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ABSTRACT

Antibodies have proved to be a valuable mode of ther-
apy for numerous diseases, mainly owing to their high
target binding affinity and specificity. Unfortunately,
antibodies are also limited in several respects, chief
amongst those being the extremely high cost of manu-
facture. Therefore, non-antibody binding proteins have
long been sought after as alternative therapies. New
binding protein scaffolds are constantly being designed
or discovered with some already approved for human
use by the FDA. This review focuses on protein scaf-
folds that are either already being used in humans or are
currently being evaluated in clinical trials. Although not
all are expected to be approved, the significant benefits
ensure that these molecules will continue to be investi-
gated and developed as therapeutic alternatives to
antibodies. Based on the location of the amino acids
that mediate ligand binding, we place all the protein
scaffolds under clinical development into two general
categories: scaffolds with ligand-binding residues
located in exposed flexible loops, and those with the
binding residues located in protein secondary struc-
tures, such as α-helices. Scaffolds that fall under the
first category include adnectins, anticalins, avimers,
Fynomers, Kunitz domains, and knottins, while those
belonging to the second category include affibodies,
β-hairpin mimetics, and designed ankyrin repeat pro-
teins (DARPins). Most of these scaffolds are ther-
mostable and can be easily produced in
microorganisms or completely synthesized chemically.
In addition, many of these scaffolds derive from human
proteins and thus possess very low immunogenic
potential. Additional advantages and limitations of these
protein scaffolds as therapeutics compared to antibod-
ies will be discussed.

KEYWORDS scaffold, multivalent, phage, yeast,
ribosome, antibody surrogate

INTRODUCTION

Antibodies have long been regarded as ‘magic bullets’ in
human therapy due to their ability to bind targets with high
affinity and specificity (Strebhardt and Ullrich, 2008). The
first monoclonal antibody (mAb) entered human therapy in
1986. Since then, over 62 mAbs have been approved by the
FDA as therapeutics and many new candidates are pre-
sently undergoing preclinical and clinical evaluations (Ecker
et al., 2015; Reichert, 2017). However, antibodies are not
without their limitations. For example, the large size of anti-
bodies (∼150 kDa) may impede their ability to penetrate into
tumor tissue (Chauhan et al., 2011; Shah and Betts, 2013),
and the planar binding interface makes it difficult to obtain
antibodies that bind to grooves and catalytic sites of
enzymes (Skerra, 2000). Despite its important role in pro-
longing the antibody half-life and recruiting immune effector
cells, the antibody constant region—Fc—can sometimes
give rise to adverse effects, such as antibody-dependent-
enhancement (ADE) of infection by some viruses e.g.,
Dengue virus and Zika virus (Screaton et al., 2015; Dejni-
rattisai et al., 2016; Paul et al., 2016). In addition, most mAbs
have to be produced in mammalian cells and often require
post-translational modifications, such as specific glycosyla-
tion patterns. The astronomically high cost associated with
therapeutic antibody production makes mAb-based thera-
peutics out-of-reach to most of the world’s population. Anti-
bodies are also difficult to be manipulated for drug
conjugation via the conventional conjugation and linker
chemistries, as they are too big to be synthesized chemically
and too complex to be produced in microorganisms. Finally,
nearly all the current therapeutic mAbs are of murine origin,
largely thanks to the hybridoma technology that enables the
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mouse B-cells to be immortalized and screened in clonal
fashion for antigen-specific antibodies. Unfortunately,
humans and mice are both mammals and many of our pro-
teins/receptors share high homology. Homologous regions
likely play important cellular functions and thus are pre-
served through evolution; hence, homologous regions are
likely rich in therapeutic targets. Since self-antigens are not
immunogenic for the host, it is difficult/impossible to obtain
murine antibodies targeting homologous/identical regions
from a human protein. This limitation also applies to other
mammalian immunization hosts, although it can be allevi-
ated to a large extent by generating antibodies in other non-
mammalian species.

To overcome the limitations of antibodies, both non-anti-
body binding proteins (protein fragments) and antibody
fragments (e.g., single-chain variable fragments (scFv),
fragment antigen-binding (Fab) fragments, and single-do-
main antibody fragments (nanobodies)) have been designed
and explored as scaffolds for therapeutic applications. Some
of these have already been approved by the FDA for human
use, and many are currently being evaluated pre-clinically or
in clinical trials. Like antibodies, protein fragments can exert
their therapeutic action through antagonizing receptors by
inhibition of their ligand binding site(s), or binding to ligands
to prevent their interaction with cognate receptor(s). These
molecules can also function as antidotes and neutralize
toxins or other harmful/infectious agents. The absence of an
Fc may also prove to be beneficial in some cases to avoid
the adverse effect associated with complement-dependent
cytotoxicity (CDC) or antibody-dependent cellular cytotoxic-
ity (ADCC). Unlike mAbs, protein fragments are generally
very small in size (<20 kDa) and thus may be better able to
penetrate tumors. In addition, many protein fragments exhibit
high thermostability, allowing storage at room temperature
for extended periods of time without significant loss of
activity, and can be easily produced in microorganisms or be
completely chemically synthesized, enabling facile func-
tionalization with other drug or imaging agents. The low cost
of production, combined with the ability of some molecules to
resist protease degradation and/or chemical denaturation,
makes it possible for some protein fragments to be used in
oral applications. Further, almost all protein fragments are
engineered completely in vitro, generating binders that are
not biased in any way by exposure to other molecules
in vivo. Finally, bispecific binders able to crosslink tumors
cells with immune effector cells and/or different receptors
can be easily generated from protein fragments. These bis-
pecific binders are becoming a promising new class of pro-
tein therapeutics. Although it is possible to generate
bispecific antibodies, their production is very complex, add-
ing to the already high cost of mAb production. In contrast,
multiple protein fragments can be easily linked, via genetic or
chemical linkers, to form bispecific, or even multi-specific,
binders.

Many excellent reviews on mAb-alternative protein frag-
ments have been published (Weidle et al., 2013; Jost and

Pluckthun, 2014). In this paper, we focus on protein frag-
ments that are either FDA-approved or are currently in
human clinical development with special emphasis on those
that have been engineered in vitro. These protein fragments
are considered antibody-mimetic because, like antibodies,
each protein fragment is composed of a constant region,
which stabilizes the overall protein folding, and multiple
variable regions that mediate its binding to a specific target.
We place all the existing protein scaffolds into two general
categories based on the location of the amino acids that
mediate ligand binding: i) scaffolds with ligand-binding amino
acids in exposed loops (Fig. 1A–F) and ii) those with these
amino acids scattered in secondary structural motifs, such
as α-helices (Fig. 1G–H). In the ensuing discussion, we will
first discuss the various display platforms used for protein
fragment engineering and their respective pros and cons,
followed by examples of protein fragments that fall into both
categories. Many protein fragments have been successfully
engineered using multiple display platforms. The selection of
different display platform was often based on the library size
needed, the conditions for the selection, the ease of
expression of the protein fragment, and intellectual property
considerations.

DISPLAY PLATFORMS FOR PROTEIN FRAGMENT
ENGINEERING

Generally speaking, ligand-specific protein fragments have
been engineered using a two-fold strategy: i) creation of a
library of protein variants via targeted or randommutagenesis
of the parent protein, and ii) selection of target ligand binders
via a phenotypic selection such as phage display, yeast sur-
face display or ribosome/mRNA display. The purpose of these
display platforms is to establish a physical linkage between
phenotype and genotype so that the sequences of the ligand-
binding protein fragments can be deduced.

In phage display, the protein library is displayed as a
fusion to either the phage gene 3 minor coat protein (P3),
which is present at five copies on the surface of the fila-
mentous M13 phage, or to the gene 8 major coat protein (P8)
which is present at ∼3,000 copies per phage particle (Sidhu
et al., 2000). Proteins fused to P3 and P8 are typically dis-
played on the phage particle in a monovalent and polyvalent
format, respectively. Fusion phage displaying a particular
ligand-binding protein fragment can be isolated from other
phage by their ability to bind to the ligand, a process called
“panning”. The phage that are thus selected are subse-
quently amplified in E. coli and undergo additional rounds of
panning, often at progressively increasing selection pressure
(e.g., by using decreasing concentrations of ligand for later
rounds of panning) to enrich the strongest ligand-binding
protein fragments. Phage display has been a workhorse for
protein engineering, thanks to the high stability of phage
particles as well as the straightforward selection procedure.
One limitation of phage display is its reliance on the
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transformation of E. coli with plasmids encoding the protein
fragment library. Because of this requirement, the number of
protein variants that can be subjected to the selection is
limited by the transformation efficiency of the E. coli. Most
phage displayed libraries have between 107–109 clones,
although libraries of >1010 have been achieved. In addition,
due to the prokaryotic nature of the E. coli translation and
translocation machinery, not all protein fragments can be
efficiently displayed on phage particles.

For the display of mammalian proteins that require
endoplasmic reticulum-specific post-translational processing
for efficient folding and activity, yeast has proved to be an
attractive choice. In yeast surface display, the protein frag-
ment is displayed on the surface of the yeast Saccha-
romyces cerevisiae as an N-terminal fusion to the Aga2p
mating adhesion receptor which is anchored on the yeast
cell wall via a pair of disulfide bridges to the Aga1 protein
(Boder and Wittrup, 1997). Yeast-displayed protein libraries
are typically subjected to selection using fluorescence-acti-
vated cell sorting (FACS) and/or affinity capture (Gai and

Wittrup, 2007). However, as with phage display, the diversity
of yeast display library is also limited by the efficiency with
which the encoding DNA can be introduced into the
microorganism. Most yeast-displayed libraries have 106–108

clones, although one study reported the selection of a library
of >109 clones (Feldhaus et al., 2003).

Unlike phage and yeast display, mRNA/ribosome display
is a completely in vitro technology, obviating the need to
transform cells in order to generate libraries and allowing the
creation of libraries of >1012 different members. In ribosome
display, a ternary complex composed of the translated pro-
teins, the ribosome, and its encoding mRNA is used for
selection (Dreier and Pluckthun, 2011). In mRNA display, the
translated protein is covalently attached to the mRNA
molecule via the adaptor puromycin molecule. The mRNA-
protein adduct is subsequently purified from the ribosome
and used for selection (Lipovsek and Pluckthun, 2004). After
each round of selection, PCR amplification is employed to
recover the selected mRNA to be used in the subsequent
round. This integral PCR amplification step also provides a

A                Adnectin B            Anticalin 

D           Fynomer E            Kunitz domain F       Knottin

C               Avimer

G                   Affibody H                     DARPin

Figure 1. Cartoon-structures of protein scaffolds. The structures are displayed using visual molecular dynamics (VMD)

(Humphrey et al., 1996). The loops that recognize the antigen are colored in red and the framework residues are indicated in gray.

The disulfide bridges are indicated as sticks in element color and the calcium is represented as blue spheres. (A) adnectins (pdbcode:

1ttg), (B) Anticalin (pdbcode: 3BX7), (C) Avimer (pdbcode: 1ajj), (D) Fynomer (pdbcode: 1m27), (E) Kunitz domain (pdbcode: 1kth),

(F) knottin (pdbcode: 2it7), (G) Affibody (pdbcode: 1q2n), (H) DARPin (pdbcode: 1mj0).
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convenient opportunity for the introduction of additional
diversity into the library. Both mRNA and ribosome display
have been successfully used to identify low-pmol/L affinity
binders, even after only a single round of selection (Schilling
et al., 2014). The major limitation of this approach is that
mRNA is an intrinsically unstable molecule. Since the sta-
bility of the mRNA must be maintained during the selection,
mRNA/ribosome display necessitates that the selection be
carried out under strict RNase-free conditions and at low
temperature.

In the following sections we will discuss examples of
ligand-binding protein fragments identified using phage dis-
play, yeast surface display, and ribosome/mRNA display.

CATEGORY I: LIGAND-BINDING AMINO ACIDS
IN EXPOSED LOOPS

Protein fragments with ligand-binding capacity in this cate-
gory include adnectins, anticalins (affilins), avimers, Fyno-
mers, Kunitz domains, and knottins.

Adnectins

Adnectin is a 94-amino-acid thermostable (Tm > 80°C) binding
protein fragment derived from the tenth domain of fibronectin
type III (10Fn3), a human extracellular matrix protein (Lipov-
sek, 2011). The original function of 10Fn3 in fibronectin is to
bind integrins. The molecule adopts a β-sandwich fold with
seven strands connected by six loops, similar to an
immunoglobulin domain but without any disulfide bonds.
Three of the flexible loops on one side of the protein are sur-
face-exposedandhaveproved to beaconvenient interface for
binding ligands of interest (Fig. 1A). Non-loop residues have
also been found to expand the available binding footprint
(Ramamurthy et al., 2012). Ligand-binding adnectin variants
with binding affinities in the nanomolar to picomolar range
have been selected via mRNA, phage, and yeast display
(Hackel et al., 2008; Lipovsek, 2011).

The adnectin CT-322 was engineered via mRNA display
to bind the vascular endothelial growth factor (VEGF)
receptor with an affinity of 0.06 nmol/L (Getmanova et al.,
2006). CT-322 was found to be effective at preventing tumor
growth in a mouse model of pancreatic cancer (Dineen et al.,
2008), and was PEGylated to improve its serum half-life
in vivo. In a phase I clinical trial, PEGylated CT-322 was
found to be well tolerated at doses up to 2 mg/kg and dis-
played a plasma half-life of up to 4 days (Tolcher et al.,
2011). Unfortunately, in a subsequent phase II clinical trial,
the CT-322 was found to be poorly effective, although the
side effects were acceptable (Schiff et al., 2015).

The adnectin BMS-962476 was developed via mRNA
display to bind cholesterol regulator proprotein convertase
subtilisin/kexin-type 9 (PCSK9), an important therapeutic
target for decreasing low-density lipoprotein (LDL) in cardio-
vascular disease. PEGylated BMS-962476 inhibited PCSK9
activity in vitro with an EC50 of 31 nmol/L and lowered the

cholesterol levels in animal models (Mitchell et al., 2014). In a
phase I clinical trial, BMS-962476 was found to be well-toler-
ated at doses up to 1 mg/kg and rapidly reduced free PCSK9
(>90%) and LDL levels (Stein et al., 2014).

BMS-986089 is an anti-myostatin adnectin that inhibits
myostatin and GDF-11 second messenger signaling in cells.
Myostatin is a negative regulator of skeletal muscle and
BMS-986089 was developed as a potential treatment for
skeletal muscle diseases such as Duchenne’s muscular
dystrophy (DMD) (Madireddi et al., 2016). BMS-986089 is
currently being evaluated in a phase II clinical trial
(NCT02515669).

Anticalins (Affilins)

Anticalin is a protein fragment derived from lipocalins, a
class of secreted proteins that typically transport hydropho-
bic compounds (Skerra, 2008). The anticalin scaffold adopts
a conserved β-barrel structure consisting of eight anti-par-
allel β-strands wound around a central axis and contains
160–180 amino acids (Fig. 1B). Anticalins are not glycosy-
lated and do not possess any disulfide bonds. They are
typically ∼20 kDa in size, thermostable with melting tem-
peratures >70°C and can be easily expressed in E. coli or
yeast. The ligand-binding pocket is located near the surface
of the protein and is composed of four extruding loops. A
typical anticalin library used for identifying target ligand bin-
ders contains 16–24 randomized amino acids in each loop
(Gebauer and Skerra, 2012). Ligand-specific anticalins have
been engineered via phage display and bacterial surface
display (Gebauer and Skerra, 2012).

PRS-050 is an anticalin engineered to bind vascular
endothelial growth factor A (VEGF-A) via phage display and
has been shown to block the interaction between VEGF-A
and its cellular receptor with subnanomolar IC50 values (Gille
et al., 2016). The in vivo half-life of PRS-050 was extended
by site-directed PEGylation and the resulting modified anti-
calin effectively blocked VEGF-mediated growth of tumor
xenografts in nude mice with a reduction in microvessel
density (Gille et al., 2016). In a subsequent phase I clinical
trial, PEGylated PRS-050 was found to be well-tolerated at a
dose of at least 10 mg/kg and exhibited a half-life of up to 6
days following i.v. infusion (Mross et al., 2013a).

PRS-080 is a human hepcidin-25-binding anticalin. Hep-
cidin restricts iron availability in the blood, and PRS-080 was
developed to mobilize irons trapped in iron storage cells in
certain patients with anemia of chronic disease (ACD).
PEGylated PRS-080 was found to be well-tolerated in a
phase I clinical trial with a dose of at least 16 mg/kg and a
plasma half-life of approximately 6 days following i.v. infusion
(Pieris Pharmaceuticals, 2015).

Avimers

Avimers are a class of binding protein fragments derived
from the A-domain of various cell surface receptors such as
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the low density-related protein (LRP) and very low density
lipoprotein receptor (VLDLR). Each A-domain has ∼35
amino acids (∼4 kDa) and adopts a uniform, stable structure
stabilized by calcium binding and three pairs of disulfide
bridges (Fig. 1C). The scaffold structure is maintained by 12
conserved amino acids, leaving all the remaining non-con-
served residues amenable to randomization and ligand
binding (Silverman et al., 2005). Avimers are highly ther-
mostable and have been observed to be completely active
after incubation at 50°C–80°C for two weeks (Weidle et al.,
2013). Due to their small size, avimers often consist of
multiple A-domains with each binding to a different site on
the target. Avimers composed of up to eight A-domains have
been generated and expressed soluble in the cytoplasm of
E. coli., despite the presence of three disulfide bonds per
domain (Silverman et al., 2005).

The avimer C326 (AMG220), consisting of three A-do-
mains, was engineered to bind IL-6 with picomolar affinity
(Silverman et al., 2005). This molecule was evaluated in a
phase I clinical trial (NCT00353756) for Crohn’s disease, but
further development has since been halted.

Fynomers

Fynomers are derived from amino acids 83–156 of the Src-
homology 3 (SH3) domain of FYN tyrosine kinase (Cooke
and Perlmutter, 1989). It is worth noting that FYN-SH3
domains are fully conserved between humans, mice, rats,
and gibbons (Weidle et al., 2013), making these molecules
non-immunogenic in humans. Each Fynomer is composed of
a pair of anti-parallel beta sheets joined by two flexible loops
which are the sites of ligand binding (Schlatter et al., 2012)
(Fig. 1D). Fynomers are small (∼7 kDa), thermostable (Tm

∼70°C), and can be easily expressed in bacteria (Grab-
ulovski et al., 2007).

The Fynomer 2C1 was engineered via phage display to
bind the proinflammatory cytokine interleukin-17A (IL-17A)
and was able to inhibit the activity of IL-17A in vitro with an
IC50 of 2.2 nmol/L (Silacci et al., 2014). 2C1 was subse-
quently fused to the Fc domain of a human antibody to
prolong its circulation half-life. Interestingly, the resulting
dimeric 2C1-Fc (Fc is a dimer) exhibited >100-fold improved
IC50 against IL-17A (21 pmol/L) compared to the parent 2C1
molecule and effectively inhibited IL-17A in a mouse model
of acute inflammation (Silacci et al., 2014).

Inspired by the success of the 2C1-Fc fusion, the same
group subsequently engineered FynomAb COVA322, a
fusion molecule consisting of an IL-17A-binding Fynomer
fused to the anti-TNF antibody adalimumab. FynomAb
COVA322 was designed to simultaneously inhibit the activity
of both TNF and IL-17A for treatment of rheumatoid arthritis
(Silacci et al., 2016). Bispecific FynomAb COVA322 inhibited
IL-17A and TNF with in vitro IC50 values of 121 pmol/L and
169 pmol/L, respectively and was effective in vivo (Silacci
et al., 2016). COVA322 is currently being evaluated in a
phase I/II clinical trial (NCT02243787).

Kunitz domains

Kunitz domains are ∼60-amino-acid peptides (∼7 kDa)
derived from the active motif of Kunitz-type protease inhibi-
tors such as aprotinin (bovine pancreatic trypsin inhibitor),
Alzheimer’s amyloid precursor protein, and tissue factor
pathway inhibitor (Bode and Huber, 1992). The hydrophobic
core of the Kunitz domain is composed of a twisted two-
stranded antiparallel β-sheet and two α-helices stabilized by
three pairs of disulfide bonds (Fig. 1E). Residues in the three
loops can be substituted without destabilizing the structural
framework (Hosse et al., 2006).

Ecallantide (DX-88), a Kunitz domain-derived inhibitor of
kallikrein (a subgroup of serine proteases), was approved by
the FDA in 2012 for treatment of hereditary angioedema
(HAE), a rare, autosomal dominantly inherited blood disorder
that manifests as an episodic swelling of the body (Schnei-
der et al., 2007; Cicardi et al., 2010; Levy et al., 2010). Most
HAE is caused by the malfunction of the plasma C1 kallikrein
inhibitor protein, and can thus be treated with a substitute
kallikrein inhibitor—Ecallantide—during acute HAE attacks
(Nussberger et al., 1998). DX-88 was derived from the
Kunitz domain of lipoprotein-associated coagulation inhibitor
(LACI) and was engineered to bind kallikrein with low pico-
molar affinity via phage display (Williams and Baird, 2003).

The Kunitz domain peptide Depelstat (DX890) is a potent
and selective inhibitor of human neutrophil elastase
(Kd = 1 pmol/L) (Roberts et al., 1992). Inflammation mediated
by neutrophil elastase contributes to lung damage in cystic
fibrosis. DX890 was shown to reduce neutrophil trans-ep-
ithelia migration and inflammation ex vivo (Dunlevy et al.,
2012) and has been evaluated in a phase II clinical trial for
the treatment of cystic fibrosis (NCT00455767).

Knottins (Cysteine knot miniproteins)

A knottin is an extremely stable 30-amino-acid protein fold
(<4 kDa) composed of three anti-parallel β-strands con-
nected by loops of variable length and multiple disulfide
bonds (Fig. 1F). A unique characteristic of knottins is the so-
called cysteine knot where a disulfide bond crosses the
macrocycle formed by the other disulfides. A subclass of
knottin is the cyclotides in which the N- and C-terminus of the
protein is joined post-translationally to form a circular mole-
cule (Craik et al., 2010). The cysteine knot framework pro-
vides knottins with extraordinary thermic, proteolytic, and
chemical stability (Colgrave and Craik, 2004; Werle et al.,
2006; Kintzing and Cochran, 2016b). The melting tempera-
ture for most knottins is >80°C. The high proteolytic stability
confers knottins with the ability to survive the harsh condi-
tions of the gut, thus making these molecules viable candi-
dates for oral administration (Wong et al., 2012; Thell et al.,
2016). The small size and high stability of knottins allows the
molecules to be conveniently produced via chemical syn-
thesis and high-yield expression in microbial hosts (Sch-
moldt et al., 2005; Avrutina, 2016). Naturally occurring
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knottins are found in a wide range of species including
plants, animals and fungi, and mediate a wide range of
functions including protease inhibition, ion channel blockade,
and antimicrobial activity (Zhu et al., 2003; Gracy et al.,
2008; Aboye et al., 2015; Tam et al., 2015). The surface-
exposed loops of knottin have been extensively engineered
for ligand binding (Kintzing and Cochran, 2016a).

Ziconotide (marketed as Prialt) is a naturally derived
knottin peptide found in the venom of the fish-eating marine
cone snail, Conus magnus. This peptide is a component of
the venom used by the animals to immobilize its prey.
Ziconotide was approved by the FDA in 2004 for the treat-
ment of severe chronic pain (Smith and Deer, 2009). Zico-
notide binds and antagonizes the N-type voltage-sensitive
calcium channels (NVSCCs) abundant in nerves involved in
pain signaling with low picomolar affinity (Kristipati et al.,
1994). In a rat model of neuropathic pain, Ziconotide was
found to be more effective than morphine (Wang et al., 2000;
Smith and Deer, 2009). Ziconotide is approved for intrathecal
administration to patients who experience severe chronic
pain and who are refractory to other treatments (Rauck et al.,
2006; Wallace et al., 2006).

Linaclotide (marked as Linzess) is another naturally-
derived knottin that was approved by the FDA in 2012 to
treat Irritable Bowel Syndrome with Constipation (IBS-C) and
Chronic Idiopathic Constipation (CIC) (Layer and Stan-
ghellini, 2014). Linaclotide is a high-affinity agonist of
guanylate cyclase-C (GC-C) (Chey et al., 2012). Activation
of GC-C in the intestinal lumen initiates a signal transduction
cascade that results in the secretion of chloride and bicar-
bonate. In rodent models, oral administration of linaclotide
resulted in increased gastrointestinal transit and reduced
visceral pain (Bryant et al., 2010; Eutamene et al., 2010).

CATEGORY II: LIGAND-BINDING AMINO ACIDS
IN SECONDARY STRUCTURE

Protein fragments with ligand-binding ability in this category
that are currently under clinical development include affi-
bodies, β-hairpin mimetics, and DARPins.

Affibodies

Affibodies are protein fragments derived from the Z-domain
of the Ig-binding region of Staphylococcus aureus protein A
(Nygren, 2008) which adopt a three-helix bundle motif and
contain no cysteines (Fig. 1G) (Nord et al., 1997). These
molecules possess high thermal and proteolytic stability and
can be easily expressed in E. coli. The ligand-binding sur-
face is composed of 13 solvent-accessible residues scat-
tered among two of the helices. The small size (58 amino
acids, 7 kDa) of affibodies allow them to be produced by
chemical synthesis. Affibodies exhibit rapid extravasation
and rapid tumor penetration and unbound affibodies are
quickly cleared from healthy organs and tissues, making

them promising reagents for radionuclide imaging (Ahlgren
and Tolmachev, 2010).

The affibody ABY-025 was engineered via phage display
and affinity maturation to bind HER2 with low picomolar
affinity (Nord et al., 1996). The scaffold region of ABY-025
was subsequently optimized to provide improved thermal
and chemical stability and hydrophilicity (Feldwisch et al.,
2010). In a phase I/II clinical trial, 68Ga-gallium labelled
ABY-025 ([68Ga]ABY-025) was able to accurately quantify
HER2-receptor status in metastatic breast cancer via posi-
tron emission tomography (PEG) imaging (Sandstrom et al.,
2016; Sorensen et al., 2016).

β-Hairpin mimetics

β-Hairpin mimetics, as the name suggests, comprise a single
β-hairpin motif designed to reproduce the conformational
and electronic properties of functional native protein epitopes
(so-called protein epitope mimetics (PEM)) (Fasan et al.,
2004). PEMs are often cyclic, very small in size (1–2 kDa)
and contain multiple disulfide bonds to stabilize the protein
fold.

POL5551 is a β-hairpin mimetic selected to antagonize
CXCR4 for the mobilization of hematopoietic stem cells
(Karpova et al., 2013). High CXCR4 expression levels also
correlate with tumor metastasis, and POL5551 was later
shown to reduce the metastasis of triple-negative breast
cancer in mice when combined with eribulin, a chemother-
apeutic microtubule inhibitor (Xiang et al., 2015). POL6326,
an analogue of POL5551, is currently being evaluated for
breast cancer treatment in a phase I clinical trial in combi-
nation with eribulin (NCT01837095).

DARPins

Designed ankyrin repeat proteins (DARPins) are artificial
protein scaffolds based on ankyrin repeat (AR) proteins
which mediate diverse protein-protein interactions in virtually
all species (Bork, 1993). Most natural AR proteins contain
4–6 AR domains stacked onto each other (Walker et al.,
2000). DARPins contain 2–3 internal ARs sandwiched
between the N- and C-terminal capping repeats. Each
internal AR module consists of 27 defined framework resi-
dues and 6 potential protein-binding residues that form a
β-turn followed by two antiparallel helices and a loop con-
necting to the β-turn of the next repeat (Binz et al., 2003)
(Fig. 1H). DARPins are small in size (14–18 kDa, depending
on the number of internal ARs), thermostable (Tm up to
90°C), resistant to proteases and chemical denaturants, and
can be expressed to very high levels in E. coli (up to 200 mg
per liter of shake flask culture) (Pluckthun, 2015). Last but
not least, DARPins have a relatively large binding interface
and have been engineered, mostly via phage display and
ribosome display, to bind a wide range of targets with
pmol/L–nmol/L affinities (Pluckthun, 2015).
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The DARPin MP0112 was engineered to bind VEGF-A
with a Kd of 1–4 pmol/L (Souied et al., 2014b). MP0112 was
tested in a series of clinical trials for treating age-related
macular degeneration (AMD) and diabetic macular edema
(DME), both of which are eye conditions that can cause
significant vision impairment. Although the pathogenesis of
these diseases is not completely understood, VEGF antag-
onists have been shown to retard the disease progression
(Ferrara et al., 2006). MP0112 demonstrated encouraging
results in phase I/II studies. In the DME trial, MP0112 was
well-tolerated in patients and exhibited an ocular half-life of
more than 13 days (Campochiaro et al., 2013). A single
intraocular injection of 0.4 mg MP0112 neutralized VEGF in
aqueous humor for 8–12 weeks (Campochiaro et al., 2013).
Inflammation was reported for some patients, ostensibly due
to impurities present in the protein preparation purified from
the E. coli culture (Campochiaro et al., 2013). Similarly, in the
AMD trial, MP0112 was effective for up to 8 weeks following
a single intraocular dosage with inflammation reported in
some patients (Souied et al., 2014a). Subsequently, the
protein purification process was improved, and MP0112 was
reformulated to contain a PEG molecule and renamed as
Abicipar Pegol. Phase I/II trials of Abicipar Pegol showed
lower incidence of inflammation when compared to the trials
using MP0112. Abicipar Pegol is currently being evaluated in
two phase III trials for AMD (NCT02462486, NCT02462928).

MP0250 is a multi-DARPin trispecific molecule able to
neutralize the activities of VEGF and hepatocyte growth
factor (HGF) simultaneously. The molecule is also able to
bind human serum albumin (HSA), conferring it with an
increased serum half-life and potentially enhanced tumor
penetration. In a phase I clinical trial, MP0250 was found to
be well-tolerated after i.v. infusion at a dose of at least
8 mg/kg and a median half-life of ∼12 days (Molecular
Partners, 2015; Rodon et al., 2015).

MP0274 is another multimer composed of two DARPins
that bind to distinct epitopes on the human epidermal growth
factor receptor 2 (HER2) and inhibits downstream HER2-
and HER3-mediated signaling. MP0274 demonstrated good
efficacy in preclinical models (Reichert et al., 2014) and a
phase I trial is planned for 1Q 2017 (Table 1).

OUTLOOK

The existence of several non-antibody protein fragments in
clinical studies certainly points to the promise of these
molecules in human therapy. Nonetheless, there are chal-
lenges associated with using non-antibody binding proteins
as therapeutics. One is immunogenicity, as all non-host
proteins are potentially immunogenic and carry the risk of
being rejected by the host. However, even fully human
antibodies can be immunogenic in human patients, as found
for adalimumab (Humira) (Bender et al., 2007), and each
individual case needs to be evaluated independently. Not
surprisingly, most of the protein fragments currently under

clinical development are either derived from human proteins
(e.g., adnectins, anticalins, avimers, Fynomers, and Kunitz
domains) or possess a low immunogenic potential (e.g.,
DARPins (Pluckthun, 2015) and knottins (Moore and
Cochran, 2012)) likely due to inefficient peptide-MHC pre-
sentation to the immune system (Maillere et al., 1995).
Molecules that are potentially immunogenic (e.g., affibodies)
are being largely developed for short-term imaging rather
than for therapeutic applications.

Another concern with antibody mimetics is the short
in vivo half-life. Most protein fragment therapeutics fall below
the 70 kDa threshold for glomerular filtration (Caliceti and
Veronese, 2003). Several strategies have been developed to
extend the protein fragment serum half-life, such as PEGy-
lation (Veronese and Pasut, 2005; Bailon and Won, 2009)
and association or covalent conjugation with serum albumin
(Smith et al., 2001; Dennis et al., 2002; Nguyen et al., 2006;
Holt et al., 2008; Elsadek and Kratz, 2012) or an antibody Fc
domain (Kontermann, 2011; Angelini et al., 2012). However,
none of these strategies are able to extend the half-life of
protein fragments to that of native serum proteins such as
antibodies and serum albumin, both of which have a serum
half-life of ∼21 days (Chaudhury et al., 2006). While a short
half-life is not necessarily a disadvantage for the treatment of
acute conditions, it represents a challenge for chronic or
recurring illnesses.

Finally, like antibodies, most protein fragments cannot be
administered orally. The acidic environment of the stomach,
in addition to the activity of proteases in the stomach and
small intestine, make it difficult for most protein fragments to
make it through the digestive tract intact. Exceptions are
molecules that possess extremely a high proteolytic and
chemical stability, such as knottins (Kolmar, 2009) and
potentially DARPins.

Despite the limitations of non-antibody protein binding
domains, the challenges associated with therapeutic mAb
development, such as issues with host selection for gener-
ation of mAbs, humanization, high cost of manufacture,
potentially poor tissue penetration, and ADE of viral infec-
tion, etc., ensures that therapeutic protein substitutes for
mAbs will continue to be sought after and developed for the
foreseeable future. In addition, mAb therapeutics has a high
manufacturing cost and is currently mostly targeted to
patients living in developed countries (Kelley, 2009; Sparrow
et al., 2017). The manufacturing cost of non-antibody protein
fragments can be significantly lower, largely stemming from
their production in microbial hosts. The development of non-
antibody protein therapeutics may therefore be more eco-
nomically feasible for patients, especially those suffering
from viral or bacterial infection, in developing countries.
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ABBREVIATIONS

ACD, anemia of chronic disease; ADCC, antibody-dependent cellular

cytotoxicity; ADE, antibody-dependent-enhancement; AMD, age-

related macular degeneration; CDC, complement-dependent cyto-

toxicity; DARPins, designed ankyrin repeat proteins; DMD, Duch-

enne’s muscular dystrophy; DME, diabetic macular edema; Fab,

fragment antigen-binding; GC-C, guanylate cyclase-C; HAE, hered-

itary angioedema; HER2, human epidermal growth factor receptor 2;

HGF, hepatocyte growth factor; HSA, human serum albumin; LACI,

lipoprotein-associated coagulation inhibitor; LDL, low-density lipopro-

tein; LRP, low density-related protein; mAb, monoclonal antibody;

PCSK9, proprotein convertase subtilisin/kexin-type 9; PEG, positron

emission tomography; PEM, protein epitope mimetics; scFv, single-

chain variable fragments; SH3, Src-homology 3; VEGF, vascular

endothelial growth factor; VEGF-A, vascular endothelial growth factor

A; VLDLR, very low density lipoprotein receptor
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