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ABSTRACT

A human immunodeficiency virus type-1 (HIV-1) vaccine
which is able to effectively prevent infection would be
the most powerful method of extinguishing pandemic of
the acquired immunodeficiency syndrome (AIDS). Yet,
achieving such vaccine remains great challenges. The
membrane-proximal external region (MPER) is a highly
conserved region of the envelope glycoprotein (Env)
gp41 subunit near the viral envelope surface, and it
plays a key role in membrane fusion. It is also the target
of some reported broadly neutralizing antibodies
(bNAbs). Thus, MPER is deemed to be one of the most
attractive vaccine targets. However, no one can induce
these bNAbs by immunization with immunogens con-
taining the MPER sequence(s). The few attempts at
developing a vaccine have only resulted in the induction
of neutralizing antibodies with quite low potency and
limited breadth. Thus far, vaccine failure can be attrib-
uted to various characteristics of MPER, such as those
involving structure and immunology; therefore, we will
focus on these and review the recent progress in the
field from the following perspectives: (1) MPER structure
and its role in membrane fusion, (2) the epitopes and
neutralization mechanisms of MPER-specific bNAbs, as
well as the limitations in eliciting neutralizing antibodies,
and (3) different strategies for MPER vaccine design and
current harvests.
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INTRODUCTION

Acquired immunodeficiency syndrome (AIDS) is an infec-
tious disease caused by human immunodeficiency virus
(HIV) infection, which can impair and even destroy the
human immune system. Since its discovery in 1983, AIDS
has spread worldwide with more than 36.7 million people
who are living with HIV infection, thus calling for develop-
ment of effective and safe vaccines to prevent HIV infection
and end the current AIDS pandemic. The statistical analysis
based on a mathematical model predicts that application of a
50%-efficacy vaccine starting from 2020 and gradually
scaling up to 70% coverage by 2035 will avert 17 million new
infections if the current conditions of diagnosis and treatment
keep unchanged (Medlock et al., 2017).

In spite of efforts for more than 30 years and hundreds of
clinical trials, most HIV vaccine clinical trials have failed and
none of the HIV vaccines has been approved so far. The
RV144 vaccine trial that was launched in Thailand in 2009 is
the only clinical trial showing an efficacy of 31.2% reduction
of HIV type 1 (HIV-1) infection (Kim et al., 2015), and since
then, no more effective HIV-1 vaccine has been developed.
However, several groups have discovered some vaccine
targets on the virus surface which play an important role in
the infection process, such as the CD4 binding site (Wu
et al., 2009), V1V2 region (Wang et al., 2017) and mem-
brane-proximal external region (MPER: 659ELLELDK
WASLWNWFDITNW LWYIK683, HXB2 numbering) (Sun
et al., 2016). All these targets are located on the HIV-1 Env.
Eliciting broadly neutralizing antibodies (bNAbs) against
these targets, i.e., antibodies that can neutralize a broad
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spectrum of HIV-1 strains, is one of major goals for designing
a successful HIV-1 vaccine (Haynes and Mascola, 2017).

MPER is a highly conserved motif in the HIV-1 Env gp41
subunit near the viral envelope surface. It plays an important
role in membrane fusion, and it is the target of some reported
bNAbs. Thus, MPER is deemed to be one of the most
promising vaccine targets. Multiple monoclonal antibodies
(mAbs) against this region have been reported so far, such
as 2F5, 4E10, Z13, Z13e1, m66.6, CH12 and 10E8 (Muster
et al., 1993; Muster et al., 1994; Stiegler et al., 2001; Zwick
et al., 2001; Nelson et al., 2007; Hessell et al., 2010; Morris
et al., 2011; Huang et al., 2012; Ofek et al., 2014). Among
these antibodies, 2F5, 4E10 and 10E8 exhibit broadly neu-
tralizing activity, but these kinds of bNAbs cannot be elicited
in animals through immunization. Many attempts have been
made to develop vaccines targeting MPER, but only a small
number of them can induce neutralizing antibodies and then
only with low potency and limited neutralizing breadth. The
reasons for vaccine failure may, on one hand, involve the
ambiguous conformation of MPER. The native conformation
of MPER, or the conformation capable of inducing neutral-
izing antibodies, has not been determined, and the change
of MPER conformation during the membrane fusion process
also has not been elucidated. On the other hand, MPER-
specific bNAbs possess the cross-reactivity with human
autoantigens, and it has been demonstrated that the mech-
anism of host tolerance mechanism impairs MPER-specific
neutralization responses (Kelsoe and Haynes, 2017). These
open questions serve to compound the difficulties in
designing immunogens and immunization protocols.

This review will focus on recent progress in the field from
the following perspectives: (1) MPER structure and its role in
membrane fusion, (2) the neutralizing epitopes in MPER and
neutralization mechanisms of MPER-specific bNAbs, as well
as the limitations in eliciting neutralizing antibodies, and (3)
different strategies for MPER vaccine design and current
harvests. Understanding the properties and characteristics
of MPER structure and immunology, as viewed from these
perspectives, will not only be helpful in analyzing how they
pose obstacles to vaccine development, but also provide
some tentative guidelines for designing reasonable
immunogens and vaccines with the hope of ultimately
designing an effective HIV vaccine and inducing MPER-
specific bNAbs.

STRUCTURE AND FUNCTION OF GP41 MPER:
A DILEMMA OF UNKNOWN CONFORMATIONS

HIV-1 Env is the sole viral antigen exposed on the virion
surface. It is first synthesized as a gp160 glycoprotein pre-
cursor and then cleaved into a mature complex constituted
by the noncovalent association of three gp120 (surface) and
three gp41 (transmembrane) subunits, forming a highly gly-
cosylated trimer of heterodimers (Wyatt et al., 1998; Zanetti
et al., 2006; Liu et al., 2008). As C-terminus of the gp41

subunit ectodomain, gp41 MPER bridges the extracellular
domain and transmembrane region of Env (Munoz-Barroso
et al., 1999; Salzwedel et al., 1999) (Fig. 1), which is a highly
conserved motif near the viral envelope surface. The steric
hindrance of gp120 and the high hydrophobicity of MPER
make MPER partly embedded in the viral membrane (Sun
et al., 2008), making it difficult to resolve the native confor-
mation of MPER in the envelope glycoprotein trimer (Lee
et al., 2016). In addition, the epitopes of the reported bNAbs
reveal quite different conformations so that multiple confor-
mations may be associated with the induction of neutralizing
antibodies. During the fusion process, gp41 will undergo
dramatic structural changes, which results in continuous
contact between the immune system and MPER with dif-
ferent conformations. However, the exact conformations that
manifest in the membrane fusion process are still not clear.
Thus, the problem of unknown conformations hinders
immunogen design.

Structure of gp41 MPER

The native structure of MPER is still unclear. Previous
studies have put forth two different structural models by
cryoelectron tomography (Zanetti et al., 2006; Zhu et al.,
2006). Zhu et al. have proposed that MPER and the trans-
membrane (TM) regions, as the stalk of each trimer, are
composed of three separate legs that obliquely stretch out of
the trimer’s head, much like a tripod. Some researchers hold
that such tripod-like model is consistent with the present
views concerning gp41 MPER interaction with the mem-
brane (Zhu et al., 2006; Buzon et al., 2010). In contrast, the
structural model proposed by Zanetti et al. shows the TM
region of simian immunodeficiency virus (SIV) gp41 as a
stem in the viral surface. These conflicting structures may be
attributed to different methods used to collect the data and/or
the computational approaches used to determine the struc-
tures (Subramaniam, 2006). The recent study of Dev et al.
supports the stem model of TM (Dev et al., 2016). Using
cryogenic electron microscopy, Lee et al. analyzed a clade B
virus Env lacking only the cytoplasmic tail stabilized by
10E8. The result of nuclear magnetic resonance (NMR)
suggests that MPER is embedded in the membrane and that
MPER and heptad repeat 2 (HR2) are connected flexibly
(Lee et al., 2016). So far, the native conformation of MPER is
still fuzzy (Lee et al., 2016) and requires further study.

NMR and surface plasmon resonance (SPR), among
other technologies, show that MPER adopts an α helical
conformation partially embedded in the viral membrane,
consisting of two independent domains separated by a
flexible hinge (Sun et al., 2008; Song et al., 2009). These two
segments show different membrane-interacting attributes
such that the C-terminal domain is embedded in the mem-
brane, and the N-terminal domain is more exposed. Owing to
amphiphilic characteristics of the C-terminal domain, the
hydrophobic residues are buried in the membrane, whereas
the polar residues are solvent-exposed (Huarte et al., 2008;
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Sun et al., 2008; Song et al., 2009; Kim et al., 2013).
Moreover, MPER exhibits different conformations when
bound by antibodies (Fig. 1). As shown in Figure 1, the
crystal structure of 2F5 Fab in complex with its epitope
peptide reveals that the 664DKW666 core motif forms a β turn
conformation (Bryson et al., 2001). In contrast, the crystal
structure of Fab 4E10 in complex with its epitope peptide
was found to form an α helical conformation from D674 to
K683 (Cardoso et al., 2005; Cardoso et al., 2007). Similar to
4E10, the crystal structure of Fab 10E8 in complex with its
epitope peptide also forms an α helical conformation (Huang
et al., 2012). These results indicated that MPER is natively
flexible, indicating that more than one structure is associated
with neutralization and, at the same time, implying that
multiple conformations of MPER immunogens may be
favorable to the induction of bNAbs. However, it remains

puzzling whether some kind of conformation, or several
kinds, can be applied to vaccine design.

Role of gp41 MPER in the membrane fusion process

The HIV-1 Env transmembrane subunit gp41 serves to
anchor the Env protein to cellular membranes and mediate
membrane fusion during virus entry into the cell (Chan and
Kim, 1998). When the membrane fusion process initiates,
gp120 interacts with CD4 molecule on the surface of target
cells with a high affinity, which facilitates a series of confor-
mational changes. The gp120 coreceptor binding site is
exposed transiently, allowing gp120 attachment to the CCR5
or CXCR4 chemokine receptor (Maddon et al., 1986;
McDougal et al., 1986; Rizzuto et al., 1998). Coreceptor
ligation triggers the structural rearrangement of gp41,
allowing the gp41 fusion peptide (FP) to insert into the target
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Figure 1. MPER in the envelope glycoproteins of HIV-1 and conformation of MPER binding to antibodies. As C-terminus (aa

660–683, HXB2 numbering) of gp41 subunit ectodomain, gp41 MPER bridges the extracellular domain and transmembrane region of

Env. The crystal structure of 2F5 Fab in complex with its epitope peptide (PDB ID code: 1TJI) reveals that its epitope forms a β turn

conformation, whereas epitope of 4E10 (PDB ID code: 2FX7) forms an α helical conformation. Similar to 4E10, 10E8 forms two α

helixes at N- and C-terminus of MPER, respectively. Blue in the figure indicates gp120, orange indicates gp41, and red indicates

MPER. The epitope and Fab of 2F5, 4E10 and 10E8 are represented by yellow, cyan and brown, respectively.
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cell membrane, which accounts for a transient prehairpin
fusion intermediate, and the cellular and viral membrane are
linked by gp41 with an extended conformation. Then α
helical domains HR1 and HR2 of each gp41 monomer are
reversibly folded into a 6-helix bundle (6-HB) conformation
(Su et al., 2017a; Su et al., 2017b), bringing both cellular and
viral membrane closer to ultimately generate membrane
fusion (Blumenthal et al., 2012; Klasse, 2012).

The entire gp41 is mostly occluded by gp120 in the native
virus spike where MPER is exposed transiently in the fusion
process (Dimitrov et al., 2007). As such, the importance of
MPER in the function of Env is highlighted by analyses of
mutant viruses involving MPER deletions, insertions and
substitutions (Munoz-Barroso et al., 1999; Dimitrov et al.,
2007; Vishwanathan and Hunter, 2008). For example, sub-
stitution of the five conserved tryptophan residues in MPER
greatly compromises the integration of gp41 into virions and,
consequently, blocks viral entry (Munoz-Barroso et al.,
1999). In addition, deletion of the 666WASLWNWF-
DITNWLWYI682 region completely abolishes the formation
of syncytium. Such evidence shows that MPER plays an
important role in HIV-1 Env-mediated fusion and virus
infection, which is consistent with the high conservatism of
its sequence (Salzwedel et al., 1999). In addition, some
studies has indicated that MPER may mediate membrane
partition, fusion and penetration (Suarez et al., 2000a;
Suarez et al., 2000b). MPER plays a key role in membrane
destabilization by interacting with the lipid membrane (Bel-
lamy-McIntyre et al., 2007). The high content of tryptophan
may enable MPER to interact with the lipid membrane and
destabilize it (Suarez et al., 2000b; Stano et al., 2005). Some
studies have also revealed that MPER plays a role in HIV-1
CD4-independent viral transcytosis at the epithelial barrier
(Bomsel, 1997) where the conserved sequence
662ELDKWA667 interacts with galactosyl ceramide recep-
tors (Alfsen and Bomsel, 2002), indicating that MPER is
functional in the mucosal infection of viruses. The secretory
IgA from cervicovaginal secretions of HIV-1-infected indi-
viduals can block viral transcytosis though binding the
662ELDKWA667 sequence (Alfsen et al., 2001; Leroux-
Roels et al., 2013), indicating that the use of an immunogen
containing MPER is likely to induce vaginal IgA with tran-
scytosis-blocking activity, a finding also confirmed by
another report (Bomsel et al., 2011). Therefore, eliciting
antibodies against MPER by vaccination may disturb its
function thus effectively block viral entry and protect humans
from HIV-1 infection.

To sum up, a number of groups have shown that MPER is
conserved and plays important roles in the course of viral
infection. However, researchers have not yet determined the
exact structure of gp41, the native conformation of MPER, or
the conformation of MPER capable of inducing neutralizing
antibodies, let alone the allosteric mode of gp41, especially
MPER during the membrane fusion process. Consequently,
we have a dilemma of unknown conformations that seriously
militates against successful immunogen design. Apart from

such parameters as low accessibility and unknown confor-
mations, the host tolerance mechanism also influences
MPER-specific neutralization responses. We will discuss the
humoral responses targeting MPER in detail below.

HUMORAL RESPONSES TARGETING MPER:
COEXISTENCE OF HOPES AND LIMITATIONS

In the earlier clinical trials, HIV-1 Env-based subunit vacci-
nes were tested to elicit antibodies specific for gp120.
However, these antibodies had no neutralizing activity and
vaccinated people were not protected from HIV infection.
The failure of these trials promoted a shift to the develop-
ment of HIV vaccines for eliciting T cell responses. However,
the disappointing outcome from the clinical trials of a T cell-
based vaccine regimen, the STEP trial, conducted by Merck
and HIV Vaccine Trials Network (HVTN), has dealt another
setback to AIDS vaccine development (Miedema, 2008).
The failure of the STEP trial further reinforced the notion that
an effective AIDS vaccine needs to induce both strong CTLs
(cytotoxic T lymphocytes) and bNAbs against HIV infection
(Barouch, 2008; Fauci et al., 2008; Walker and Burton,
2008). Moreover, as mentioned in the section above, the
contribution of IgAs at the mucosal surface also should not
be ignored (Bomsel, 1997).

Nevertheless, efforts to engineer vaccines that can
induce HIV bNAbs have encountered great difficulties; no
one can induce bNAbs by immunization with immunogens
containing MPER sequence(s). To gain a better under-
standing of this, we will analyze (1) the neutralizing epitopes
in MPER and neutralization mechanisms of MPER-specific
bNAbs and (2) limitations in the elicitation of neutralizing
antibodies. The neutralization mechanisms of bNAbs high-
light the importance of membrane and show the role of lipids
as a native scaffold to shape the structure of MPER, in turn
suggesting the importance of lipids in immunogen design. In
addition, the limitations of inducing neutralizing antibodies
put more burdens on vaccine design.

Epitopes and neutralization mechanisms of three
bNAbs

The mAbs isolated from HIV-1-infected individuals are the
strongest evidence proving that the human immune system
can generate MPER-specific neutralization responses. Mul-
tiple mAbs targeting MPER have been isolated so far, such
as 2F5, 4E10, Z13, Z13e1, m66.6, CH12 and 10E8 (Muster
et al., 1993; Muster et al., 1994; Stiegler et al., 2001; Zwick
et al., 2001; Nelson et al., 2007; Hessell et al., 2010; Morris
et al., 2011; Huang et al., 2012; Ofek et al., 2014). Among
these antibodies, 2F5, 4E10 and 10E8 reveal broadly neu-
tralizing activity, and as such, they have been explored more
thoroughly (Table 1).

2F5 and 4E10 are among the first bNAbs discovered that
were generated by electrofusion of peripheral blood
mononuclear cell mixtures from different HIV-1-infected
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individuals (Buchacher et al., 1994). 2F5 targets the
sequence 656NEQELLELDKWASLWN671 within the N-ter-
minus of MPER (Muster et al., 1993), of which the central
core, 664DKW666, is crucial to neutralization, as demon-
strated by alanine-scanning mutagenesis assays (Zwick
et al., 2005). The crystal structures of 2F5 in complex with a
synthesized short or long peptide based on its epitope have
been analyzed, and the results showed that the 664DKW666

core motif presents a β turn conformation. The structure of
2F5 in complex with the long peptide reveals that only 41%
of its sequence binds 2F5 with some unbound hydrophobic
regions, which may be subject to the steric hindrance of Env
or embedded in the lipid membrane (Ofek et al., 2004; Bry-
son et al., 2008). 2F5 has a relatively high potency and can
neutralize 57%–67% of viral isolates with a concentration
causing 50% inhibition of the desired activity (IC50) below 50
µg/mL (Binley et al., 2004; Huang et al., 2012). However, as
a result of a mutation in the central core epitope (DSW
instead of DKW), HIV-1 C subtype viruses are usually 2F5-
resistant (Bures et al., 2002; Binley et al., 2004; Gray et al.,
2006).

4E10 targets the distal conserved tryptophan-rich motif
that is located C-terminal to the 2F5 epitope, including the
sequence 671NWFDIT676, and extending toward C-terminal
residues where W672, F673, I675, T676, L679 and W680
have the most important contact with the antibody (Zwick
et al., 2001). Although presenting a moderate potency, 4E10
displays a remarkable breadth to neutralize 98%–100% viral
isolates with an IC50 below 50 µg/mL (Binley et al., 2004;
Walker et al., 2009). Compared with the pseudoviruses
obtained in 293 T cells, further characterization of 2F5 and
4E10 revealed their reduced potency against transmit-
ted/founder viruses (T/F IMC) or replicating viruses obtained
from primary lymphocytes (Louder et al., 2005; Provine et al.,
2009; Provine et al., 2012; Miglietta et al., 2014). In spite of
these possible limitations, both 2F5 and 4E10 were shown to
protect nonhuman primates (NHP) against viral challenge
(Mascola et al., 2000; Hessell et al., 2010), and no major
clinical complication arose when administered to human
recipients (Trkola et al., 2005).

In order to delineate a complete map of HIV-1 neutralizing
determinants, substantial efforts have been made to isolate
new bNAbs since 2009. The development of high-throughput
analysis of single memory B cells and the use of fluores-
cently labeled Env-based protein probes to isolate antigen-
specific B cells have significantly contributed toward the
discovery of new HIV-1 neutralizing antibodies (Doria-Rose

et al., 2009; Scheid et al., 2009; Wu et al., 2010). In this
context, mAb 10E8 discovered in 2012 proved once again
that important bNAbs targeting this area can be generated. It
also prompted researchers to consider MPER as a major
vaccine target (Huang et al., 2012).

10E8 targets the sequence 656NEQELLELDKWASLWN671

within theC-terminus ofMPER,which overlaps the epitopes of
2F5 and 4E10. It neutralized 98% of 181 pseudoviruses with
an IC50 below 50 µg/mL, showing a mean IC50 of 0.25 µg/mL
for the sensitive viruses, while mean IC50 values of 4E10 and
2F5 were 1.3 and 1.92 µg/mL, respectively. Interestingly,
72% of the panel was neutralized by 10E8 with an IC50

below 1 µg/mL, while the percentages of 4E10 and 2F5 were
37% and 16%, respectively (Huang et al., 2012). Therefore,
10E8 can neutralize viruses with a greater potency and
breadth than the previously discovered 2F5 and 4E10, and it
is comparable to some of the most potent bNAbs, such as
VRC01 or PG9/PG16 (West et al., 2014). Notably, 10E8 was
also reported to protect NHP against viral challenge (Pegu
et al., 2014).

Just recently, a new lineage of MPER-specific bNAbs,
designated DH511, was isolated from memory B cells and
plasma of an HIV-1-infected donor (Williams et al., 2017).
The DH511 lineage, which is derived from the same heavy
chain germline gene family (VH 3–15) as 10E8, presents
long CDR H3 loops of 23 to 24 amino acids, and the somatic
mutation rates of VH and VL are 15%–22% and 14%–18%,
respectively. DH511.2, as the most potent mAb of this clone
lineage, neutralized 206 out of 208 pseudoviruses of a
geographically and genetically diverse panel with a median
IC50 of 1 µg/mL, being slightly broader, but less potent, than
10E8 (Williams et al., 2017).

Independent of their origin, all these antibodies are the
product of a long process of affinity maturation, which is
highly mutated with an unusually long and hydrophobic
heavy chain complementary determining region 3 (CDR H3)
(Zwick et al., 2004; Cardoso et al., 2005; Huang et al., 2012).
In addition, these antibodies share a similar neutralization
mechanism. Although some residues of the CDRs are very
important for binding peptidic epitopes, researches have
shown that the most hydrophobic loops directly interact with
membrane lipid (Alam et al., 2007; Alam et al., 2009; Lutje
Hulsik et al., 2013). In previous study, 2F5 was predicted to
bind lipids via CDRL1 and CDRH3 (Julien et al., 2008).
Recently, lipid-binding sites of 4E10 and 10E8 were deter-
mined by X-ray crystallography (Irimia et al., 2016; Irimia
et al., 2017). The bNAbs against MPER binding to a peptide

Table 1. Features of the reported bNAbs against MPER.

Antibody Binding sequence No. of viruses IC50 < 50 μg/mL IC50 < 1 μg/mL Mean IC50 (μg/mL)

2F5 656NEQELLELDKWASLWN671 177 57% 16% 1.92

4E10 671NWFDITNWLWYIK683 181 98% 37% 1.3

10E8 664DKWASLWNWFDITNWLWYIK683 180 98% 72% 0.22

REVIEW Huan Liu et al.

600 © The Author(s) 2018

P
ro
te
in

&
C
e
ll



sequence obey the Langmuir curve model, but SPR-based
studies demonstrated that binding polypeptide-membrane
complex follows a two-step (encounter–docking) model.
First, the antibody attaches to the lipid membrane through its
long hydrophobic CDR H3 and concentrates around the
MPER epitope. Once conformational changes take place,
the antibody binds to the pre-hairpin intermediate of gp41
(Alam et al., 2007; Alam et al., 2009). The mechanism
facilitates the approach of antibody to epitope, overcoming
the poor exposure of MPER and also taking advantage of its
close proximity to the viral membrane. However, the exact
neutralization mechanism is still controversial and requires
further exploration (Frey et al., 2008; Kim et al., 2014).

In sum, all epitopes of bNAbs targeting MPER may be
composed of peptidic residues and membrane lipids toge-
ther. The importance of membrane in the neutralization
mechanism of bNAbs shows the important role of lipids as a
native scaffold in shaping the structure of MPER, thus indi-
cating the significance of lipids in immunogen design.
Therefore, in order to generate MPER-specific neutralization
responses, the membrane environment may be required to
present the neutralizing determinant properly.

Generation of neutralizing antibodies: limited
by polyreactivity/autoreactivity

Up to now, the reported bNAbs against MPER have a
prevalence of polyreactivity and autoreactivity. In 2005, the
polyspecific binding of 4E10 and 2F5 mAbs to cardiolipin
and other anionic phospholipids was reported (Haynes et al.,
2005a). Furthermore, conserved host antigens bound by
2F5, 4E10 and 10E8 were also identified (Yang et al., 2013;
Liu et al., 2015). 2F5 binds to the enzyme kynureninase
(KYNU) containing the same sequence (ELDKWA) as its
epitope, which is highly conserved in different mammal
species. 4E10 binds to splicing factor-3b subunit-3 and type I
inositol triphosphate (IP3R1) (Yang et al., 2013). Although
considered as non-polyreactive initially, subsequent studies
indicated that 10E8 possibly needs to bind membrane lipids,
especially cholesterol, to mediate neutralization (Huang
et al., 2012; Chen et al., 2014; Irimia et al., 2017). Recently,
the crystal structure of 10E8 in complex with MPER shaped
by a scaffold revealed that its complete epitope consists of
MPER and lipids (Irimia et al., 2017). Although described as
non-autoreactive initially, 10E8 also recognizes FAM84A
protein (Liu et al., 2015); however, such recognition did not
seem to cause strong toxicity in vivo since clinical trials
showed 2F5, 4E10 and 10E8 to be relatively safe (Trkola
et al., 2005; Pegu et al., 2014).

These studies reporting on polyreactivity and autoreac-
tivity suggest that autoreactive B cells that cross-react with
MPER sequences may be impaired in the native repertoire.
Thus, this immunologic tolerance mechanism might be
associated with HIV-1 evasion of immune responses (Hay-
nes et al., 2005b; Verkoczy et al., 2014). This hypothesis

was confirmed by monitoring B cell development in knockin
(KI) mouse models carrying V (D) J rearrangements identical
to those of the mature bNAbs 2F5 and 4E10. These models
showed a normal early B cell development, but a blockade
from pre-B to immature IgM+ B cells at the first tolerance
checkpoint (Verkoczy et al., 2010; Doyle-Cooper et al., 2013;
Verkoczy et al., 2013; Verkoczy and Diaz, 2014). B cell
central tolerance takes place in the bone marrow, hindering
the development of autoreactive B cells by several mecha-
nisms, such as clonal deletion and receptor editing (Ne-
mazee, 2017). After that, some autoreactive B cells can still
migrate from the bone marrow as anergic cells, showing a
hyporesponsive state and a shortened lifespan. However,
under special circumstances, the anergic B cells can be
activated and differentiate into antibody-producing B cells
(von Boehmer and Melchers, 2010). Consistent with this
phenomenon, when 2F5 KI mice were immunized with
MPER peptide-liposome immunogens, anergic B cells could
be restored to generate specific neutralizing antibodies
(Dennison et al., 2009; Verkoczy et al., 2011). More recently,
a 2F5 germline knock-in (KI) mice model has demonstrated
that remaining anergic B cells can also be activated by
germline-mimicking immunogens when 2F5 precursors are
deleted (Zhang et al., 2016). All these results indicated that
the production of 2F5 and 4E10 antibodies may be controlled
by immunologic tolerance mechanisms (Yang et al., 2013;
Liu et al., 2015).

Impairment of autoreactive B cells that cross-react with
MPER sequences in the native repertoire can also explain
the low frequency of MPER neutralizing antibodies during
the course of natural infection (Haynes et al., 2005a; Haynes
et al., 2005b; Kelsoe and Haynes, 2017). The characteri-
zation of different cohorts in Europe, America and South
Africa indicated that MPER-specific neutralizing responses
are less represented compared with other epitopes during
natural infection. For example, in a South African cohort of
156 HIV-1-infected individuals, only three showed high titers
of anti-MPER antibodies (Gray et al., 2009), and depletion of
these antibodies resulted in the loss of neutralization
breadth. A recent study analyzed the neutralization profile of
439 plasma samples and demonstrated far less prevalence
of MPER-specific antibodies compared with other epitopes,
mainly the V3 N332-dependent glycan supersite (Landais
et al., 2016).

Judging from the results of these studies, we might
assume the following steps (Fig. 2). When developing in the
bone marrow, pre-B cells that possibly produce bNAbs later
always bind lipids (or other autoantigens); therefore most of
them are removed by clonal deletion and receptor editing
and accordingly cannot develop into immature IgM+ B cells.
However, a few lipid-reactive (or other autoantigens) B cells
can still migrate from the bone marrow to the secondary
lymphoid organ as anergic cells which can be activated
again by antigens, such as MPER-lipid complex, similar to
lipids (or other autoantigens), and differentiate into antibody-
producing B cells. Since only a small number of anergic cells
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can move to the secondary lymphoid organ, the difficulties of
generating bNAbs are far-reaching. Therefore, how anti-
MPER bNAbs can be induced is still a key issue worthy of
consideration.

VACCINE DESIGN TARGETING MPER: WALK
TOWARDS THE SUN

Despite many efforts, bNAbs targeting MPER still cannot be
induced by immunization. Only a few vaccine candidates

Host control of broadly neutralizing antibody induction

Self antigen

MPER-antigen

Activation

Anergics B
cells

B cells

Pro-B cell Pre-B cell Immature
lgM + B cell

Bone marrow

Peripheral compartment

Clone deletion
Receptor editing

bNAb

Figure 2. Host control of bNAbs induction. When developing in the bone marrow, pre-B cells that possibly produce bNAbs later

always bind the lipids (or other autoantigens); therefore most of them are removed by clonal deletion and receptor editing and

accordingly cannot develop into immature IgM+ B cells. However, a few lipid-reactive (or other autoantigens) B cells can still migrate

from the bone marrow to the secondary lymphoid organ as anergic cells which can be activated again by antigens, such as MPER-

lipid complex, similar to lipids (or other autoantigens), and differentiate into antibody-producing B cells. Since only a small number of

anergic cells can move to the secondary lymphoid organ, the difficulty of generating bNAbs cannot be understated.
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were found to induce neutralizing antibodies, albeit with low
potency and limited breadth. Initially, bNAb-binding amino
acid sequences were introduced into fusion proteins, pep-
tide-based proteins or chimeric viruses, attempting to induce
2F5 or 4E10-like antibodies (Montero et al., 2008), but only
MPER-specific antibodies with no neutralizing activity were
produced. Therefore, beyond the recognition of specific
peptidic sequences within MPER, additional variables
should be considered. The common characteristics revealed
by anti-MPER bNAbs, such as lipid reactivity (Frey et al.,
2008; Alam et al., 2009), indicate that similar antibodies
could be obtained by presenting MPER-based immunogens
with a proper conformation in a membrane-like environment.
Therefore, as shown in Fig. 3, when it comes to MPER-
based vaccine design, at least two aspects should be con-
sidered: (1) which conformation would most likely induce
anti-MPER bNAbs and (2) what role membrane lipids play in
shaping the structure of MPER. The latter aspect suggests
that the corresponding immunogen design should take into
account accurate lipid components and adjuvant systems
(Molinos-Albert et al., 2017b).

Recently, a B-cell lineage-based approach for vaccine
design was developed progressively, but not yet applied to
MPER (Soto et al., 2016; Bonsignori et al., 2017; Williams
et al., 2017). Figure 3 is a schematic diagram representing a
possible strategy to induce bNAbs against MPER on the
basis of a comprehensive consideration of these two
aspects. First, affinity-matured bNAbs and their precursors
against MPER would be isolated from HIV-1-infected donors,
using methods such as memory B cell cultures or antigen-
specific B cell sorting. Second, based on known bNAb
sequences, next-generation sequencing could be used to
retrieve numerous VHDJH and VLJL clonally related rear-
rangements. If appropriate longitudinal samples are avail-
able, it would be possible to define the full lineage phylogeny
and infer the unmutated common ancestor (UCA) and early
maturation intermediate antibodies (IAs). Third, recombinant
monoclonal antibodies expressing the bNAb precursor
VHDJH and VLJL rearrangements from UCA to IAs could then
be used to design MPER-based immunogens. In light of
studies on influenza vaccine development, it has been
shown that bNAbs against the stem region of the HA could
be induced by vaccinating animals with HA from different
antigenic lineages (Ye et al., 2011). This approach may also
be applied to overcome the weakness of low immunogenicity
of MPER-based HIV vaccine. For example, cross prime-
boost immunizations with MPER antigens from different HIV-
1 subtypes may induce enhanced bNAb responses. Zolla-
Pazner et al. have demonstrated that cross prime-boost
immunizations with antigens containing six V1V2 sequences
and nine scaffold proteins from different HIV-1 subtypes (B,
C, E) have induced bNAb responses against infection of HIV,
SIV and SHIV (Zolla-Pazner et al., 2016). Furthermore, dif-
ferent kinds of immunogens, such as MPER-based peptide,
lipids and VLPs or pseudoviruses may also be tested.
MPER-based peptide should be properly combined with

lipids to present an appropriate conformation capable of
engaging B cells and inducing neutralizing antibodies.

To address the problem of proper MPER conformation to
induce bNAbs and the role of membrane lipids for immuno-
gen design, corresponding explorations have already been
carried out, as shown in Table 2. In recent years, other viral
proteins, as a scaffold, or modified HIV-1 Env were used to
explore the appropriate conformation of MPER capable of
inducing neutralizing antibodies. For instance, Phogat et al.
(2008) utilized S1 protein of hepatitis B virus (HBV) fused
with MPER to immunize mice and rabbits. Although anti-
MPER antibodies were generated, antiserum did not present
neutralizing activity. P15 of porcine endogenous retrovirus
presents a structure similar to that of HIV-1 gp41. Accord-
ingly, Strasz et al. (2014) replaced E1 and E2 of P15 with
FPPR and MPER of HIV-1, respectively, and 2F5-like anti-
bodies were elicited, albeit without neutralizing activity, after
immunizing rats, guinea pigs and goats. However, Luo et al.
(2006) also utilized P15 of porcine endogenous retrovirus to
replace E2 region with MPER, and the antiserum could
neutralize HIV pseudoviruses at 1:20. When it comes to
modified HIV-1 Env, such as replacing the loop between
NHR and CHR with 2F5 epitope directly (Vassell et al.,
2015), replacing the loop with GGGGS sequence (Habte
et al., 2015), or deleting the cleavage site of gp120 and gp41
and fusion peptide (Dennison et al., 2011), antibodies with-
out neutralizing activity were all detected in different kinds of
antisera immunized with these modified proteins. Banerjee
et al. (2016) constructed a gp41-HR1-54Q immunogen
which was expected to induce neutralizing antibodies by
reducing the stability of 6-HB to simulate gp41 fusion inter-
mediate state. The serum from immunized rabbits also had
MPER-specific antibodies, but without neutralizing activity.

Figure 3. Schematic diagram representing a possible

strategy to induce bNAbs against MPER. First, affinity-

matured, bNAbs and their precursors against MPER are

isolated from HIV-1-infected donors, using methods such

as memory B cell cultures or antigen-specific B cell sorting.

Second, based on known bNAb sequences, next-genera-

tion sequencing can be used to retrieve numerous VHDJH
and VLJL clonally related rearrangements. If appropriate

longitudinal samples are available, it is possible to define

the full lineage phylogeny and infer the unmutated com-

mon ancestor (UCA) and early maturation intermediate

antibodies (IAs). Third, recombinant monoclonal antibod-

ies expressing the bNAb precursor VHDJH and VLJL
rearrangements from UCA to IAs can be used to design

MPER-based immunogens. Different kinds of immunogens

should be included, such as MPER-based peptide, lipids

and VLPs or pseudoviruses. MPER-based peptide should

be properly combined with lipids, thus potentially present-

ing a conformation capable of engaging B cells and

inducing neutralizing antibodies.
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In general, the neutralizing activity of antibodies obtained
by immunizing with protein scaffolds alone was unsatisfac-
tory, possibly because other characteristics, such as mem-
brane binding, were not addressed in the design of these
scaffolds. Therefore, more and more research interest has
focused on lipid-containing immunogens. Experimental data
showed that membrane lipids may modulate the structure of
MPER by promoting a native-like conformation, and such
membrane lipids were demonstrated to improve immuno-
genicity (Hanson et al., 2015; Molinos-Albert et al., 2017a).
In particular, it was proved that lipids overexpressed in the
viral membrane, such as cholesterol and sphingomyelin,
may induce higher antibody titers, compared with common
POPC lipids (Molinos-Albert et al., 2017a).

In the lipid-containing immunogens, peptide-based vac-
cine regimens occupy a certain proportion. Matyas et al.
(2009) utilized liposomes containing a synthetic MPER
peptide as a peptide antigen, phosphatidylinositol-4-phos-
phate (PIP) as a lipid antigen, and monophosphoryl lipid A
as a potent adjuvant to immunize mice. Anti-MPER and anti-
PIP antibodies were generated from which IgM mAb was
isolated that not only could recognize 2F5 and 4E10 epi-
topes and bind to PIP, but also could present a certain
neutralizing capacity for HIV-1 virions in human peripheral
blood. Venditto et al. (2014) synthesized the full-length
MPER peptide and modified the single amino acid site of
MPER chemically (phosphorylation, sulfation or nitrification).
The modified peptide was presented in liposome to immu-
nize rabbits. Higher titer antibodies were induced, but with-
out neutralizing activity. Mohan et al. (2014) designed a
liposome immunogen containing three tandem 2F5 epitope
repeats and defensins to immunize mice intranasally. Anti-
serum and mucosal system of mice all generated high titer
IgG and IgM antibodies, and antiserum showed high neu-
tralizing activity for an original isolate. Donius et al. used
antigen-coupled liposome to immunize mice, and MPER-
specific antibodies were isolated from the long-lived bone
marrow plasma cells. These antibodies were produced
under the selective pressure of MPER in the context of lipids,
but they did not reveal any characteristic of polyreactivity
(Donius et al., 2016).

Except for the peptide-based vaccine, chimeric viruses or
virus-like particles (VLPs) may be better platforms as a result
of taking the conformation of MPER peptide and the scaffold
feature of lipids into consideration. With the research pro-
gresses in recent years, more viral vectors have been
designed to express HIV-1 neutralizing epitope, such as
adenovirus (Ura et al., 2009), influenza (Ye et al., 2011; Zang
et al., 2015) and rhinovirus (Yi et al., 2013). These viral
vectors can express and expose the chimeric peptidic epi-
topes and induce antibodies to some extent, but only a few
of them could induce HIV-1 neutralizing antibodies. Ura et al.
(2009) adopted adenovirus Ad5 as the vector and inserted
2F5 epitope sequence in the HVRS region of envelope
protein. The antiserum of mice immunized with chimeric
viruses could neutralize various strains of HIV-1. Moreover,

2F5-like antibodies were generated, and mAb targeting
MPER was purified and verified. This mAb did, indeed, have
the capacity to neutralize HIV-1. In view of the strong
immunogenicity of influenza, Ye et al. (2011) fused HIV-1
gp41 at the C-terminus of influenza HA1 subunit and
immunized new guinea pigs by HA/gp41 plasmid or VLPs.
Anti-MPER antibodies were elicited, and antiserum could
neutralize HIV pseudoviruses expressing SIV Env with chi-
meric 4E10 epitope. Such neutralizing capacity could also
be blocked by the MPER peptide, indicating that the
immunogen based on HA/gp41 produced anti-MPER anti-
bodies with some neutralizing activity. Similarly, Zang et al.
(2015) inserted 2F5 and 4E10 epitopes into the linker
domain between the trimeric core structure and the trans-
membrane domain of influenza A virus HA2 and immunized
guinea pigs with chimeric viruses. The serum exhibited a
weak neutralizing activity for HIV-1 clade B and clade BC. Yi
et al. (2013) utilized the rhinovirus as the vector to present
the 2F5 and 4E10 peptidic epitopes and immunized mice
with human rhinovirus receptor hICAM-1. The antiserum
could recognize and neutralize HIV-1. Meanwhile, it was
shown that the existing anti-rhinovirus antibodies could be
avoided by nasal immunization without influencing the pre-
sentation of antigen epitope on the rhinovirus vector.

To some extent, the titer and neutralizing activity of anti-
bodies induced by chimeric viruses and VLPs are indeed
superior to the protein vaccine and peptide-based vaccine,
but bNAbs are still not elicited, as expected, to protect
humans powerfully from HIV-1 infection. The complicated
features of MPER, such as structure and immunology, still
constitute the main stumbling blocks against the develop-
ment of a successful vaccine.

CONCLUSIONS AND PROSPECTS

In conclusion, recent substantial progresses involving the
analyses of structure and immunology of MPER, particularly,
the structure of this region bound by three MPER-specific
bNAbs (2F5, 4E10 and 10E8), their epitopes, and their
neutralization mechanisms. However, no one can induce
bNAbs targeting MPER by immunization, which, according
to the most recent studies, can largely be attributed to two
key problems. On the one hand, unknown conformations
confound vaccine design against MPER. Neither native
MPER conformation nor the conformation capable of
inducing neutralizing antibodies has been precisely ana-
lyzed. Moreover, the allosteric mode of MPER during mem-
brane fusion has not been demonstrated. On the other hand,
investigators need to focus on the failure to induce anti-
MPER bNAbs in relation to the prevalence of autoreactivity/
polyreactivity, as shown by the reported MPER-specific
bNAbs.

Meanwhile, we need to further probe the matter of pro-
tection relative to the sufficiency of antibody-dependent cell-
mediated cytotoxicity (ADCC) antibodies and the broader
protection of bNAbs. Indeed, although bNAbs are crucial to
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protect humans from HIV-1 infection, the role of non-neu-
tralizing antibodies, especially ADCC antibodies, in protec-
tion has been revealed in some studies. As mentioned
above, the protective effect of RV144 vaccine is related to
ADCC antibodies, rather than neutralizing antibodies,
implying that neutralizing antibodies may be not necessary.
In another study, vaginal IgA with ADCC and transcytosis-
blocking activity induced by gp41-engrafted virions were
closely related to the protection of NHP from SHIV infection
(Bomsel et al., 2011). Recently, Sun et al. (2016) designed
an immunogen containing four tandem 10E8 epitope repeats
that exhibits α-helical conformation and the key amino acids
W and F, which can point toward different directions when
the long peptide binds the plasma membrane, thereby
strengthening the induction of antibodies capable of binding
to the native conformation of MPER on the viral envelope.
After immunizing New Zealand rabbits with the immunogen,
the ADCC reporter gene was activated, suggesting the
existence of ADCC activity. However, the evaluation stan-
dard for protective effect of ADCC antibody was absent,
leading to past neglect in the design and evaluation of an
MPER-based vaccine.

In a word, the design of the MPER-based vaccine is
replete with complications that require further elucidation;
therefore, we still have a long way to go before the bNAbs
dilemma, as detailed in this review, is settled. MPER, a
conserved target, does, however, remain of vital interest, but
apart from inducing neutralizing antibodies, non-neutralizing,
yet protective, antibodies might be a future direction. More-
over, similar to “cocktail therapy”, the induction of combina-
tional protective antibodies targeting several regions, such
as V1V2 and MPER, may be required to achieve the best
protection. If this strategy is adopted, MPER is one target
particularly worthy of consideration.
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