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ABSTRACT

Hutchinson-Gilford progeria syndrome (HGPS) andWerner
syndrome (WS) are two of the best characterized human
progeroid syndromes. HGPS is caused by a point mutation
in lamin A (LMNA) gene, resulting in the production of a
truncated protein product—progerin. WS is caused by
mutations inWRN gene, encoding a loss-of-function RecQ
DNA helicase. Here, by gene editing we created isogenic
human embryonic stem cells (ESCs) with heterozygous
(G608G/+) or homozygous (G608G/G608G) LMNAmutation
and biallelic WRN knockout, for modeling HGPS and WS

pathogenesis, respectively. While ESCs and endothelial
cells (ECs) did not present any features of premature
senescence, HGPS- and WS-mesenchymal stem cells
(MSCs) showed aging-associated phenotypes with differ-
ent kinetics. WS-MSCs had early-onset mild premature
aging phenotypes while HGPS-MSCs exhibited late-onset
acute premature aging characterisitcs. Taken together, our
study compares and contrasts the distinct pathologies
underpinning the two premature aging disorders, and pro-
vides reliable stem-cell based models to identify new ther-
apeutic strategies for pathological and physiological aging.
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INTRODUCTION

Progeroid syndromes are heritable human disorders char-
acterized by progeroid features that recapitulate typical
features of normal aging. Among all the progeroid syn-
dromes, Hutchinson-Gilford progeria syndrome (HGPS) and
Werner syndrome (WS) are best characterized (Kudlow
et al., 2007). HGPS is a sporadic autosomal dominant syn-
drome, and most HGPS patients were heterozygous for
LMNA mutation (p.G608G/+). LMNA encodes A-type lamins
that belongs to the family of nuclear lamina proteins, and a
point mutation (p.G608G) in LMNA creates an aberrant
splicing site in exon 11, resulting in the production of a
truncated protein, progerin (Chojnowski et al., 2015; DeBoy
et al., 2017; Luo et al., 2014). Another commonly seen
progeroid syndrome is WS, caused by mutations in WRN
gene that encodes a RecQ DNA helicase (Yu et al., 1996)
important to DNA replication and DNA damage repair. Loss-
of-function WRN leads to genomic instability, heterochro-
matin alterations, and cell growth defects, which contribute
to WS pathogenesis (Li et al., 2016; Murfuni et al., 2012; Ren
et al., 2017a; Ren et al., 2011; Seki et al., 2008; Shamanna
et al., 2017; Zhang et al., 2015).

Both HGPS and WS patients present a wide range of
aging-associated syndromes such as alopecia, lipodystro-
phy, osteoporosis and atherosclerosis. Studies on fibroblasts
from HGPS and WS patients reveal features of accelerated
cellular senescence and decreased proliferation potential
(Brunauer and Kennedy, 2015; Chen et al., 2017; Cheung
et al., 2014; Cheung et al., 2015; Kudlow et al., 2007; Liu
et al., 2011a). Despite these common features, differences
exist between HGPS and WS in the scope, intensity and
duration of symptoms. For example, most patients with
HGPS show symptoms resembling aspects of aging at a
very early age and die at a median age from 11 to 13. By
comparison, WS patients usually develop normally in the
childhood and can live up to their fifties (Cox and Faragher,
2007; Ding and Shen, 2008; Hennekam, 2006; Kudlow et al.,
2007; Mazereeuw-Hautier et al., 2007; Muftuoglu et al.,
2008; Oshima et al., 2017).

In recent years, technologies based on stem cells and
gene editing have been widely used to model various human
diseases (Atchison et al., 2017; Duan et al., 2015; Fu et al.,
2016; Liu et al., 2011a; Liu et al., 2012; Liu et al., 2014; Liu
et al., 2011b; Lo Cicero and Nissan, 2015; Miller et al., 2013;
Pan et al., 2016; Ren et al., 2017b; Wang et al., 2017; Yang
et al., 2017; Zhang et al., 2015). Of note, HGPS-specific
induced pluripotent stem cells (iPSCs) and WS-specific
iPSCs and embryonic stem cells (ESCs) have been sepa-
rately generated. Based on the findings by us and other
groups, although the iPSCs and ESCs do not have any
premature aging defects, mesenchymal stem cells (MSCs)
and vascular smooth muscle cells (VSMCs) derived from
these pluripotent stem cells display premature aging, con-
sistent with the observations in fibroblasts from HGPS and
WS patients (Chen et al., 2017; Cheung et al., 2014; Liu

et al., 2011a; Miller et al., 2013; Zhang et al., 2011). Both
being typical cases of progeroid syndromes, comparative
analysis on HGPS and WS is very limited. More information
about the similarities and differences in the pathological
processes and molecular mechanisms of HGPS and WS
remains to be uncovered via comparative studies.

Here, we successfully developed a reliable and isogenic
platform for side-by-side investigation of HGPS and WS.
Taking advantage of gene editing, we generated human
ESCs harboring heterozygous LMNA p.G608G mutation and
WRN deficiency, mimicking HGPS and WS, respectively.
Notably, a genetically enhanced HGPS-specific ESCs
bearing biallelic LMNA p.G608G mutation were also created.
We found that HGPS- and WS-MSCs, but not ESCs or ECs,
exhibited typical aging-associated characteristics. Interest-
ingly, distinct aging kinetics were detected between HGPS-
and WS-MSCs. For the first time, we achieved a contem-
poraneous comparison between HGPS and WS under the
same genetic background to unravel the molecular and
cellular differences, opening a window into the understand-
ing of the pathology of human aging and providing a platform
for screening for therapeutic strategies against aging-asso-
ciated disorders.

RESULTS

Generation of LMNA-mutated and WRN-deficient
human ESCs

Using a genome-editing technique with a helper-dependent
adenoviral vector (HDAdV), we generated heterozygous and
homozygous LMNA-mutated human ESC lines (Fig. 1A).
Combined with our previously reported WRN-deficient
human ESCs (Zhang et al., 2015), we obtained ESCs with
heterozygous (LMNAG608G/+), homozygous (LMNAG608G/

G608G) LMNA mutation, and homozygous WRN deficiency
(WRN−/−) under the same genetic background (Fig. 1B–D).
All the three ESC lines displayed normal karyotypes and
morphologies indistinguishable from those of WT-ESCs
(Fig. 1B and 2A). All clones expressed the pluripotency
markers OCT4, SOX2, NANOG, and were hypomethylated
at the OCT4 promoter region (Fig. 1B and 2B). Each cell line
was maintained for more than 30 passages without
detectable growth abnormalities (data not shown) and was
assessed for pluoripotency by differentiation into the three
embryonic germ layers in vivo, by teratoma formation
(Fig. 2C). Ki67 staining and cell cycle analysis also con-
firmed comparable proliferation potential of HGPS-ESCs and
WS-ESCs with that of WT-ESCs (Fig. 2D and 2E). As
expected, progerin was suppressed in both HGPS-ESCs
and WS-ESCs (Fig. 1D). In addition, the levels of nuclear
lamina component LAP2β, and heterochromatin markers
H3K9me3 and HP1α were each normal in HGPS-ESCs and
WS-ESCs compared to WT-ESCs (Fig. 2F and 2G). These
data indicate that despite the progeroid-associated muta-
tions, premature senescence phenotypes and chromosomal
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instability are well concealed in HGPS-ESCs and WS-ESCs
at the pluripotent stage.

HGPS-MSCs and WS-MSCs exhibit aging-associated
phenotypes with different kinetics

Clinical observations in HGPS and WS patients indicate that
premature aging disorders are often accompanied with
defects in mesenchymal lineages, such as lipodystrophy,

osteoporosis and atherosclerosis (Cox and Faragher, 2007).
MSCs are adult stem cells originated from mesoderm and
can be differentiated into osteocytes, chondrocytes, adipo-
cytes and many other cell types (Lepperdinger, 2011; Marofi
et al., 2017; Uccelli et al., 2008). We postulated that MSC
exhaustion may play an important role in premature aging
disorders. Here, HGPS-ESCs and WS-ESCs were differen-
tiated into HGPS-MSCs and WS-MSCs. Both MSC lines
expressed MSC-specific markers including CD90, CD73 and
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Figure 1. Generation of the heterozygous (LMNAG608G/+) and homozygous (LMNAG608G/G608G) ESCs. (A) Schematic

representation of LMNA gene editing strategy by HDAdV-mediated homologous recombination. Blue triangles, FRT sites.

(B) Morphology and immunofluorescence analysis of the pluripotency markers in WT, heterozygous (LMNAG608G/+), homozygous

(LMNAG608G/G608G) and WRN−/− ESCs. Scale bar, 100 μm (left); 25 μm (right). (C) Confirmation of the heterozygous and homozygous

mutation of LMNA by DNA sequencing. (D) Immunoblotting analysis of progerin and WRN expression in WT, heterozygous

(LMNAG608G/+), homozygous (LMNAG608G/G608G) and WRN−/− ESCs. Progerin expression in homozygous (LMNAG608G/G608G) MSCs

was carried out as a positive control.

Differential stem cell aging kinetics in HGPS and WS RESEARCH ARTICLE

© The Author(s) 2018. This article is an open access publication 335

P
ro
te
in

&
C
e
ll



1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 X

0

50

100 G0/G1

S
G2/M

C
el

ls
 a

t e
ac

h 
ce

ll 
cy

cl
e 

st
ag

e 
(%

)

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 X

B

Ki67/DNA 

WT

LAP2β/HP1α 

WT

WT

SMA/TUJ1/FOXA2/DNA 
A

D

F

LA
P

2β
 p

os
iti

ve
 c

el
ls

 (%
)

0

20

40

60

80

100

W
T

W
RN

-/-

LM
NA

G60
8G

/+

LM
NA

G60
8G

/G
60

8G

K
i6

7 
po

si
tiv

e 
ce

lls
 (%

)

0

20

40

60

80

100

W
T

W
RN

-/-

LM
NA

G60
8G

/+

LM
NA

G60
8G

/G
60

8G

W
T

W
RN

-/-

LM
NA

G60
8G

/+

LM
NA

G60
8G

/G
60

8G

C

E

LAP2β

H3K9me3

HP1α

W
T

W
RN

-/-

LM
NA

G60
8G

/+

LM
NA

G60
8G

/G
60

8G

ESC

OCT4

Methylated
Unmethylated

kDa
75

25

15

G

ESC

ESC

ESC-LMNAG608G/G608G ESC-LMNAG608G/+

LMNAG608G/+WRN-/- LMNAG608G/G608G

LMNAG608G/+ WRN-/-LMNAG608G/G608G

LMNAG608G/+ WRN-/-LMNAG608G/G608G

LMNAG608G/+ WRN-/-LMNAG608G/G608G

RESEARCH ARTICLE Zeming Wu et al.

336 © The Author(s) 2018. This article is an open access publication

P
ro
te
in

&
C
e
ll



CD105 (Fig. 3A) and exhibited multiple-lineage differentia-
tion potentials including adipogenesis, osteogenesis and
chondrogenesis, though the differentiation ability of WS-
MSCs towards adipocytes and osteoblasts was partly com-
promised (Fig. 3B–D).

Senescence-associated cellular changes were profiled in
HGPS-MSCs and WS-MSCs at early and late passages.
Population doubling curve indicated the early-onset senes-
cence in WS-MSCs (Fig. 4A). By comparison, heterozygous
(LMNAG608G/+) and homozygous (LMNAG608G/G608G) HGPS-
MSCs grew at normal rate up to passage 6. Differences in
cell cycle distribution were also observed between HGPS-
MSCs and WS-MSCs (Fig. 4B). As previously described
(Zhang et al., 2015), WS-MSCs exhibited cell cycle arrest at
G2/M phase with decreased cell population at S phase as
early as at passage 3, which later became more severe at
passage 9 (Fig. 4B). By comparison, HGPS-MSCs did not
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Figure 2. Characterization of HGPS-ESCs and WS-ESCs.

(A) Karyotyping analysis of heterozygous (LMNAG608G/+) and

homozygous (LMNAG608G/G608G) ESCs. (B) DNA methylation

analysis of the OCT4 promoter region. (C) Immunostaining of

representative markers of three germ layers in teratomas

derived from heterozygous (LMNAG608G/+), homozygous

(LMNAG608G/G608G) and WRN−/− ESCs. Scale bar, 50 μm.

(D) Ki67 immunostaining analysis of WT, heterozygous

(LMNAG608G/+), homozygous (LMNAG608G/G608G) and WRN−/−

ESCs. Scale bar, 25 μm. All cells were Ki67 positive. (E) Cell

cycle analysis of ESCs. Data were presented as mean ± SEM,

n = 3. (F) Representative immunofluorescence staining of

LAP2β and HP1α in ESCs. Scale bar, 25 μm. All cells were

LAP2β and HP1α positive. (G) Western blot analysis of LAP2β,

HP1α and H3K9me3 expression in ESCs.
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show any defects until late passages, with even smaller cell
population at S phase in homozygous MSCs than that in
heterozygous MSCs (Fig. 4B). Consistent with the obser-
vations in growth curve and cell cycle analyses, the results of
clonal expansion assay and SA-β-Gal staining also proved
early-onset senescence in WS-MSCs (Fig. 4C and 4D).
Interestingly, compared to the absence of progerin in HGPS-
ESCs, differentiation into MSCs resulted in the re-expression
of progerin at early passages and much more accumulation
at late passages (Fig. 4E and 4F). With the accumulation of
progerin, both heterozygous and homozygous MSCs dis-
played robust cell cycle arrest, proliferation defects and SA-
β-Gal activity starting at passage 7, with more than 75% SA-
β-Gal-positive MSCs at passage 11 (Fig. 4B–D). In addition,
the doubled progerin levels (Fig. 4E–F) in homozygous
HGPS-MSCs were correlated with faster kinetics of cellular
senescence when compared to heterozygous HGPS-MSCs
(Fig. 4A–F).

Consistent with the defects in cell cycle progression and
clonal expansion abilities, decrease in Ki67-positive cells
was accompanied by misexpression of LAP2β and
decreased expression of HP1α in WS-MSCs at passage 3
and further at passage 9 (Figs. 4F, 5A and 5B), indicative of
impaired proliferation potential and heterochromatin disor-
ganization since early passages. As for HGPS-MSCs, loss
of Ki67-positive cells and misexpression of LAP2β were
detected only at late passages in both homozygous and
heterozygous HGPS-MSCs, with a even worse LAP2β
defect in homozygous HGPS-MSCs (Figs. 4F and 5A).

Previous studies have reported that cells derived from
HGPS and WS patients exhibit abnormal nuclear architec-
ture (Adelfalk et al., 2005; Choi et al., 2011; De Sandre-
Giovannoli et al., 2003; Eriksson et al., 2003; Goldman et al.,
2004; Mallampalli et al., 2005; Saha et al., 2014; Scaffidi and
Misteli, 2006; Toth et al., 2005; Verstraeten et al., 2008; Yang
et al., 2005). Here, we also observed nuclear deformations in
HGPS-MSCs and WS-MSCs (Figs. 5A, 5B, 6A and 6B).
Increased number of cells with abnormal nuclear architec-
ture was seen only in WS-MSCs at passage 3, but later in
both WS-MSCs and HGPS-MSCs (Fig. 6A). In fact, there
were even more cells with aberrant nuclear architecture in
HGPS-MSCs, especially the homozygous ones, than WS-
MSCs at passage 9, correlated with increased expression
levels of progerin (Figs. 4E, 4F, 5B and 6A).

Having shown the distinct senescence-associated
kinetics in HGPS-MSCs and WS-MSCs, we continued to
evaluate other aging-related phenotypes. Increased DNA
damage response is an important feature of aging (Brunauer
and Kennedy, 2015; Burtner and Kennedy, 2010; Liu et al.,
2005; Lopez-Otin et al., 2013; Mostoslavsky et al., 2006;
Musich and Zou, 2011; Saha et al., 2014; Wang et al., 2009;
Zhang et al., 2015). Here, increase in γ-H2AX and 53BP1
double-positive cells, indicative of increased DNA damage
response, was observed only in WS-MSCs at passage 3
(Fig. 6A). At passage 9, both WS-MSCs and HGPS-MSCs
exhibited increased DNA damage response, with the most
observed in homozygous HGPS-MSCs (Fig. 6A). Increased
size and decreased number of nucleoli can also serve as
aging biomarkers (Buchwalter and Hetzer, 2017; Tiku et al.,
2016). We observed that only WS-MSCs had fewer but lar-
ger nucleoli at early passages, and both WS-MSCs and
HGPS-MSCs exhibited increased size and decreased
numbers of nucleoli at late passages (Fig. 6B).

Taken together, these results suggest that HGPS-MSCs
and WS-MSCs exhibit aging-associated phenotypes with
different kinetics, and progerin exerts a dose-dependent
effect on cellular senescence of HGPS-MSCs.

HGPS-ECs and WS-ECs do not exhibit phenotypes
of accelerated senescence

Arterosclerosis have been observed in HGPS and WS
patients, and progerin is widely present in the vascular cells
including endothelial cells (Lo et al., 2014; McClintock et al.,
2006; Miyamoto et al., 2014; Olive et al., 2010). As the inner
layer of blood vessels, endothelial cells have unique func-
tions in vascular biology, including barrier effect, vascular
tone control, blood clotting regulation and inflammatory
response (Bochenek et al., 2016; Hansen et al., 2017;
Sturtzel, 2017). To explore whether LMNA mutation or WRN
deficiency may cause aging-associated defects in endothe-
lial cells (ECs), HGPS-ESCs and WS-ESCs were differen-
tiated into HGPS-ECs and WS-ECs, respectively. CD31 and
CD144 double-positive cells were sorted (Fig. 7A). All EC

Figure 4. Phenotypic analyses of HGPS-MSCs and WS-

MSCs indicate different kinetics between cell models of two

different progeroid syndromes. (A) Growth curve showing the

population doubling of MSCs, n = 3. (B) Cell cycle analysis of

MSCs at passage 3 and passage 9. Data were presented as

mean ± SEM, n = 3. (C) Analysis of clonal expansion abilities of

WT, heterozygous (LMNAG608G/+), homozygous (LMNAG608G/

G608G) and WRN−/− MSCs. Upper: representative images of

crystal violet staining at passage 9. Lower: relative clonal

expansion abilities at passage 3 and passage 9. Data were

shown as mean ± SEM, n = 3. ***P < 0.001; ns, not significant.

(D) Analysis of SA-β-Gal activity in WT, heterozygous

(LMNAG608G/+), homozygous (LMNAG608G/G608G) and WRN−/−

MSCs. Upper: representative images of SA-β-Gal staining at

passage 9. Lower: frequency of SA-β-Gal positive cells. n = 3.

(E) RT-qPCR analysis of progerin expression in WT, heterozy-

gous (LMNAG608G/+), homozygous (LMNAG608G/G608G) and

WRN−/− MSCs at passage 3 and passage 9. Data were shown

as mean ± SEM, n = 3. ***P < 0.001; ns, not significant.

(F) Western blot analysis of aging-related markers in WT,

heterozygous (LMNAG608G/+), homozygous (LMNAG608G/G608G)

and WRN−/− MSCs at passage 3 and passage 9. β-Tubulin

were used as loading controls.

b

Differential stem cell aging kinetics in HGPS and WS RESEARCH ARTICLE

© The Author(s) 2018. This article is an open access publication 339

P
ro
te
in

&
C
e
ll



lines had typical endothelial morphology (Fig. 7B) and
expressed endothelial-specific markers (Fig. 7C). Despite
the expression of progerin in HGPS-ECs and the loss of

WRN in WS-ECs (Fig. 7D), HGPS-ECs and WS-ECs were
still able to form lattice-like vessel structures on matrigel and
maintain normal lipid uptake capacities, nitric oxide (NO)
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Figure 5. Immunostaining of aging-related markers in HGPS-MSCs and WS-MSCs demonstrates different aging kinetics.

(A) Left: representative immunostaining of LAP2β and Ki67 in WT, heterozygous (LMNAG608G/+), homozygous (LMNAG608G/G608G)

and WRN−/− MSCs. Dashed lines indicate the nuclear boundaries and white arrows indicate abnormal nuclei. Scale bar, 10 μm. Right:

percentages of LAP2β positive cells (upper) and Ki67 positive cells (lower) were shown as mean ± SEM, number of cells ≥ 300. ***P <

0.001; ns, not significant. (B) Left: representative immunostaining of progerin and HP1α in WT, heterozygous (LMNAG608G/+),

homozygous (LMNAG608G/G608G) and WRN−/− MSCs. Dashed lines indicate the nuclear boundaries and white arrows indicate

abnormal nuclei. Scale bar, 10 μm. Right: percentages of progerin positive cells (upper) and HP1α positive cells (lower) were shown

as mean ± SEM, number of cells ≥ 300. ***P < 0.001; **P < 0.01; ns, not significant.
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synthesis abilities (Fig. 7F, 7G and 7H), proliferation poten-
tials (Fig. 7E and 8A), as well as genomic stability (Fig. 8B
and 8C). Therefore, LMNA mutation and WRN deficiency
does not facilitate EC senescence, suggesting that the

premature aging caused by progeria-associated mutations
are cell-type-specific.

To be noted, both HGPS-ECs and WS-ECs were more
apoptotic compared to WT-ECs at baseline, indicating
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impaired EC homeostasis (Fig. 9). Additionally, WS-ECs
were more sensitive to TNF-α-induced apoptosis (Fig. 9).
Thus, despite the absence of premature senescence, ECs
bearing HGPS or WS-associated mutations demonstrated
increased susceptibility to apoptosis.

DISCUSSION

Human progeroid syndromes are characterized by typical
features resembling normal aging, and therefore studies on
progeroid disorders have provided important clues to
understanding the molecular mechanisms underlying pre-
mature and normal aging (Burtner and Kennedy, 2010; Cao
et al., 2011; Ding and Shen, 2008; Dreesen and Stewart,
2011; Kudlow et al., 2007; Miyamoto et al., 2014; Scaffidi
and Misteli, 2006). As two of the best characterized pro-
geroid syndromes, HGPS and WS have attracted a lot of
attention during the last decade; related studies have been
greatly conducive to our understanding of the pathology of
these two disorders (Atchison et al., 2017; Chen et al., 2017;
Cheung et al., 2014; De Sandre-Giovannoli et al., 2003; Ding
and Shen, 2008; Egesipe et al., 2016; Kubben et al., 2016;
Kudlow et al., 2007; Li et al., 2016; Liu et al., 2011a; Liu et al.,
2011b; Lo Cicero and Nissan, 2015; Scaffidi and Misteli,
2006; Zhang et al., 2011; Zhang et al., 2015). However, there
are no effective treatments so far and more information
about the molecular pathology of these two premature aging
syndromes are to be unveiled.

In this study, we generated LMNA-mutated and WRN-
deficient human ESC lines with the same genetic back-
ground, making it possible to compare and contrast the
cellular consequences of the genetic defects underlying
HGPS and WS side-by-side. Similar to the iPSCs derived
from the fibroblasts of HGPS and WS patients, HGPS- and
WS-ESCs did not show any premature aging defects, indi-
cating that pluripotent stem cells are able to conceal aging
defects caused by LMNA mutation or WRN deficiency (Liu
et al., 2012; Zhang et al., 2013). Upon mesenchymal differ-
entiation, however, HGPS- and WS-MSCs exhibited aging-
associated phenotypes that recapitulate those reported in
fibroblasts and iPSC-derived MSCs from HGPS and WS
patients (Cheung et al., 2014; Cheung et al., 2015; Com-
pagnucci and Bertini, 2017; Zhang et al., 2011), with different
kinetics. By measuring proliferation potential, SA-β-gal pos-
itivity, cell cycle, DNA damage response, and nuclear
architecture, we showed that WS-MSCs had early-onset
mild premature aging phenotypes while HGPS-MSCs
exhibited late-onset acute premature aging characterisitics.
To some extent, these dynamic features may mimic the
patterns of disease progression of these two premature
aging disorders (Fig. 10). To our knowledge, this is the first
study evaluating the similarities and differences of HGPS-
and WS-stem cells side by side. Our platform provides
powerful tools to study aging by mimicking human genetic
diseases in a petridish, facilitating the understanding of the
pathology of different types of progeroid disorders and more

importantly, making it possible for targeted high-throughput
drug screening in human genetic background.

In addition, we observed that the homozygous HGPS-
MSCs exhibited more severe aging phenotypes with a higher
level of progerin than the heterozygous MSCs. Thus, the
MSCs with homozygous or heterozygous LMNA mutation
generated in our study also provide opportunities to investi-
gate the role of progerin in a dose-dependent manner. Given
the propriety of higher homogenicity in MSCs bearing
homozygous LMNA mutation (e.g., expression of progerin),
these cells may be particularly amenable to mechanistic
studies using multi-omics techniques.

Different from HGPS-MSCs, HGPS-ECs did not display
any premature senescence phenotypes, consistent with
previous observations in HGPS-iPSC-derived ECs (Zhang
et al., 2011). Similarly, WS-ECs did not show aging defects,
either. These results indicate that the senescence-associ-
ated defects caused by LMNA mutation or WRN deficiency
are cell-type-specific (Fig. 10). However, further analyses
show that these cells were not otherwise normal; HGPS-ECs
and WS-ECs were more apoptotic at baseline than WT-ECs.
Moreover, WS-ECs, but not HGPS-ECs, exhibited a more
pronounced response to inflammatory factor TNF-α, again
indicating different molecular pathologies between the two
progeroid syndromes.

MSCs and ECs as the outer and inner layers of blood
vessels, respectively, play important roles in maintaining
vascular homeostasis (Bochenek et al., 2016; Fang et al.,
2010; Hansen et al., 2017; Hoshino et al., 2008; Kramann
et al., 2016; Pasquinelli et al., 2007; Sturtzel, 2017; Wang
et al., 2018). VSMCs, a cellular component of tunica media,
have been proved defective in HGPS patients (Atchison
et al., 2017; Chen et al., 2017; Compagnucci and Bertini,
2017; Gonzalo and Kreienkamp, 2015; Harhouri et al., 2017;
Kinoshita et al., 2017; Liu et al., 2011a; Olive et al., 2010;
Ragnauth et al., 2010; Vidak and Foisner, 2016; Zhang et al.,
2011). Based on our data, it is reasonable to postulate that
the exhaustion of MSC components in tunica adventitia may
also be a common cause of accelerated aging defects in
HGPS and WS patients. In addition, increased apoptosis of
WS-ECs under inflammatory condition (e.g., TNF-α) may
contribute to the vascular pathology in WS.

Therefore, we have generated in vitro models to compare
and contrast the pathogenesis of HGPS and WS for the first
time, providing high-throughput platforms to efficiently
screen for effective treatments for both progeria syndromes
and normal aging. In the future, it would be interesting to
employ multi-omics technologies, including genomics,
epigenomics, transcriptomics, proteomics and metabo-
nomics, to unravel the molecular patterns of HGPS and WS
under the same human genetic background, shedding light
on the complex mechanisms underlying premature and
normal aging and providing new evidence for the prevention
and treatment of age-associated disorders.

Differential stem cell aging kinetics in HGPS and WS RESEARCH ARTICLE

© The Author(s) 2018. This article is an open access publication 343

P
ro
te
in

&
C
e
ll



0

20

40

60

80

K
i6

7 
po

si
tiv

e 
ce

lls
 (%

)

0

20

40

60

80

100
LA

P
2β

 p
os

iti
ve

 c
el

ls
 (%

)

W
T

W
RN

-/-

LM
NA

G60
8G

/+

LM
NA

G60
8G

/G
60

8G

W
T

W
RN

-/-

LM
NA

G60
8G

/+

LM
NA

G60
8G

/G
60

8G
H

P
1α

 p
os

iti
ve

 c
el

ls
 (%

)
0

20

40

60

80

100

0

2

4

6

8

γ-
H

2A
X

/5
3B

P
1 

do
ub

le
po

si
tiv

e 
ce

lls
 (%

)

W
T

W
RN

-/-

LM
NA

G60
8G

/+

LM
NA

G60
8G

/G
60

8G

Lamin B1/Ki67/DNA 

LAP2β/HP1α/DNA 

γ-H2AX/53BP1/DNA 

A

C

B

EC

EC

EC

0

20

40

60

80

A
bn

or
m

al
 n

uc
le

i (
%

)

ns

ns
ns

ns

ns
ns

ns

ns
ns

ns

ns
ns

ns

ns
ns

W
T

W
RN

-/-

LM
NA

G60
8G

/+

LM
NA

G60
8G

/G
60

8G

W
T

W
RN

-/-

LM
NA

G60
8G

/+

LM
NA

G60
8G

/G
60

8G

WT WRN-/-LMNAG608G/+ LMNAG608G/G608G

WT WRN-/-LMNAG608G/+ LMNAG608G/G608G

WT WRN-/-LMNAG608G/+ LMNAG608G/G608G

RESEARCH ARTICLE Zeming Wu et al.

344 © The Author(s) 2018. This article is an open access publication

P
ro
te
in

&
C
e
ll



MATERIALS AND METHODS

Cell culture

WT-ESCs (Human H9 ESCs, WiCell Research) and three geneti-

cally edited ESCs were maintained on mitomycin C-inactivated

mouse embryonic fibroblast (MEF) feeder in human ESC culture

medium: 80% DMEM/F12 (Gibco), 20% Knockout Serum Replace-

ment (Gibco), 0.1 mmol/L non-essential amino acids (NEAA, Gibco),

2 mmol/L GlutaMAX (Gibco), 55 μmol/L β-mercaptoethanol (Invit-

rogen), and 10 ng/mL FGF2 (Joint Protein Central); ESCs were also

cultured on Matrigel (BD Biosciences) with mTeSR medium

(STEMCELLTechonologies). All MSCs were cultured in MSC culture

medium: 90% α-MEM + Glutmax (Gibco), 10% fetal bovine serum

(FBS, Gemcell, Lot A77E01F), 1% penicillin/streptomycin (Gibco)

and 1 ng/mL FGF2 (Joint Protein Central). ECs were cultured in

EGM2 medium (Lonza).

Generation of LMNA G608 mutation knock-in ESCs

Helper-dependent adenoviral vector (HDAdV) for LMNA G608G

knock-in was generated same as previous report with some modi-

fications (Yang et al., 2017). In brief, exon 11 of LMNA gene was

PCR-amplified from LNMA gene correction vector (LMNA-c-HDAdV)

(Liu et al., 2011b) and subcloned into the pCR2.1-TOPO vector

(Invitrogen). The G608G mutation at exon 11 was introduced using

the GeneTailor Site-Directed Mutagenesis System (Invitrogen). The

mutated exon 11 was replaced into LMNA-c-HDAdV (Liu et al.,

2011b), and generated LMNA G608G knock-in HDAdV plasmid. The

generated plasmids was packaged into HDAdV following previous

report (Yang et al., 2017). To generate heterozygous LMNA G608G

mutation knock-in ESCs, ESCs were infected with LMNA G608G

knock-in HDAdV at MOI of 0.3–3 btu/cell and followed previous

report (Yang et al., 2017). To generate homozygous LMNA G608G

knock-in ESCs, we repeated 2nd round of mutation knock-in using

the generated heterozygous LMNA G608G knock-in clones. Suc-

cessful targeted knock-in events were verified by PCR amplification

and DNA sequencing with the following primers: LMNA exon 11-F,

5′-TTGGGCCTGAGTGGTCAGTC-3′; LMNA exon 11-R, 5′-

GACCCGCCTGCAGGATTTGG-3′.

Generation of ECs

Briefly, WT-ESCs and three genetically edited ESCs were plated on

Matrigel in EC differentiation medium I (EC basal medium with 25

ng/mL BMP4, 3 μmol/L CHIR99021, 3 μmol/L IWP2 and 4 ng/mL

FGF2) for 3 days. Differentiation medium II (EC basal medium with

50 ng/mL VEGF, 20 ng/mL FGF2,10 ng/mL IL-6) was used for

another 3 days then CD31/CD144 double-positive cells were sorted

by FACS.

Figure 8. HGPS-ECs and WS-ECs do not exhibit pheno-

types of accelerated senescence. (A) Left: representative

immunostaining of Lamin B1 and Ki67 in WT, heterozygous

(LMNAG608G/+), homozygous (LMNAG608G/G608G) and WRN−/−

ECs. Scale bar, 10 μm. Right: percentages of Ki67 positive cells

and abnormal nuclei were shown as mean ± SEM, number of

cells ≥ 300. ns, not significant. (B) Left: representative

immunostaining of LAP2β and HP1α in WT, heterozygous

(LMNAG608G/+), homozygous (LMNAG608G/G608G) and WRN−/−

ECs. Scale bar, 10 μm. Right: percentages of LAP2β positive

cells and HP1α positive cells were shown as mean ± SEM,

number of cells ≥ 300. ns, not significant. (C) Left: represen-

tative immunostaining of γ-H2AX and 53BP1 in WT, heterozy-

gous (LMNAG608G/+), homozygous (LMNAG608G/G608G) and

WRN−/− ECs. Dashed lines indicate the nuclear boundaries.

Scale bar, 10 μm. Right: percentages of γ-H2AX/53BP1 double-

positive cells were shown as mean ± SEM, number of cells

≥ 300. ns, not significant.

5.25%

17.7%

6.96%

19.5%

8.06%

20.5%

7.63%

33.3%

Annexin V

P
I

Vehicle

TNFα
0

10

20

30

40

Ap
op

to
tic

 c
el

ls
 (%

) 

Vehicle TNFα

**

**
***

ns
ns

***

EC

WT WRN-/-LMNAG608G/+ LMNAG608G/G608G

WT

WRN-/-

LMNAG608G/+

LMNAG608G/G608G

Figure 9. Cellular apoptosis analysis in HGPS-ECs and WS-ECs. Left: cellular apoptosis analysis by FACS after treatment with

vehicle or TNFα in WT, heterozygous (LMNAG608G/+), homozygous (LMNAG608G/G608G) and WRN−/− ECs. Right: percentages of

apoptotic cells were presented as mean ± SEM, n = 3. ***P < 0.001; **P < 0.01; ns, not significant.

b

Differential stem cell aging kinetics in HGPS and WS RESEARCH ARTICLE

© The Author(s) 2018. This article is an open access publication 345

P
ro
te
in

&
C
e
ll



Generation of MSCs

MSCs were differentiated as previously described (Duan et al.,

2015; Fu et al., 2016; Wang et al., 2018; Zhang et al., 2015). Briefly,

hESCs were dissociated into EBs and then were plated on Matrigel

coated plates in MSC differentiation medium (α-MEM + GlutaMAX

(Gibco), 10% FBS (Gemcell, Lot A77E01F), 1% penicillin/strepto-

mycin (Gibco), 10 ng/mL FGF2 (Joint Protein Central) and 5 ng/mL

TGFβ (HumanZyme)). About 10 days later, the confluent MSC-like

cells were passaged on gelatin coated plate and cultured in MSC

culture medium: 90% α-MEM + Glutmax (Gibco), 10% FBS (Gem-

cell, Lot A77E01F), 1% penicillin/streptomycin (Gibco) and 1 ng/mL

FGF2 (Joint Protein Central). Then CD73/CD90/CD105 tripositive

cells were sorted by FACS. MSCs were further differentiated towards

adipocytes, osteoblasts, and chondrocytes to verify their multiple-

lineage differentiation capacities (Pan et al., 2016; Zhang et al.,

2015). Oil red O (adiopogenesis), Von Kossa (osteogenesis), and

Toluidine blue (chondrogenesis) staining was performed

respectively.

Bisulfite sequencing of the OCT4 promoter

Bisulfite treatment of DNA was carried out by using EZ DNA

Methylation Kit (Zymo Research) following the manufacturer’s

instructions. About 1 μg of genomic DNA was used. A genomic

fragment of the OCT4 promoter was amplified using LATaq Hot Start

Version (TAKARA) as previously described. In brief, PCR products

were purified by using gel extraction kit (Qiagen), and subsequently

cloned into the pMD20 T vector (Transgen). 7 clones from each

sample were sequenced with the universal primer M13.

Primers used for PCR: meF-OCT4, 5′-ATTTGTTTTTTGGG-

TAGTTAAAGGT-3′; meR-OCT4, 5′-CCAACTATCTTCATCTTAA-

TAACATCC-3′.

Teratoma analysis

Teratoma assay was performed as described (Duan et al., 2015; Fu

et al., 2016; Zhang et al., 2015). Briefly, 5 × 106 ESCs were

administrated subcutaneously into NOD/SCID mice (male, 6–8
weeks). 6–12 weeks after injection, mice were killed and teratomas

were analyzed by immunostaining. All animal experiments were

conducted with approval of the Institute of Biophysics, Chinese

Academy of Science.

Fluorescence-activated cell sorting (FACS)

MSCs or ECs were collected by using TrypLE Express (Gibco) and

washed by PBS twice. Cells were incubated with primary antibody

diluted with 10% FBS in PBS for 1 h at room temperature and then

sorted by using a flow cytometer (BD FACSAria IIIu).
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and WS-MSCs exhibited aging-associated phenotypes with different kinetics, including self-renewal ability, DNA damage response,

nucleolar expansion, as well as nuclear architecture and heterochromatin alterations. WS-MSCs had early-onset mild premature

aging phenotypes while HGPS-MSCs exhibited late-onset acute premature aging characterisitics.
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Antibodies used for cell sorting: anti-CD73 (550741), anti-CD90

(555595), anti-CD31 (555445), anti-CD144 (560410) antibodies

were from BD Biosciences; anti-CD105 (17–1057) antibody was

from eBioscience.

Analysis of cell cycle distribution

For cell cycle analysis, about 1 × 106 cells were processed with the

Click-iT EdU Flow Cytometry Assay Kits (Invitrogen) according to the

manufacturer’s instructions. In brief, the cells were harvested after 2 h

incubation with EdU and stained with Alexa Fluor 647 dye azide and

propidium iodide. Cells were examined by fluorescence-activated cell

sorting (FACS) using a flow cytometer (BD LSRFortesa).

Clonal expansion assay

The single-cell clonal expansion assay was carried out as described

(Duan et al., 2015). Briefly, 2,000 MSCs were seeded in a gelatin-

coated 12-well plate. The relative cell density was then determined

by Image J after crystal violet staining.

SA-β-Gal staining

SA-β-Gal staining was performed as described previously (Duan

et al., 2015; Zhang et al., 2015). Briefly, cultured cells were washed

in PBS and fixed at room temperature for 5 min in 2% formaldehyde

and 0.2% glutaraldehyde. Fixed cells were stained with SA-β-Gal

staining solution at 37°C overnight, percentage of SA-β-Gal positive

cells were then calculated.

Measurement of cell apoptosis and nitric oxide (NO)

For cellular apoptosis analysis, cells were collected freshly and

stained with Annexin V-EGFP Apoptosis Detection Kit (Vigorous

Biotechnology), and then apoptotic cells were quantified by FACS.

For NO detection, cells were treated with DAF-FM (Molecular

Probes) for 30 min and quantified by FACS.

Dil-Ac-LDL uptake assay

In brief, ECs were collected after 6 h incubation with Dil-Ac-LDL

(Molecular Probes) in EC culture medium. For FACS analysis, cells

were collected by using TrypLE Express (Gibco) and measured by a

flow cytometer (BD LSRFortesa). For immunofluorescence detec-

tion, cells were processed following the immunofluorescence

microscopy protocol.

In vitro tube formation assay

Briefly, 5 × 104 cells were suspended in 500 μL EC medium and then

seeded on Matrigel coated plate. After 6–8 h, lattice-like vessel

structures formed and then cells were stained with Calcein-AM (In-

vitrogen) and examined by using fluorescence microscope

(Olympus).

Western blotting

1 × 106 cells were lysed in 100 μL RIPA buffer [50 mmol/L Tris-HCl

(pH = 7.5), 150 mmol/L NaCl, 1% NP-40, 0.5% sodium deoxy-

cholate, 0.1% SDS] supplemented with NaF, NaVO4 and a

protease-inhibitor mixture (Roche). Typically 20 μg of proteins were

separated by SDS-PAGE, transferred to a PVDF membrane (Milli-

pore), and blotted with one of the following primary antibodies and

then HRP-conjugated secondary antibodies. The quantification of

western blot was performed with Image Lab software for ChemiDoc

XRS system (Bio-Rad).

Primary antibodies for western blotting include anti-WRN (Santa

Cruz Biotechnology, Inc.), anti-Progerin (Santa Cruz Biotechnology,

Inc.), anti-P21 (Cell Signaling Technology, Inc.), anti-LAP2β (BD

Bioscience, Inc.), anti-HP1α (Cell Signaling Technology, Inc.), anti-

Actin (Santa Cruz, Inc.), anti-Lamin B1 (Abcam, Inc.), anti-P16 (BD

Bioscience, Inc.), anti-H3K9me3 (Abcam, Inc.), anti-β-Tubulin

(Santa Cruz, Inc.).

RT-PCR

Total RNA was extracted by using TRIzol reagent (Invitrogen). 2 μg

of RNA was converted to cDNA by using GoScript Reverse Tran-

scription System (Promega), and 1/50 volume of the cDNA reaction

was applied to PCR using primers for human GAPDH, Progerin. RT-

qPCR was performed by using iTaq Universal SYBR Green Super-

mix (Bio-Rad).

Primers used for RT-PCR: GAPDH-F, 5′-TCGGAGTCAACG-

GATTTGGT-3′; GAPDH-R, 5′-TTGCCATGGGTGGAATCATA-3′;

Progerin-F, 5′-ACTGCAGCAGCTCGGGG-3′; Progerin-R, 5′-

TCTGGGGGCTCTGGGC-3′.

Immunofluorescence microscopy

Cells seeded on microscope coverslips were fixed with 4%

formaldehyde in PBS for 30 min, permeabilized with 0.4% Triton

X-100 in PBS for 25 min, and blocked with 10% donkey serum in

PBS for 1 h. The coverslips were incubated with primary antibody

(diluted with 1% donkey serum in PBS) overnight at 4°C and then

incubated with fluorescence-labeled secondary antibody (diluted

with 1% donkey serum in PBS at 1:500) at room temperature for 1 h.

Hoechst 33342 (Invitrogen) was used to stain nuclear DNA.

Antibodies for immunofluorescence were purchased from the

following companies. Abcam: anti-NANOG (ab21624), anti-Nucle-

olin (ab22758); ZSGB-Bio: anti-hSMA (ZM-0003); Sigma: anti-TUJ1

(T2200); Santa Cruz Biotechnology: anti-OCT4 (sc-5279), anti-

SOX2 (sc-17320), anti-Progerin (sc-81611), anti-Lamin B (sc-6217);

Cell Signaling Technology: anti-HP1α (2616), anti-FOXA2 (8186S),

anti-CD144 (2158); Bethyl Laboratories: anti-53BP1 (A300-273A);

Millipore: anti-γ-H2AX (05-636); BD Bioscience: anti-LAP2β

(611000), anti-eNOS (610296); Vector: anti-Ki67 (VP-RM04); Dako:

anti-vWF (A082).

Statistical analysis

Student’s t-test was used to analyse differences between different

cell lines. Results were presented as mean ± SEM. P values < 0.05,

P values < 0.01 and P values < 0.001 were considered statistically

significant (*, **, ***).
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