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ABSTRACT

The lipid droplet (LD) is a unique multi-functional orga-
nelle that contains a neutral lipid core covered with a
phospholipid monolayer membrane. The LDs have been
found in almost all organisms from bacteria to humans
with similar shape. Several conserved functions of LDs
have been revealed by recent studies, including lipid
metabolism and trafficking, as well as nucleic acid
binding and protection. We summarized these findings
and proposed a hypothesis that the LD is a conserved
organelle.
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INTRODUCTION

The lipid droplet (LD) is a multi-functional organelle with
unique structure that distinguishes it from other cellular
organelles (Murphy and Vance, 1999; Martin and Parton,
2006; Farese and Walther, 2009; Welte, 2015). Since dis-
covered in 1674 by Van Leeuwenhoek, the LD has been
found to be an organelle necessary for many cellular func-
tions that are essential for the organismic energy home-
ostasis, and more importantly for human health and aging. In
addition to its role in lipid storage and metabolism (Cao et al.,
2008; Cohen et al., 2011), recent studies have revealed that
the LD is critical for membrane trafficking (Liu et al., 2004;
Bartz et al., 2007), protein storage (Li et al., 2012) and
degradation (Ploegh, 2007), and has a key role in hepatitis C
virus (HCV) replication and assembly (Miyanari et al., 2007)
and neurodegeneration (Liu et al., 2015). As important sites
of neutral lipid storage and metabolism, the ectopic storage
of lipids in LDs is a key cellular component in many

diseases. On other hand, LDs in plants and oleaginous
microorganisms provide not only food oil but also feedstock
for biodiesel and industrial oil (Murphy, 2001; Alvarez and
Steinbuchel, 2002; Murphy, 2012; Chen et al., 2014).

LIPID DROPLETS EXIST FROM BACTERIA TO
HUMANS

LDs are found in almost all organisms from bacteria to
humans (Murphy, 2012; Waltermann et al., 2005). So far,
except for knowing that LDs exist in all eukaryotic cells, it is
also reported that some actinobacteria and cyanobacteria
contain LDs, such as the genera Micromonospora, Dietzia,
Nocardia, Rhodococcus, Mycobacterium, Gordonia, some
streptomycetes (Murphy, 2001; Murphy, 2012), Nostoc
punctiforme (Peramuna and Summers, 2014), Syne-
chococcus lividus (Edwards et al., 1968), Anabaena vari-
abilis (Wolk, 1973), and Synechocystis sp. PCC 6803 (Van
de Meene et al., 2006). In addition, in comparison with other
bacterial microcompartments including protein-based and
lipid-bilayer membrane-based (Cornejo et al., 2014; Bobik
et al., 2015), the LD is an unique organelle due to its par-
ticular structure and composition: neutral lipid core, phos-
pholipid monolayer membrane, and peripheral proteins
(Martin and Parton, 2006; Ding et al., 2012). This unique
property is conserved from bacteria to humans.

THE STRUCTURE AND COMPOSITION OF LIPID
DROPLETS ARE CONSERVED

The core content of LDs in bacteria and eukaryotic cells is
neutral lipid. Although some LDs contain retinyl ester
(O’Mahony et al., 2015), polyhydroxyalkanoate or wax ester
(Murphy, 2012), triacylglycerol (TAG) and cholesterol ester
(CE) are the major neutral lipids of LDs in most cells

© The Author(s) 2017. This article is an open access publication

Protein Cell 2017, 8(11):796–800
DOI 10.1007/s13238-017-0467-6 Protein&Cell

P
ro
te
in

&
C
e
ll

http://orcid.org/0000-0002-2599-9004
http://crossmark.crossref.org/dialog/?doi=10.1007/s13238-017-0467-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13238-017-0467-6&amp;domain=pdf


Li
pi
d

dr
op

le
t

Li
pi
d

dr
op

le
t

P 
  O

  m
ld

sr
  m

ld
s

m
R

N
A

M
LD

S
R

M
LD

S
R

N
A 

po
ly

m
er

as
e

P
: P

ro
m

ot
er

O
: O

pe
ra

to
r

Li
pi
d

dr
op

le
t

Li
pi
d

dr
op

le
t

Li
pi
d

dr
op

le
t

Ja
bb

a

H
2A

z
H

2A

H
2B

H
C

V
re

pl
ic

as
e

co
m

pl
ex

ER
lu
m
en

Fs
p2

7
N

FA
T5

E
1

E
2

C
or

e
p7 N

S
2

N
S

3/
4A

N
S

4B
N

S
5A

N
S

5B
H

C
V

 R
N

A

Li
pi
d

dr
op

le
t

N
uc

le
us

N
FA

T5

C
yt
op

la
sm

3

1

2

4

The lipid droplet is a conserved cellular organelle MINI-REVIEW

© The Author(s) 2017. This article is an open access publication 797

P
ro
te
in

&
C
e
ll



(Waltermann and Steinbuchel, 2005; Barbosa and Sinios-
soglou, 2017). The neutral lipid core is coated by a phos-
pholipid monolayer membrane in bacteria and eukaryotes
(Martin and Parton, 2006; Farese and Walther, 2009; Wal-
termann and Steinbuchel, 2005), although the phospholipid
composition may be different (Chitraju et al., 2012). In
addition to the conserved lipid contents, the resident proteins
of the organelle, including microorganism lipid droplet small
(MLDS) and eukaryotic PERILIPIN (PLIN) family proteins
(Kimmel et al., 2010), display conserved properties including
the ability to target the phospholipid monolayer membrane
and by the fact that they are all belong to apolipoprotein-like
protein family (Yang et al., 2012).

These apolipoprotein-like proteins have also the ability to
target LDs in diverse organisms, for example, mammalian
LD proteins (PLINs) are targeted to LDs in yeast (Rowe
et al., 2016) and bacteria (Hanisch et al., 2006). The LD
resident proteins in C. elegans, DHS-3 and MDT-28/PLIN1
(Chughtai et al., 2015) behave similarly to target mammalian
LDs (Na et al. 2015). In addition, a Drosophila LD resident
protein, LSD1/PLIN1 localizes to LDs in C. elegans (Liu
et al., 2014). The LD resident proteins, human adipose dif-
ferentiation-related protein (ADRP)/PLIN2, C. elegans MDT-
28, and bacterial MLDS are all able to bind to adiposomes
that contain a TAG core with a phospholipid (DOPC)
monolayer to mimic LDs in vitro (Wang et al., 2016). The

ability of these proteins to target LDs of other organisms
indicates that this fundamental process is highly conserved.

THE LIPID DROPLET IS A FUNCTIONALLY
CONSERVED ORGANELLE FROM BACTERIA TO
HUMANS

Several functions of LDs are common through bacteria to
humans, such as lipid storage and metabolism. However, the
study of other functions of LDs, especially in bacteria, is
insufficient. Recently, we found that the LDs in a bacterium,
Rhodococcus jostii RHA1 (RHA1), bind to genomic DNA
(Fig. 1) (Zhang et al., 2017) and protect it via their major
protein, MLDS, which promotes bacterial survival under
stress (Zhang et al., 2017). Furthermore, the study also
reports that LDs are involved in transcriptional regulation via
a LD-associated transcriptional regulator, MLDSR (Zhang
et al., 2017). These two newly identified functions in bacteria
suggest that LDs are unique endomembrane organelles
involved in nucleic acid handling and facilitate bacterial
survival in and adaptation to extreme environments (Zhang
et al., 2017).

In eukaryotic and prokaryotic cells, LD proteomic analysis
has revealed that RNA-binding proteins, ribosomal subunits,
and/or translation factors are present on LDs (Ding et al.,
2012; Sato et al., 2006; Zhang et al., 2012). Ribosomes and
RNA are also found on mammalian LDs (Dvorak et al., 2003;
Dvorak, 2005; Wan et al., 2007). In addition, HCV localizes
and assembles around the LD surface (Fig. 1) (Miyanari
et al., 2007; Shi et al., 2002; Gentzsch et al., 2013; Fiches
et al., 2016). Furthermore, a mammalian homologue of the
most abundant LD resident protein in C. elegans, MDT-28, is
a mediator of RNA polymerase II (Zhang et al., 2012; Li
et al., 2015). LDs in Drosophila store histones via the Jabba
protein (Fig. 1) (Li et al., 2012, 2014; Cermelli et al., 2006).
Interestingly, several recent studies identified LDs in the
nuclei of mammalian cells (Fig. 1) (Layerenza et al. 1831;
Wang et al., 2013; Ohsaki et al., 2016). LDs inhibit the
translocation of NFAT5 to the nucleus via the LD-associated
protein FSP27 and reduce NFAT5 transcriptional activity
(Fig. 1) (Ueno et al., 2012). Altogether, these reports suggest
that eukaryotic LDs partially mimic some nuclear functions,
which is similar to bacterial LDs.

According to these previous studies, both bacterial and
eukaryotic LDs are involved in nucleic acid handling, sug-
gesting that the LD is a functionally conserved organelle. In
the evolution from prokaryotes to eukaryotes, the most
important feature is the protection of hereditary material
(nuclear emergence). Thus, the function of bacterial LDs to
protect and regulate nucleic acids indicates that they are
analogous to the eukaryotic nuclear membrane.

Based on the extensive distribution, as well as the con-
servation of structure, composition, and functions of LDs
from almost all living organisms, we propose a hypothesis

Figure 1. The conserved lipid droplet functions of binding

and regulating nucleic acids from bacterial to human cells.

In bacteria (left), LDs bind and protect genomic DNA via the

major LD-associated protein, MLDS, which enhances the

survival and adaptation of bacteria in extreme environments.

Furthermore, a LD-associated transcriptional regulator,

MLDSR, whose gene is in the same operon as mlds, induces

or reduces the expression of MLDS when its cytosolic concen-

tration is low or high, respectively. LDs have key role in

transcriptional regulation by recruiting MLDSR to control its

cytosolic concentration. Similar functions of LDs are also found

in mammalian cells. In liver cells, hepatitis C virus is assembled

around the LD surface and viral RNA is located to LDs through

NS5A and core proteins. A hypothesis is proposed that after

replication of viral RNA on the ER membrane, the newly

synthesized RNA is moved by NS5A to the core protein on LDs,

which triggers the initial viral assembly (right, part 1). In

adipocytes, moreover, a transcriptional factor NFAT5 can be

sequestered to LDs by Fsp27, which prevents its nuclear

importation to initiate transcription (right, part 2). Several

histones such as H2A, H2B, and H2Av are localized to LDs

via the anchor protein Jabba in Drosophila (right, part 3). In

addition, LDs are also present in the liver cell nucleus (right,

part 4). The facts that both bacterial and mammalian LDs

possess the function of nucleic acid handling indicate that LDs

in living cells on earth are evolutionary conserved from

prokaryotes to humans.
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that the LD is a conserved organelle from bacteria to humans
(Fig. 1).
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