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CLE42 binding induces PXL2 interaction
with SERK2

Dear Editor,

Plant tissues derived from meristems including SAM (shoot
apical meristem) and RAM (root apical meristem) are located
at the tips of shoot and root and procambial cell tissues in the
vascular system (Simon and Stahl, 2011). Through asym-
metric periclinal cell division, a few layers of stem cells in
vascular meristems differentiate into apposing xylem and
phloem cells, forming the conducting system and playing an
important role in long-distance transport of water, nutrients,
sugars, and signaling molecules such as hormones in plant
(Elo et al., 2013).

The leucine rich repeat receptor kinase (LRR-RK) PXY
(phloem intercalated with xylem) belongs to XI subfamily of
leucine rich repeat receptor-like kinase (LRR-RLK). PXY
is a receptor of CLAVATA3/EMBRYO SURROUNDING
REGION-RELATED (CLE) peptide CLE41/44 or TDIF (trac-
heary elements differentiation inhibitory factor). TDIF-PXY
signaling functions to promote procambial cell proliferation
and suppress tracheary element differentiation, thus playing
an important role in wood formation and vascular (Hirakawa
et al., 2008; Ito et al., 2006; Fisher and Turner, 2007). The
tdr-1/pxy-5 mutant was severely impaired in the proliferation
of procambial cells (Hirakawa et al., 2008). WUSCHEL
HOMEOBOX RELATED 4 (WOX4) and WOX14 are down-
stream components of PXY-TDIF signaling and function
redundantly in regulating vascular cell division (Etchells
et al., 2013; Hirakawa et al., 2010). CLE41/44 has 12 aa
(His-Glu-Val-Hyp-Ser-Gly-Hyp-Asn-Pro-Ile-Ser-Asn) in its
mature form. A recent structural study revealed that the last
amino acid of the peptide is required for CLE41/44 recog-
nition by PXY (Zhang et al., 2016b).

PXL1 (PXY-like 1) and PXL2 (PXY-like 2) are two closely
related LRR-RKs to PXY, sharing 61% and 62% sequence
similarity with PXY, respectively. However, in contrast with
PXY, neither pxl1 nor pxl2 plants displayed an obvious
phenotype in the vascular stem (Fisher and Turner, 2007).
Nonetheless, simultaneous mutations of the three LRR-RKs
genes (pxy-3 with pxl1 and pxl2) generated an enhanced
vascular phenotype observed in pxy-3 plants with flatter
vascular bundles and a less clear distinction between xylem
and phloem. These results suggest that PXL1 and PXL2 can
function redundantly or synergistically with PXY in regulating

vascular-tissue development. Indeed, biochemical data
showed that CLE41/44 also interacted with PXL1, though
with a lower affinity than that of CLE41/44 with PXY (Zhang
et al., 2016b). Interestingly, the triple-mutant did not display a
more pronounced phenotype than the pxl1 and pxl2 plants,
suggesting that these two genes might also have a different
role from PXY in vascular development (Fisher and Turner,
2007).

PXL2 belongs to XI LRR-RK subfamily, members of which
have been proposed to recognize small signaling peptides
through the conserved Arg-x-Arg (RxR, x stands for any
amino acid) motif (Zhang et al., 2016a). We therefore rea-
soned that PXL2 may also recognize a small signaling
peptide(s) to mediate vascular development. To test this
idea, we purified the extracellular LRR domain protein of
PXL2 (PXL2LRR) and incubated the purified protein with a
pool of chemically synthesized peptides featuring a free
C-terminal histidine or asparagine. The mixture was then
subject to gel filtration to separate the PXL2LRR-bound
peptide(s) from the others (Fig. 1A). The protocol described
previously (Song et al., 2016) was used to detect the peptide
(s) bound to the PXL2LRR protein by mass spectrometry. By
using this method, we found that CLE42 was co-purified with
the PXL2LRR protein in the gel filtration assay, suggesting
that CLE42 may act as a ligand of PXL2 (Fig. 1B). To further
support this conclusion, we assayed the binding affinity of
CLE42 with PXL2LRR using ITC. The ITC results showed that
CLE42 bound to the PXL2LRR protein with a dissociation
constant (Kd) of ∼2.75 μmol/L (Fig. 1C). CLE42 is also a
dodecapeptide (His-Gly-Val-Hyp-Ser-Gly-Hyp-Asn-Pro-Ile-
Ser-Asn) and differs from CLE41 only in the 2nd position.
ITC assays indicated that CLE41 also interacted with
PXL2LRR but with a slightly lower affinity (Kd ∼10 μmol/L,
Fig. 1D). As a negative control, CLE13 (Arg-Leu-Val-Hyp-
Ser-Gly-Hyp-Asn-Pro-Leu-His-His) had no detectable inter-
action with PXL2LRR as indicated by ITC (Fig. S1).

We then solved the crystal structure of PXL2LRR deter-
mined at resolution of 3.6 Å (Fig. 2A). Structural comparison
showed that PXL2LRR and PXYLRR are highly conserved in
their structures (Fig. S2A). Although we have not obtained
the structure of PXL2LRR bound by CLE42, the complex can
be modeled with high confidence using the structure of
PXYLRR-CLE41 as a template given that the conserved
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structures of PXL2LRR and PXYLRR and high sequence
identity between CLE41 and CLE42 (Fig. 2B). In the mod-
eled structure of PXL2LRR-CLE42, the small peptide also
adopts an “Ω”-like kink to interact with PXL2, forming a set of
interactions (Fig. 2C–E) conserved in the PXYLRR-CLE41
interaction. The total buried surface areas generated by
CLE42 binding to PXL2LRR and CLE41 to PXYLRR are similar
to each other. However, the non-polar buried surface area in
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Figure 1. continued.

Table 1. Datacollection and refinement statistics

PXL2

Wavelengh (Å) 0.9790

Resolution range (Å) 108.37–3.60 (3.71–3.60)

Space group P21212

Unit-cell 128.05, 203.42, 68.49

90.00,90.00,90.00

Unique reflections 18571 (2891)

Completeness (%) 99.98 (87.2)

Mean I/sigma (I) 13.6 (3.2)

Redundancy 3.0 (3.1)

Rsym (%) 15.7 (64.2)

Rwork 0.277 (0.423)

Rfree 0.321 (0.523)

R.m.s.d (bonds) 0.006

R.m.s.d (angels) 2.038

* Rsym=∑hkl∑i | (hkl) . -- I(hkl)h i | =∑hkl∑i Ii . (hkl) where Ii(hkl) is the

intensity of the ith observation of reflection hkl and 〈I(hkl)〉 is the

average over all observations of reflection hkl.

b Figure 1. CLE42 binding induces PXL2LRR interaction with

SERK2LRR. (A) Gel-filtration chromatogram of the extracellular

LRR domain protein of PXL2 (PXL2LRR) and a pool of

synthesized peptides. The peak indicates the elution positions

of PXL2LRR-peptide in gel filtration. The vertical and horizontal

axes represent UV absorbance (280 nm) and elution volume

(mL) respectively. (B) MALDI-TOF MS of the peak fraction of

PXL2LRR-peptide shown in (A). The molecular weight of the

peptide from the peak fraction (1207.50) indicated is equivalent

to the theoretical weight of CLE42. The vertical and horizontal

axes represent the intensity and molecular weight of MS

respectively. (C) Measurement of the binding affinity between

PXL2LRR and CLE42 by ITC. Top panel: twenty injections of

CLE42 solution were titrated into PXL2LRR in the ITC cell. The

area of each injection peak corresponds to the total heat

released for that injection. Bottom panel: the binding isotherm

for PXL2LRR-CLE42 interaction. The integrated heat is plotted

against the molar ratio between CLE42 and PXL2LRR. Data

fitting revealed a binding affinity of about 2.75 μmol/L. (D) Mea-

surement of binding affinity between PXL2LRR and CLE41/TDIF

by ITC. The assay was performed as described in (C). Data

fitting revealed a binding affinity of about 10 μmol/L. (E) CLE42

binding induces no oligomerization of PXL2LRR. Left: gel

filtration profiles of PXL2LRR in the presence and absence of

CLE42. The vertical and horizontal axes represent ultraviolet

absorbance (λ = 280 nm) and elution volume (mL), respectively.

Right: Coomassie blue staining of the peak fractions of

PXL2LRR shown in the left following SDS-PAGE. M, molecular

weight ladder (kDa). (F) CLE42 induces PXL2LRR-SERK2LRR

heterodimerization in solution at pH 4.0. Top panel, gel filtration

profiles of PXL2LRR and SERK2LRR in the presence (slate at pH

4.0, blue at pH 6.0, black at pH 8.0), and absence (red) of

CLE42. Right: Coomassie blue staining of the peak fractions of

PXL2LRR and SERK2LRR shown in (F) following SDS–PAGE.
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Figure 2. Modeled structure of CLE42-PXL2LRR and PXL2LRR-CLE42-SERK2LRR. (A) Crystal structure of PXL2LRR alone shown in

cartoon. (B)ModeledstructureofPXL2LRR-CLE42complexusingas thePXYLRR-CLE41template.CLE42adoptsan “Ω”-likekinkandbinds to the

concave surface of PXL2LRR. (C) Detailed interaction of the N-terminal side of CLE42 with PXL2LRR. The side chains of some amino acids from

CLE42andPXL2LRRareshowninvioletandyelloworange, respectively.Yellowdashed lines indicatehydrogenbondsorsaltbridges. (D)Detailed

interactionof thecentral regionofCLE42withPXL2LRR. (E)Detailed interactionof theC-terminal sideofCLE42withPXL2LRR. (F)Model structure

of PXL2LRR-CLE42-SERK2LRR complex. (G) Detailed interaction between the C-terminal residues Ser11 and Asn12 of CLE42 and PXL2,

SERK2. The side chains of someamino acids fromCLE42, PXL2LRR, and SERK2LRR are shown in violet, yellow orange, and pink, respectively.

Yellow dashed lines indicate hydrogen bonds or salt bridges. (H) Detailed interaction between PXL2LRR-CLE42 and SERK2LRR.
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the CLE42-PXL2LRR complex (∼762 Å2) is slightly larger than
that in the CLE41-PXL2LRR complex (∼726 Å2), affording an
explanation for our observations that the former is a tighter
complex than the latter. Interestingly, the ratio between the
non-polar buried surfaces of PXL2LRR-CLE41 and PXL2LRR-
CLE42 (0.95) is close to that of the logarithms of the
experimental Kd values of PXL2LRR-CLE42 (2.75 μmol/L)
and PXL2LRR-CLE41 (10.00 μmol/L). These observations
are consistent with the proposed relationship between non-
polar buried interfacial area and binding affinity (Chen et al.,
2013) (Table 1).

In the structure of the CLE41-SERK2LRR-PXYLRR com-
plex (Zhang et al., 2016c), the C-terminal side of CLE41
forms a pair of hydrogen bonds with SERK2, thus con-
tributing to the interaction between SERK2LRR and PXYLRR.
Structural comparison between this complex and CLE42-
SERK2LRR-PXL2LRR (the modeled structure) showed that
the C-terminal portions of the two small peptides are highly
conserved in their receptor-bound forms (Fig. 2F–H). This
result suggests that PXL2 may also use SERK member as a
co-receptor if CLE42 indeed function as a ligand of PXL2. To
test this idea, we first assayed that the PXL2LRR protein in
the presence or absence of CLE42. As shown in Figure 1E,
CLE42 binding induce no oligoimerization of PXL2LRR,
because the elution volume of the protein did not change in
the presence of CLE42, suggesting that a co-receptor is
required for CLE42-induced signaling based on the dimer-
ization model (Han et al., 2014). To test whether SERK
members are able to form CLE42-induced complexes with
PXL2, we purified the extracellular LRR domain protein of
SERK2 (SERK2LRR) and used gel filtration to examine its
interaction with the purified PXL2LRR protein in the presence
of the chemically synthesized CLE42. Indeed, the gel-filtra-
tion results showed that SERK2 protein formed a
stable complex with PXL2LRR in the presence but not in the
absence of CLE42 when the assays were performed at an
acidic pH (pH = 4.0) (Fig. 1F). Like other small peptide-in-
duced interaction between a SERK member and an LRR-RK
(Sun et al., 2013), the CLE42 induced SERK2LRR-PXL2LRR

interaction was pH-dependent, as increasing pH to 6.0 or 8.0
resulted in non-detectable interaction between SERK2LRR-
PXL2LRR even in the presence of CLE42 (Fig. 1F).

Here we provide biochemical evidence showing that
CLE42 interacts with PXL2 in vitro. Consistent with CLE42
as a ligand of PXL2, we also showed that CLE42 induced
interaction with of PXL2 and the SERK family member
SERK2. However, the biological functions of these interac-
tions still remain unknown. A role of CLE42 in suppressing
xylem formation has been shown before (Hirakawa et al.,
2008). CLE42 is expressed strongly in shoot apical meristem
(SAM) and axillary meristems to enhance axillary bud for-
mation (Yaginuma et al., 2011). Consistently, excess for-
mation and outgrowth of axillary buds has been shown in
plants overexpressing CLE41 and CLE42. However, muta-
tion of TDR did not completely suppress the promotion of

axillary bud formation by CLE42 peptide, suggesting that
other receptor(s) might exist for perception of the two pep-
tides. Based on the biochemical data reported here, we
propose that PXL2 may function as a receptor of CLE42 and
probably CLE41 as well. However, PXL2, also called MIK1
(MDIS1-INTERACTING RECEPTOR LIKE KINASE1), was
recently shown to form heteromers with MDISI (MALE DIS-
COVERER1) and perceive the female attractant peptide
LURE1 in Arabidopsis thaliana (Wang et al., 2016). One
explanation to reconcile our biochemical data with these
genetic data is that PXL2/MIK1 can serve as a dual receptor
of different ligands, thus mediate different peptide-induced
signaling. The same LRR-RK that can perceive two different
ligands has been reported (Deyoung and Clark, 2008; Shi-
nohara et al., 2012). Furthermore, a role of PXL2 in vascular
tissue development is also in line with the genetic data
showing that simultaneous mutations of the three LRR-RKs
genes (pxy-3 with pxl1 and pxl2) generate a more striking
vascular phenotype as compared to the pxy-3 plants.
Nonetheless, future studies are needed to investigate whe-
ther PXL2 function as a receptor of CLE42 to mediate plant
vascular tissue development.
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