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ABSTRACT

Clinical success of the proteasome inhibitor established
bortezomib as one of the most effective drugs in treat-
ment of multiple myeloma (MM). While survival benefit of
bortezomib generated new treatment strategies, the
primary and secondary resistance of MM cells to
bortezomib remains a clinical concern. This study aimed
to highlight the role of p53-induced RING-H2 (Pirh2) in
the acquisition of bortezomib resistance in MM and to
clarify the function and mechanism of action of Pirh2 in
MM cell growth and resistance, thereby providing the
basis for new therapeutic targets for MM. The protea-
some inhibitor bortezomib has been established as one
of the most effective drugs for treating MM. We
demonstrated that bortezomib resistance in MM cells
resulted from a reduction in Pirh2 protein levels. Pirh2
overexpression overcame bortezomib resistance and
restored the sensitivity of myeloma cells to bortezomib,
while a reduction in Pirh2 levels was correlated with
bortezomib resistance. The levels of nuclear factor-
kappaB (NF-κB) p65, pp65, pIKBa, and IKKa were higher
in bortezomib-resistant cells than those in parental cells.
Pirh2 overexpression reduced the levels of pIKBa and
IKKa, while the knockdown of Pirh2 via short hairpin
RNAs increased the expression of NF-κB p65, pIKBa,
and IKKa. Therefore, Pirh2 suppressed the canonical NF-
κB signaling pathway by inhibiting the phosphorylation

and subsequent degradation of IKBa to overcome
acquired bortezomib resistance in MM cells.

KEYWORDS bortezomib, drug resistance, multiple
myeloma, NF-κB, Pirh2

INTRODUCTION

The proteasome inhibitor bortezomib is effective at treating
multiple myeloma (MM) because the efficacy of bortezomib-
based chemotherapy regimens is as high as 80%–90%
(Rajkumar, 2016), However, drug resistance limits its repe-
ated use, although the mechanisms are not fully understood
(Malard et al., 2017). The mechanism of acquisition of
bortezomib resistance and the ways to overcome this
resistance are important clinical issues (Chao and Wang,
2016). Hence, the molecular mechanisms of bortezomib
resistance need to be urgently explored to enhance the use
of existing treatments and to define more effective single or
combination therapies. The current established molecular
mechanisms underlying resistance to proteasome inhibitors
involve constitutive and immunoproteasomes, mutated pro-
teasome subunits, unfolded protein response (UPR) medi-
ators, multidrug efflux transporters, aggresomes, autophago-
somes, pro-survival signaling pathway mediators, or bone
marrow microenvironmental components (Niewerth et al.,
2015). The ubiquitin-proteasome system is the main mech-
anism controlling protein turnover and maintaining cellular
protein homeostasis. E3 ubiquitin ligases determine the
specificity of protein degradation, and these ligases have
been shown to be closely related to cancer occurrence,
development, transfer, and drug resistance (Masumoto andLi Yang and Jing Chen have authors contributed equally to this work.
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Kitagawa, 2016). Several lines of evidence link E3 ligases
with MM and associated drug resistance (Lub et al., 2016).

p53-induced RING-H2 (Pirh2) is a newly discovered E3
ubiquitin ligase induced by p53 activation that has an
intrinsic ubiquitin-protein ligase activity for polyubiquitination
and subsequent proteasomal degradation. Pirh2 was initially
thought to be similar to HDM2, the human counterpart of
MDM2 in mice (Halaby et al., 2013). Recent studies have
shown that Pirh2 regulates cellular homeostasis in both p53-
dependent and p53-independent cellular contexts. More-
over, based on its substrates, the association of Pirh2 with
the occurrence and prognosis of malignant tumors has been
confirmed (Jung et al., 2012, Daks et al., 2016, Yang et al.,
2016). Pirh2 ubiquitinates substrate proteins and directs
them through degradation pathways involved in apoptosis
induction, cell cycle regulation, and DNA repair. However,
the role of Pirh2 in proliferation, invasion, and drug resis-
tance of tumors still needs further investigation.Recently,
data from publicly available databases have been used to
correlate gene expression in myeloma tumor cells with clin-
ical responses to bortezomib. A reduced expression of Pirh2
was observed in bortezomib-resistant cells using an Affy-
metrix GeneChip Human Transcriptome Array 2.0 (Huang
et al., 2017). These findings helped further elucidating the
role of the E3 ligase Pirh2 in the bortezomib resistance of
MM, thereby facilitating bortezomib retreatment as a more
effective and rational therapeutic strategy in the clinic.

RESULTS

Reduced levels of Pirh2 were correlated
with bortezomib resistance

A decreased expression of Pirh2 was observed in the
bortezomib-resistant cells RPMI8226.BR and OPM-2.BR
and their controls using Affymetrix HTA 2.0. The expression
of Pirh2 protein and mRNA was confirmed in the MM cell
lines RPMI8226, ARP-1, ARK, MM.1S, MM.1R, NCI-H929,
OPM-2, and LP-1. Immunofluorescence revealed that Pirh2
was primarily expressed in the cytoplasm (Fig. 1).

The bortezomib-resistant cell line NCI-H929.BR was
established, and changes in Pirh2 expression were identified
to evaluate the role of the E3 ubiquitin ligase Pirh2 in
bortezomib resistance in MM. As detected with the CCK-8
assay, the IC50 of NCI-H929 and NCI-H929.BR cells treated
with bortezomib for 24 h was 17.62 ± 1.92 nmol/L and 234.30
± 6.02 nmol/L, respectively (Fig. 2A); the resistance ratio
was 13.30 (P < 0.05). Growth curve (Fig. 2B) and flow
cytometry results (Fig. 2C) indicated the lack of a significant
difference between the bortezomib-resistance and borte-
zomib-sensitive cells (P > 0.05). Compared with that in
parental cells, Pirh2 expression was reduced in the borte-
zomib-resistant cell lines RPMI8226.BR and OPM-2.BR
(Fig. 2D). Pirh2 expression levels were also found to grad-
ually decrease over 1–3 months in parental NCI-H929 cells
in response to increasing drug concentrations (Fig. 2E).

Pirh2 was more highly expressed in patients with newly
diagnosed MM than in patients with relapsed MM

Pirh2 mRNA expression was also determined in bone mar-
row samples obtained from patients with MM. Pirh2
expression was found to be higher in patients with newly
diagnosed MM than in patients with relapsed MM treated
with bortezomib plus dexamethasone and cyclophos-
phamide (CTX) (Fig. 3A, P < 0.05). Next, CD138+ MM cells
were isolated from three patients. Pirh2 expression was
compared in samples from the same patient at different
stages of disease. Pirh2 expression in CD138+ cells was
lower in patients with relapsed MM than in patients with
newly diagnosed MM (Fig. 3B, P < 0.05).

Pirh2 knockdown prevented bortezomib-induced cell
apoptosis and antiproliferative effects

Western blotting and qRT-PCR were performed to verify
transfection efficiency in the myeloma cell lines RPMI8226-
shPirh2, OPM-2-shPirh2, NCI-H929-shPirh2 and their cor-
responding controls (Fig. 4A and 4B). Growth curve and cell
cycle analysis demonstrated the lack of significant difference
between cells with Pirh2 knockdown and controls without
bortezomib treatment (Fig. 4C and 4D, P > 0.05). However,
Pirh2 knockdown enabled the transition of MM cells from G1

phase to S and G2 phases in the presence of bortezomib
(Fig. 4D) and weakened the inhibition of cell proliferation by
bortezomib (Fig. 4E). The percentage of cells in G1 phase in
various groups was as follows: RPMI8226-shPirh2 vs.
RPMI8226-ctl, 39.03% ± 3.20% vs. 52.84% ± 42.89%; OPM-
2-shPirh2 vs. OPM-2-ctl, 42.40% ± 5.84% vs. 57.00% ±
6.23%; and NCI-H929-shPirh2 vs. NCI-H929-ctl, 23.37% ±
2.12% vs. 42.91% ± 1.89% (Fig. 4F, P < 0.05). In addition,
Pirh2 knockdown reduced bortezomib-induced apoptosis in
MM cells. The percentage of apoptotic cells in various
groups was as follows: RPMI8226-shPirh2 vs. RPMI8226-
ctl, 47.90% ± 1.63% vs. 55.60% ± 2.86%; OPM-2-shPirh2
vs. OPM-2-ctl, 48.30% ± 1.17% vs. 63.60% ± 1.24%; and
NCI-H929-shPirh2 vs. NCI-H929-ctl, 20.28% ± 0.98% vs.
38.37% ± 1.34% (Fig. 4G, P < 0.05).

Pirh2 overexpression enhanced bortezomib-induced
cell apoptosis and antiproliferative effects and resulted
in G1 phase cell cycle arrest in MM cells

Pirh2-overexpressing myeloma cell lines ARP-1-Pirh2, ARK-
Pirh2, LP-1-Pirh2 and their corresponding controls were
established as described earlier. Western blotting and qRT-
PCR were performed to verify transfection efficiency (Fig. 5A
and 5B). Growth curve and cell cycle analysis demonstrated
the lack of significant difference between Pirh2-overex-
pressing cells and controls (Fig. 5C and 5D, P > 0.05).
However, Pirh2 overexpression increased the inhibition of
cell proliferation by bortezomib (Fig. 5E, P < 0.05) and
arrested MM cells in G1 phase. The percentage of cells in G1
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phase in various groups was as follows: ARP-1-Pirh2 vs.
ARP-1-ctl, 51.56% ± 3.91% vs. 40.88% ± 2.09%; ARK-Pirh2
vs. ARK-ctl, 49.10% ± 4.32% vs. 31.90% ± 3.98%; and LP-1-
Pirh2 vs. LP-1-ctl, 58.90% ± 4.06% vs. 32.40% ± 2.76%
(Fig. 5F, P < 0.05) and Furthermore, Pirh2 overexpression
increased bortezomib-induced apoptosis in MM cells. The
percentage of apoptotic cells in various groups was as fol-
lows: ARP-1-Pirh2 vs. ARP-1-ctl, 66.90% ± 3.73% vs.
41.70% ± 1.86%; ARK-Pirh2 vs. ARK-ctl, 76.80% ± 4.17%
vs. 66.60% ± 3.24%; and LP-1-Pirh2 vs. LP-1-ctl, 22.02% ±
1.23% vs. 15.53% ± 2.03% (Fig. 5G, P < 0.05).

Pirh2 mediated the sensitivity of myeloma cells
to bortezomib but not to CTX or melphalan

The CCK-8 assay demonstrated that Pirh2 knockdown
weakened the inhibition of cell proliferation by bortezomib
(Fig. 6, P < 0.05) but did not affect the antiproliferative effect
of CTX or melphalan (Mel) on the cell lines RPMI8226-
shPirh2, OPM-2-shPirh2, and NCI-H929-shPirh2 (Fig. 6, P >
0.05).

Pirh2 suppressed the nuclear factor-kappaB (NF-κB)
signaling pathway in bortezomib-resistant myeloma
cells

Increased nuclear factor-kappaB (NF-κB) expression has
been observed in patients with refractory primary myeloma,
which is thought to be linked to drug resistance (Turner et al.,
2016). Thus, we investigated whether Pirh2 overcomes
bortezomib resistance in myeloma cells by inhibiting the NF-
κB pathway. The degradation of IKBa and the release of NF-
κB subunits were preceded by the phosphorylation of IKBa.
Additionally, Pirh2 overexpression markedly decreased the
levels of pIKBa and IKKa, while Pirh2 knockdown via shRNA
increased the expression of NF-κB p65, pIKBa, and IKKa
(Fig. 7A). Pirh2 overexpression decreased the nuclear pro-
tein levels of NF-κB subunit p65, whereas Pirh2 knockdown
exerted the opposite effect (Fig. 7B). Higher protein levels of
NF-κB p65, pp65, pIKBa, and IKKa were observed in the
nuclei of bortezomib-resistant cells RPMI8226.BR and NCI-
H929.BR than in the nuclei of the parental cells (Fig. 7C).

Therefore, Pirh2 likely mediates the sensitivity of mye-
loma cells to bortezomib via the canonical NF-κB signaling
pathway (Fig. 8).

DISCUSSION

The proteasome inhibitor bortezomib is usually effective
against MM. However, drug resistance limits its repeated
use, although the mechanisms are not fully understood. The
ubiquitin-proteasome pathway (UPP) plays a crucial role in
maintaining steady-state protein levels and regulating many
biological processes. Increasing evidence indicates that the
UPP plays an important role in oncogenesis, cancer devel-
opment, disease progression, and chemoresistance (Cao
and Mao, 2011; Tu et al., 2012; Micel et al., 2013; Yerlikaya
and Yontem, 2013; Gandhi et al., 2014; Lu et al., 2014;
Brinkmann et al., 2015; Wu et al., 2015). For example, the
cellular proteasome is an important molecular target in MM
therapy, clinical trial development, and the application of
proteasome inhibitors. Therefore, inhibiting the UPP may be
an effective approach to treat MM (Landis-Piwowar, 2012).
E3 ligases carry out the final step in the ubiquitination cas-
cade and determine the substrate protein to be ubiquitylated
before mediating the transfer of ubiquitin residues from an
E2 enzyme to a lysine on the target. Thus, E3 ligases are of
interest as drug targets because of their ability to regulate
protein stability and functions (Liu et al., 2014), especially in
oncogenesis (Jung et al., 2012, Hsieh et al., 2013, Severe
et al., 2013, Sharma and Nag, 2014, Zhang et al., 2014, Hao
and Huang, 2015, Yin et al., 2015), cancer progression (Lou
and Wang, 2014, Sun and Denko, 2014, Goka and Lippman,
2015), metastasis (Wang et al., 2012), disease prognosis
(Bielskiene et al., 2015, Hou and Deng, 2015) and
chemotherapy resistance (Nelson et al., 2016, Petzold et al.,
2016). A growing number of E3 ligases and their substrate
proteins have emerged as crucial players in drug resistance,
and new insights have been obtained into the roles of E3
ubiquitin ligases in bortezomib resistance (Malek et al.,
2016). Jones and his colleagues (Jones et al., 2012) have
found that the E3 ubiquitin ligase HDM2 played crucial roles
in the cross-resistance of the myeloma cell line NCI-H929 to
bortezomib, doxorubicin, cisplatin, and Mel. Researchers
have also found that HDM2 inhibition by bortezomib can
enhance cellular sensitivity to bortezomib and overcome
bortezomib resistance (Ooi et al., 2009). Meanwhile, Chau-
han and colleagues indicated that the inhibitor of the deu-
biquitylating enzyme USP7 could induce apoptosis in
myeloma cells that are resistant to conventional therapies,
including bortezomib, by inhibiting HDM2 and p21 (Chauhan
et al., 2012).

The E3 ligase Pirh2 regulates the turnover and function of
proteins involved in cell proliferation and differentiation, cell
cycle checkpoint regulation, and cell death (Halaby et al.,
2013). Previous studies have demonstrated the role of Pirh2
as a tumor suppressor and prognostic marker in various
human cancer subtypes (Hakem et al., 2011, Halaby et al.,
2013). However, human Pirh2 also has been reported to be
overexpressed in cancers, such as breast cancer, and was
found to be highly associated with tumor grade, size, and Ki-
67 expression (Yang et al., 2016).

Figure 1. Pirh2 expression in MM cell lines. (A) Analysis of

Pirh2 expression in human MM cell lines RPMI8226, ARP-1,

ARK, MM1S, MM1R, NCI-H929, OPM-2, and LP-1 using

Western blotting and (B) The levels of Pirh2 mRNA by qRT-

PCR of MM cell lines and MCF-7 cell as positive control. A

immunofluorescence showed that Pirh2 in MM cells was

expressed mainly in the cytoplasm (C, 400×).

b
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Figure 2. Establishment of bortezomib-resistant cell line NCI-H929.BR. (A) CCK-8 assay showed that the IC50 of NCI-H929 and

NCI-H929.BR treated with bortezomib for 24 h was 17.62 ± 1.92 nmol/L vs. 234.30 ± 6.02 nmol/L; the resistance ratio was 13.30 (P <

0.05). (B) Growth curve and (C) flow cytometry results showed no significant difference between the two (P > 0.05). (D) Pirh2 expression

decreased in bortezomib-resistant cell lines RPMI8226.BR and OPM-2.BR compared with their parental cells. OPM-2.BR shows a

corresponding decrease in Pirh2 protein levels compared with OPM-2 (by > 2.0-fold) (n = 3). (E) Pirh2 expression levels were found to

decline gradually by exposing parental cells NCI-H929 to serially increased drug concentrations for 1–3 months. (*P < 0.05; **P < 0.05,

NCI-H929 exposing in bortezomib for 3 months vs. parental cells NCI-H929).
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The current study reported the role of Pirh2 in MM,
especially in the resistance of myeloma cells to bortezomib.
Pirh2 expression was observed to be reduced in bortezomib-
resistant cells. A bortezomib-resistant cell line NCI-H929.BR
was established to further evaluate the role of Pirh2 in
bortezomib resistance in MM. The Pirh2 expression levels
gradually decreased in parental cells in response to
increasing drug concentrations over several months. We
also observed higher expression of Pirh2 in patients with
newly diagnosed MM than in patients with relapsed MM
treated with bortezomib-based therapies, indicating that MM
patients with low Pirh2 levels were refractory to bortezomib.
Pirh2 knockdown via shRNA prevented bortezomib-induced
cell apoptosis and antiproliferative effects, whereas Pirh2
overexpression exerted the opposite effects and arrested
cells MM cells in G1 phase. Notably, Pirh2 knockdown or
overexpression in the absence of bortezomib treatment did
not affect cell proliferation, apoptosis, or cell cycle distribu-
tion, and Pirh2 mediated the sensitivity of myeloma cells to
bortezomib but not to Mel, CTX, or dexamethasone (data not
shown). Therefore, reduction in Pirh2 levels was associated
with resistance to bortezomib, suggesting the possible
involvement of Pirh2 in the acquisition of bortezomib resis-
tance in MM.

We also explored the ability of Pirh2 to negatively regulate
the NF-κB pathway in MM cells. Proteasome inhibition by
bortezomib ultimately results in UPR-mediated apoptosis
due to the accumulation of unprocessed and misfolded
proteins. Signaling through canonical or noncanonical
pathways leads to the phosphorylation, ubiquitination, and
subsequent degradation of IkB kinases through the protea-
some pathway. This results in the translocation of NF-κB to
the nucleus and transcription of target genes that are asso-
ciated with mechanisms of resistance, such as the acquisi-
tion of mutations in the 26S proteasome, overexpression of
the PSMB5 subunit, upregulation of heat shock proteins, or

increased activity of the aggresome pathway (Kumar and
Rajkumar, 2008). The present study highlighted a molecular
mechanism by which Pirh2 overcame bortezomib resistance
in myeloma cells. NF-κB is activated in patients with borte-
zomib-refractory primary MM and bortezomib-resistant MM,
which is associated with the increased basal nuclear local-
ization of NF-κB p65 (Raninga et al., 2016). Increased NF-κB
p65, pp65, pIKBa, and IKKa levels were observed in borte-
zomib-resistant cells. Pirh2 overexpression reduced the
levels of pIKBa and IKKa, while Pirh2 knockdown increased
the expression of NF-κB p65, pIKBa, and IKKa. Therefore,
Pirh2 suppressed the canonical NF-κB signaling pathway by
inhibiting the phosphorylation and subsequent degradation
of IKBa and thus overcame acquired bortezomib resistance
in myeloma cells. However, whether Pirh2 regulates the NF-
κB signaling pathway in MM via other mediators or mecha-
nisms warrants further investigation.

In conclusion, the inhibition of Pirh2 expression is asso-
ciated with the acquisition of bortezomib resistance in mye-
loma cells. Moreover, Pirh2 overexpression overcomes
bortezomib resistance in myeloma cells by inhibiting the NF-
κB signaling pathway. Therefore, the ability of the E3 ligase
Pirh2 to negatively regulate the NF-κB signaling pathway
and promote malignant phenotypes highlights the impor-
tance of this novel tumor suppressor in MM and the neces-
sity for its regulation. Pirh2-promoting drugs may thus be
considered for single-agent or combination therapies to cir-
cumvent bortezomib resistance in MM and improve survival
outcomes in patients with MM.

MATERIALS AND METHODS

Cells and reagents

Human MM cell lines RPMI8226, MM.1S, MM.1R, ARP-1, ARK,

NCI-H929, LP-1, and OPM-2 and bortezomib-resistant cell lines

RPMI8226.BR and OPM-2.BR were provided by Dr. Qing Yi
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Figure 3. Pirh2 mRNA expression in primary MM cells. (A) Pirh2 was more highly expressed in patients with newly diagnosed MM

compared with patients with relapsed MM, despite treatment with bortezomib-based therapies. (B) Expression of Pirh2 in CD138+

cells decreased in patients with relapsed MM compared with patients with newly diagnosed MM. (*P < 0.05).
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(Department of Cancer Biology, Lerner Research Institute,

Cleveland Clinic, OH, USA). The bortezomib-resistant cell line

NCI-H929.BR was developed by exposing parental cells to sub-

lethal concentrations of bortezomib. Primary CD138+ cells from

the bone marrow of MM patients and peripheral blood mononu-

clear cells from healthy individuals were obtained after approval

from the ethics committee of the First Affiliated Hospital, Zhejiang

University School of Medicine, China, and informed consent was

obtained from the participants. CD138+ cells were collected using

positive selection with CD138 microbeads (Miltenyi Biotech, CA,

USA). Dimethyl sulfoxide and propidium iodide (PI) were procured

from Sigma-Aldrich (MO, USA). Bortezomib was obtained from

Millennium Pharmaceuticals, Inc. (MA, USA). The Annexin V

Apoptosis Detection Kit and Fluorescein Isothiocyanate (FITC)/PI

were purchased from eBioscience (CA, USA). Primary antibodies

against IKBa, pIKBa, p65, pp65, IKKa, and pIKKa were procured

from Cell Signaling Technology (MA, USA). Primary antibodies

against Pirh2 [EPR14980 and 1H10] were purchased from

Abcam. β-Actin was obtained from Sigma-Aldrich (MO, USA).

Horseradish peroxidase-conjugated anti-mouse and anti-rabbit

antibodies were procured from Jackson ImmunoResearch Labo-

ratories (PA, USA).
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Figure 4. Characteristics of Pirh2 shRNA cells. Pirh2 knockdown myeloma cell lines RPMI 8226-shPirh2, OPM-2-shPirh2,

and NCI-H929-shPirh2 and their controls were established. (A) Western blot and (B) qRT-PCR were performed to verify

transfection efficiency (*P < 0.05). (C) Growth curve using CCK8 and (D) cell cycle analysis by flow cytometry showed no significant

difference between cells with Pirh2 knockdown and controls (P > 0.05). (E) CCK-8 assay showed that Pirh2 knockdown weakened

the inhibition of cell proliferation ability of bortezomib (*P < 0.05). (F) Flow cytometry results showed that the percentages of G1 phase

in groups with bortezomib treated for RPMI 8226 (10 nmol/L), OPM-2 (10 nmol/L), and NCI-H929 (15 nmol/L) were as follows: RPMI
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Cell culture

Human MM cell lines RPMI8226, MM.1S, MM.1R, ARP-1, ARK,

NCI-H929, LP-1, and OPM-2; bortezomib-resistant cell lines

RPMI8226.BR, OPM-2.BR, and NCI-H929.BR; and primary cells

were all cultured in RPMI 1640 medium (Thermo Scientific,

HyClone) supplemented with 10% fetal bovine serum (Thermo Sci-

entific, HyClone) and 1% L-glutamine at 37°C in a humidified

atmosphere with 5% CO2.

Establishment of bortezomib-resistant cell lines

The cell line NCI-H929.BR was generated by exposing parental NCI-

H929 cells to sublethal concentrations of bortezomib for 6 months as

reported (Zhu et al., 2009). Bortezomib resistance was confirmed by

measuring cell proliferation in response to bortezomib exposure.

Cell proliferation assay

The cell counting kit 8 (CCK-8) assay was used to assess MM cell

proliferation. A total of 1–2 × 104/well MM cells were seeded in

96-well plates and incubated at 37°C in a humidified atmosphere

with 5% CO2. Each cell line was assessed in triplicate. CCK-8

solution (10 μL) was added into each well 2 h before measuring the

absorbance. Absorbance at 450 nm was measured using the

ELX800 microplate reader (BioTek, USA).

Cell cycle analysis

Cells were cultured (5 × 105/well) with or without 10 mmol/L borte-

zomib in 6-well plates for 24 h. Then, the cells were collected and

permeabilized with precooled 75% ethanol at 4°C overnight. The

next day, the cells were washed with phosphate-buffered saline
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(PBS) and incubated with 0.01% RNase A for 30 min at 37°C. Next,

the cells were incubated with 0.5% PI in the dark for 30 min. DNA

content was measured by flow cytometry (BD Biosciences, CA,

USA). The data were analyzed using ModFit software (version 3.2,

Verity Software House).

Assessment of apoptosis

MM cells (2 × 105/mL) were cultured in 24-well plates at 37°C in a

humidified atmosphere with 5% CO2 for 24 h with or without borte-

zomib to identify apoptotic cells. The cells were then harvested,

washed twice with PBS, resuspended in 200–300 μL of staining

buffer, and stained with Annexin V-FITC/PI according to the

manufacturer’s instructions. The cells were subjected to flow

cytometry, and the data were analyzed using FlowJo version 7.6.1.

Western blot analysis

Cells were collected and extracted with lysis buffer to detect

changes in cellular protein levels. Supernatants containing total

cellular protein were collected for Western blotting. Equal amounts

of proteins (40–60 μg, depending on the protein) were separated

by 8%–12% sodium dodecyl sulfate-polyacrylamide gel elec-

trophoresis and transferred onto polyvinylidene difluoride mem-

branes (Merck Millipore, Germany). The membranes were

incubated with the corresponding primary antibodies overnight at

4°C after blocking with 5% non-fat milk. The membranes were
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Figure 5. Characteristics of Pirh2-overexpression cells. Pirh2-overexpression myeloma cell lines ARP-1-Pirh2, ARK-Pirh2, and

LP-1-Pirh2 and their controls were established. (A) Western blot and (B) qRT-PCR were performed to verify transfection efficiency

(*P < 0.05). (C) Growth curve using CCK8 and (D) cell cycle analysis by flow cytometry showed no significant difference between

cells with Pirh2 overexpression and controls (P > 0.05). (E) CCK-8 assay showed that Pirh2 overexpression increased the inhibition

of cell proliferation ability of bortezomib (*P < 0.05). (F) Pirh2 overexpression made MM cell cycle arrest in G1 phase with bortezomib

treated for ARP-1 (10 nmol/L), ARK (10 nmol/L), and LP-1 (10 nmol/L). The percentages of G1 phase in groups were as follows: ARP-

1-Pirh2 vs. ARP-1-ctl, 51.56% ± 3.91% vs. 40.88% ± 2.09%; ARK-Pirh2 vs. ARK-ctl, 49.10% ± 4.32% vs. 31.90% ± 3.98%; LP-1-

Pirh2 vs. LP-1-ctl, 58.90% ± 4.06% vs. 32.40% ± 2.76% (P < 0.05). (G) Pirh2 overexpression sensitized bortezomib-induced cell

apoptosis. The percentage of apoptosis cells in groups treated with bortezomib or Med for 24 h and the results of experiments

repeated three times for ARP-1 (10 nmol/L), ARK (10 nmol/L), and LP-1 (10 nmol/L) (*P < 0.05).
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then washed with Tris-buffered saline with Tween 20 (TBST) and

incubated with HRP-conjugated anti-rabbit or anti-mouse antibod-

ies in TBST at room temperature for 2 h. The membranes were

again washed with TBST, and protein bands were detected on an

X-ray film using an enhanced chemiluminescence detection kit for

HRP (Biological Industries Israel, Beit Haemek Ltd., Israel).

RNA extraction and quantitative real-time polymerase chain

reaction

Total RNA isolation from cells and cDNA synthesis were performed using

Trizol andaReverseTranscriptasekit (Takara,Otsu, Japan), respectively,

according to the manufacturer’s instructions. Semiquantitative real-time

polymerase chain reaction (qRT-PCR)wasperformedwithSYBRPremix

ExTaq II (TliRNaseHPlus) (Takara) in combinationwith the iQ5Multicolor

Real-Time PCR Detection System (Bio-Rad Inc.) according to the man-

ufacturer’s instructions. cDNA encoding the indicated genes was

amplifiedwith the following specific primers: Pirh2 forward, 5′TGCAATCA

CTCGTTTATGCTGTCTA3′ and reverse, 5′ACCCTGGGTACCGAAG

CCTA3′; and GAPDH forward, 5′GCTGGTGGTCCAGGGGTCTTACT3′

and reverse, 5′TCAACGACCACTTTGTCAAGCTCA3′.

Generation of Pirh2-targeting short hairpin RNA and Pirh2-overex-

pressing myeloma cell lines

Because Pirh2 expression was reduced in bortezomib-resistant

cell lines, we investigated whether Pirh2 facilitates bortezomib-in-

duced apoptosis in myeloma cell lines. Hence, Pirh2 knockdown

myeloma cell lines and short hairpin RNA (shRNA) sequences for

targeting Pirh2 mRNA (shPirh, 5′GCACAGACTCCTATGCC

ATCA3′) and scrambled shRNA oligos (used as a negative control;

5′TTCTCCGAACGTGTCACGT3′) were generated. All shRNAs

were designed and synthesized by Shanghai GenePharma Co.,

Ltd. (Shanghai, China). The resultant cells infected with
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lentiviruses containing Pirh2-targeting shRNA sequences were

referred to as RPMI8226-shPirh2, OPM-2-shPirh2, and NCI-H929-

shPirh2, and the cells infected with the corresponding controls

were referred to as RPMI8226-ctl, OPM-2-ctl, and NCI-H929-ctl.

For the stable overexpression of Pirh2, cells were infected with

lentiviral particles harboring the Pirh2 expression vector LV5-EF1a-

GFP/Puro-Pirh2 with full-length cDNA sequence from GenBank

(Accession Number: BC047393; purchased from GenePharma,

Shanghai, China). The Pirh2-overexpressing myeloma cell lines

were named ARP-1-Pirh2, ARK-Pirh2 and LP-1-Pirh2, and their

corresponding controls were named ARP-1-ctl, ARK-ctl and LP-1-ctl.

Target cells were infected with lentiviruses for 24–48 h. The optimal

infection efficacy was determined by assaying different multiplicity of

infections with or without 2 μg/mL puromycin according to the

manufacturer’s protocol.
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Figure 6. Pirh2 mediated the sensitivity of myeloma cells to bortezomib but not to CTX and Mel. The CCK-8 assay showed

that Pirh2 knockdown weakened the inhibition of cell proliferation ability of bortezomib (P < 0.05) but did not affect the antiproliferative

effect of CTX and Mel (P > 0.05) in cell lines RPMI 8226-shPirh2 (A), OPM-2-shPirh2 (B), and NCI-H929-shPirh2 (C).
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Statistical analysis

Data were presented as the mean ± standard deviation. Two-tailed

Student’s t test was used to determine significant differences

between two groups, and one-way analysis of variance was used to

estimate differences between three or more groups. P values lower

than 0.05 were considered significant. All analyses were performed

using GraphPad Prism 5.0 (GraphPad Software, CA, USA).
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