Fig. 5A and
5B). It is worth noting that invasion of GFP+ cells was only
observed in the forestomach of SKPFlox/Flox mice but not
SKPFlox/WT mice (Fig. 5C). A higher abundance of SASP-

related factors might account for the invasive phenotype
(Figs. 5D and S11), in agreement with a previous report
(Coppe et al., 2008). Taken together, these results indicate
that p53 homozygous deletion is required for the acquisition
of an invasive phenotype.

DISCUSSION

ASCs/PCs are found in many tissues and organs in the adult
body and are important for tissue homeostasis and regen-
eration upon injury but, at the same time, these cells might
be ideal candidates to be the cells-of-origin for cancers
(Arnold et al., 2011). Here we found that SOX2+ foregut
ASCs/PCs are prone to oncogenic transformation despite
the presence of SOX2+ cells in other organs, such as the
lungs. Our observations indicate distinct roles for oncogenic
KRAS mutation and P53 deletion in tumor formation. Global
gene expression analysis reveals that secreting factors
contribute to the development of oncogenic KRAS-induced
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Figure 4. Crucial roles of secretory phenotype on tumor initiation caused by KRAS activation. (A) Expression of CXCL7 and
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tumors and highlights a crucial role for the CXCR2 pathway
in driving tumor formation.

SOX2 has been reported to play an important role not
only in development and somatic reprogramming but also in
cancer initiation/progression. For example, amplification of
the SOX2 gene has been reported in human squamous cell
carcinomas (SCC) of the lung and esophagus, small-cell
lung cancer (SCLC) and glioblastoma (Bass et al., 2009;
Annovazzi et al., 2011; Rudin et al., 2012). Overexpression

of Sox2 leads to hyperplasia and tumor formation in several
tissues (Lu et al., 2010; Liu et al., 2013; Mukhopadhyay
et al., 2014). Furthermore, Sox2 expression marks the
tumor-initiating cell population of skin squamous cell carci-
nomas once Sox2 expression is induced during tumorigen-
esis (Boumahdi et al., 2014). SOX2+ cells are also
responsible for propagating medulloblastoma and targeting
them prevented tumor growth (Vanner et al., 2014). Taken
together, these results indicate the importance of the SOX2
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molecule and SOX2+ cells in tumor development. However,
tumor susceptibility of SOX2+ cells seems oncogene-spe-
cific. A previous report showed that the loss of APC in pyloric
SOX2+ cells generated tumors (Sarkar et al., 2016). Simi-
larly, targeted expression of oncogenic β-catenin in SOX2+

cells is reported to give rise to other tumor types in a non-
cell-autonomous manner (e.g., pituitary tumors) (Ando-
niadou et al., 2013). However, we did not observe abnormal
proliferation in the glandular region as well as in the pituitary
in our system. These results suggest distinct oncogenic
mutation susceptibilities in SOX2+ cells throughout different
tissue niches.

We also found distinct roles for KRAS and P53 in onco-
genic transformation of SOX2+ cells. Oncogenic Kras
expression, but not p53 deletion, was sufficient to induce a
hyperplasic phenotype; and p53 deletion accelerated
tumorigenic proliferation in KrasG12D-induced hyperplasia.
Similarly, others have found that the loss of p53 in stem cells
of the colon results in tumor formation only when combined
with DNA damage and chronic inflammation (Schwitalla
et al., 2013; Davidson et al., 2015). Importantly, p53
homozygous deletion along with the Kras mutation led to an
invasive phenotype and highly malignant tumors, highlight-
ing the role of P53 in tumor invasion.

We identified SASP-related chemokines as responsible
factors for oncogenic Kras-dependent proliferation in the
forestomach and esophagus. It is thought that SASP may be
induced in senescent cells to potentiate cell proliferation of
surrounding pre-tumor cells and to functionally disrupt nor-
mal tissues (Krtolica et al., 2001; Coppe et al., 2008). Some
of the SASP-related chemokines activate the CXCR2-de-
pendent signaling pathway, known to trigger a secretory
network that results in growth arrest, further preventing
tumor progression (Acosta et al., 2008). In fact, a previous
paper showed that CXCR2 is a blockade to drive oncogene-
induced senescence in pancreatic tumors (Lesina et al.,
2016). Inconsistent with these reports, we found that onco-
genic KRAS increased the expression of SASP-related
chemokines in foregut basal cells, which contributed to
oncogenic proliferation. Given that epithelial cells in the
esophagus and forestomach are highly proliferative, similar
to pre-tumor cells, these cells might have unique charac-
teristics, which allow them to proliferate in response to
SASP-related chemokines. Interestingly, esophageal
epithelial cells express some of the pluripotency factors
(unpublished data), highlighting the uniqueness of these
cells.

The array of genetic tumor models generated, combined
with the lineage tracing experiments and global expression
analyses described here, may open new paths for a better
understanding of neoplasia. They may also help the future
design of therapeutics targeting the initial stages of tumor
formation and progression as well as facilitate the identifi-
cation of novel parameters for earlier tumor diagnosis.

MATERIALS AND METHODS

Mice

Mcm2CreER/WT (Pruitt et al., 2007), Sox2CreER/WT (Arnold et al.,

2011), Lgr5CreER/WT (Barker et al., 2007), KrasLSL-G12D/WT (Jackson

et al., 2001), p53Flox/Flox (Jonkers et al., 2001), ROSALSL-PIK3CA

(H1047R)/LSL-PIK3CA(H1047R) (Adams et al., 2011), ROSALSL-Luc/LSL-Luc

(Safran et al., 2003), and ROSALSL-GFP/LSL-GFP (Mao et al., 2001)

have been previously described. We used both male and female

mice for this study but the same gender was used for each experi-

ment unless otherwise stated.

To activate CRE in the mice carrying CreER, TAM, dissolved in

corn oil, was given orally (50 mg/mL) or intraperitoneally (20 mg/mL)

to 6- to 10-week-old animals for 5 consecutive days, unless other-

wise stated.

Tissue preparation and IHC

For IHC, tissues were harvested, fixed in 10% neutralized Formalin

for 2 days and then stored in 70% ethanol until further processing.

H&E staining, PAS staining and IHC on paraffin-sections were per-

formed following standard protocols. The following antibodies were

used for IHC: anti-GFP (Abcam, 6673, 1:200; Clontech, JL-8, 1:100);

Ki67 (Cell signaling, 12202, 1:200); Proton-pump (MBL, D032-3H,

1:100); Gastrin (Santa Cruz, sc-783, 1:200); anti-p63 (Santa Cruz,

sc-56188, 1:200); anti-CK13 (Abcam, 92551, 1:1000); anti-Loricrin

(Abcam, 24722, 1:1000); anti-CXCL7 (Bioss Inc., A-21235, 1:200);

anti-CXCR2 (Abcam, 14935, 1:200).

IVIS experiment

Mice were examined at 3 or 4 weeks post TAM administration by BLI

performed using an IVIS Kinetic 2200 from Caliper Life sciences.

Mice were i.p. injected with 150 mg/kg D-Luciferin (BIOSYNTH),

anesthetized with isoflurane and dorsal images were then captured

10 min post luciferin injection.

RNA-sequence

Isolated tissues were homogenized with a polytron in TRIzol. The

extracted RNA was purified using the RNeasy Micro Kit (Qiagen)

from the homogenates. RNA quality was assessed and all samples

had a minimum RNA integrity number (RIN) of 7.8. RNA library

preps were prepared using the Illumina TruSeq Stranded Total RNA

Sample Prep kit with Ribo-zero Gold (cat. no. RS-122-2301). Briefly,

RNA was depleted of ribosomal RNA and mitochondrial RNA, then

fragmented and reverse transcribed. cDNA was end-repaired,

adenylated, ligated with sequencing primers and PCR amplified.

Libraries were pooled and sequenced on the HiSeq 2500 using v4

sequencing reagents at single-end 50 base-pair (bp) to a depth of

15–20 million reads per experiment. Reads were mapped to the

mouse genome (NCBI37/mm9) using STAR (PMID: 23104886).

Gene expression levels and Gene Ontology enrichment were cal-

culated using HOMER (PMID: 20513432) and clustering was per-

formed using Cluster 3.0 and Java TreeView. Differential expression

was defined using a false discovery rate (FDR) cut-off of 5% and a

fold change of at least 2 using edgeR (PMID: 19910308). RNA-Seq
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data have been deposited in the Gene Expression Omnibus under

accession code GSE66457.

BrdU labeling

BrdU labeling was performed using BrdU In-Situ Detection Kit (BD

Biosciences, 550803) according to the manufacturer’s instructions.

Briefly, the mice were i.p. injected with 1 mg of BrdU and the tissues

were collected from the injected mice at 24 hr post injection, followed

by paraffin embedding and sectioning. After being deparaffinized

and antigen-retrieved, the section was stained using biotinylated

anti-BrdU and Streptavidin HRP together with DAB substrate and

BrdU+ cells were counted for quantification.

Cell culture

Mouse primary esophageal cells were derived as previously

described (Kalabis et al., 2008). Briefly, the esophagi were isolated,

opened longitudinally, washed in PBS followed by Dispase (1 U/mL)

for 15–20 min at 37 °C. The opened esophagi were minced with

forceps and incubated with TrypLE for 10 min at 37 °C. After inac-

tivation of TrypLE with FBS, the cell suspension was filtered through

100-μm and 40-μm cell strainers. The obtained cells were cen-

trifuged and re-suspended in keratinocyte serum-free medium (Life

Technologies), followed by plating on matrigel-coated plates. Human

primary esophageal epithelial cells were obtained from Cell Biolog-

ics. Het-1A cell line was obtained from ATCC. OE21 cell line was

obtained from sigma. The cells were cultured according to manu-

facturer’s instructions.

FACS analysis

Single cell suspension of the esophagus and the forestomach was

obtained as mentioned above. Lung cell isolation was performed as

previously described (Gereke et al., 2012). Briefly, lungs were per-

fused with PBS and the salivary glands were removed to expose the

trachea, followed by instillation with 1 U/mL dispase and 1% low-

melting agarose. After gel solidification with ice, the lungs were

isolated and washed with PBS, and incubated with dispase at room

temperature for 45 min. The lungs were minced and filtered through

100-μm and 40-μm cell strainers to obtain a single cell suspension.

The single cell suspension was subjected to FACS analysis.

Soft-agar assay

The cells of interest were cultured in 0.5% soft agarose layered on

harder agarose in 60-mm dishes. After 14 days, the colonies were

counted.
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