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ABSTRACT

The High Five cell line (BTI-TN-5B1-4) isolated from the
cabbage looper, Trichoplusia ni is an insect cell line
widely used for baculovirus-mediated recombinant pro-
tein expression. Despite its widespread application in
industry and academic laboratories, the genomic back-
ground of this cell line remains unclear. Here we
sequenced the transcriptome of High Five cells and
assembled 25,234 transcripts. Codon usage analysis
showed that High Five cells have a robust codon usage
capacity and therefore suit for expressing proteins of
both eukaryotic- and prokaryotic-origin. Genes involved
in glycosylation were profiled in our study, providing
guidance for engineering glycosylated proteins in the
insect cells. We also predicted signal peptides for tran-
scripts with high expression abundance in both High
Five and Sf21 cell lines, and these results have impor-
tant implications for optimizing the expression level of
some secretory and membrane proteins.

KEYWORDS High Five cell line, baculovirus-insect cell
system, codon usage, glycosylation, signal peptide

INTRODUCTION

The baculovirus-insect cell expression system is one of the
most popular platforms for recombinant protein expression. It
is widely used for protein structure and function studies in
academic laboratories, and facilitates massive protein pro-
duction in industry (Kost et al. 2005). The two common cell

lines in this binary system are Sf21 (IPLB-Sf21AE) from
Spodoptera frugiperda (Vaughn et al. 1977), and High Five
(BTI-TN-5B1-4) from ovarian tissues of Trichoplusia ni
(cabbage looper) (Wickham et al.; Davis et al. 1992).

Protein expression in insect cells has several advantages
such as high expression level and easy manipulation. In
addition, difficult proteins especially eukaryotic proteins that
need posttranslational processing usually fold better in insect
cells than in the E. coli expression system (Brondyk 2009).
However, compared to the mammalian cells, post-transla-
tional modifications are still limited in insect cells, with glyco-
sylation as the most significant example (Jarvis 2003; Kost
et al. 2005). Due to the defect in glycosylation, functions of
some recombinant glycoproteins are impaired (Xu and Ng
2015). For example, the insect cells cannot produce sialylated
N-linked glycans. In the past two decades, various efforts were
made to import the mammalian glycosylation pathway related
genes into the insect cells to engineer the required glycosy-
lation modification (Castilho 2015). For example, Hollister first
reported in 1998 that an engineered Sf9 cell line expressing
the B4GALT1 gene could produce foreign glycoproteins with
terminally galactosylated N-glycans (Hollister et al. 1998). It
was also reported in 2001 that both Sf9 and High Five cells
were engineered to produce sialylated proteins by adding the
ST6GAL1 gene (Hollister and Jarvis 2001; Breitbach and
Jarvis 2001). Hollister et al. (Hollister et al. 2002) later trans-
formed a set of other genes to generate the SfSWT-1 cell line
which produce biantennary, terminally α-2,6- and α-2,3- sia-
lylated N-glycans. More work has been recently done to obtain
more powerful insect cell lines.

Next generation sequencing technology is widely used
recently in biological studies. Genomes and transcriptomes of
different species are sequenced, which generate high-input
information for genomic studies and molecular modifications.
We believe similar information can also be explored to provide
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guidance to engineer new strains of insect cell line for
expressing proteins with mammalian type of posttranslational
modifications. Genome and transcriptome of Sf21 cell line have
already been reported in 2014 and 2015, respectively (Kakumani
et al. 2014; Kakumani et al. 2015); however, the global
genomic information of the High Five cell line is still unknown.

We constructed and sequenced an mRNA library of the
High Five cell line, assembled a reference transcriptome for
function and expression studies. We analyzed some protein-
expression-related problems by comparing our High Five
transcriptomewith the reportedSf21 transcriptome (Kakumani
et al. 2015). In addition, we extracted codon usage information
from their coding sequences and compared it with other
expression systems and model species. We also annotated
transcripts that may have glycosylation-related functions, and
evaluated their expression abundance to generate the global
view of glycogenes in High Five and Sf21 cell lines. High
expression transcripts, which have predicted signal peptide
sequences, were analyzed for predicting highly efficient signal
peptide sequences for secretory protein expression.

RESULTS AND DISCUSSION

Reference transcriptome assembly

Considering the genome size of several reference-ready
insects, a total 49.5 million 101 bp paired-end reads were
sequenced and yield 4.95 Gb bases raw data, 48 million
clean reads were kept after low quality reads were filtered.
After reads trimming with Trimmomatic, we used Trinity
pipeline to do the de novo transcriptome assembly and
obtained 31,068 transcripts with an N50 value of 2,276 bp
(Haas et al. 2013; Bolger et al. 2014).

In total, 39.4 Mb bases are assembled and the average
transcript length is 1,269 bp. To reduce the redundancy of the
assembly, cd-hit-est was used and transcript number was
reduced to 25,234 under 90% sequence identity threshold.
These transcripts data sets are the so-called ‘unigene’.
13,732 coding peptide sequences are predicted with Trans-
Decoder. Detailed statistics numbers are shown in Table 1.

All clean reads have been submitted to NCBI SRA data-
base under accession number SRP068276. Assembly ver-
sion in this paper has been submitted to NCBI TSA database
(GEEM01000000).

Assembly assessment

To evaluate the assembly quality, we employed several
strategies for quality assessment. First, we used bwa
(v0.7.10) (Li and Durbin 2010) to align all clean reads back to
the assembly. 97.4% of the reads could be aligned and
95.3% are properly paired, indicating that the completeness
of our assembly is high and very reliable. All transcripts were
then aligned to SwissProt to check the proportion of tran-
scripts that may be full-length or near full-length. As shown in
Fig. 1A, about 6000 transcripts, with more than 10% of its
contig length, could be aligned to a homolog in SwissProt.
Among them, about 1/3 of the transcripts are fully aligned
and more than 5000 have at least 30% sequence overlap-
ping with known homolog. The result could be underesti-
mated as the homologs of different species’ genes have
different proportion in the SwissProt database, but we
believe our data reached our expectation.

Taking expression values into consideration, we recalcu-
lated the N50 value after low expression contigs were
eliminated (Fig. 1B) and plotted expression value distribution
pattern in Fig. 1C. Ex in Fig. 1B means a subset of top x%
highly expressed transcript, the ExN50 reached the max
length at E95, showing that 8,147 transcripts are in the top
95% expression subset with the minimum TPM of 6.1. From
this, we can conclude from these data that most of the
extremely high expression transcripts in High Five cells are
in the range from 600 to 1000 bp. Longer transcripts have
more regular expression level. As shown in Fig. 1C, the
transcript number was reduced to 10,047 after transcripts of
low TPM values (below 5) were eliminated.

Function annotation

To annotate functions of transcripts and coding peptides, we
searched homologous genes in SwissProt, TrEMBL90 and
NCBI nr databases with blast. Among the 25,234 transcripts,
13,492 got blast hits in nr database, 9,639 and 13,767 have
similar sequences in SwissProt and TrEMBL90 database,
respectively. With 13,732 coding peptides, 9,427 and 12,198
got alignments in SwissProt and TrEMBL90 database,
respectively.

While executing GO annotation and EggNOG annotation,
we also used protein sequence predicted from published

Table 1. Assembly statistics information

Raw assembly Duplicate removed
assembly

Trinity ‘genes’ 27,389 24,000

Trinity transcripts 31,068 25,234

GC content (%) 40.84 40.71

Median contig length (bp) 722 622

Average contig length (bp) 1269.6 1160.9

Total assembled bases (bp) 39,444,068 29,294,166
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Sf21 transcriptome data with the same analysis procedural.
In High Five transcriptome, 13,447 transcripts have been
annotated for GO terms and 13,459 have been annotated in
EggNOG database. More specific function classification data
are shown in Fig. 2 and Fig. 3, and detailed annotations for
each transcript are described in supplemental file S1. From
the global pattern of these figures, we can tell that the dif-
ferences in GO terms and EggNOG categories between
High Five and Sf21 cells are quite similar. Transcript num-
bers are higher for some function classes, including those
related to intracellular trafficking, secretion, vesicular trans-
port, posttranslational modification, protein turnover, tran-
scription, translation, etc. Possessing plentiful genes with
these functions make these insect cell lines an ideal host for
protein production.

Codon usage among recombinant protein expression
systems

Among different organisms, synonymous codons are usually
utilized with different frequencies; a phenomenon generally
referred to as the ‘codon usage bias’. Codon usage bias is a
major factor that affects the level of recombinant protein
expression (Holm 1986). We collected CDS sequences from
the Sf21 and High Five cells and compared their codon
usage preference to other commonly used expression hosts,
including the prokaryotic system E. coli BL21, the eukaryotic
expression system S. cerevisiae and mammalian system
CHO. We also compared the codon preference of insect
cells with five other species including human, mouse, dro-
sophila, zebrafish and arabidopsis. RSCU (relative synony-
mous codon usage) values are used to compare the use of
synonymous codons. RSCU values of all amino acids in 10

species’ CDS sequence were calculated separately for
downstream studies as shown in Fig. 4.

With the characteristic of RSCU value, all x synonymous
codon RSCU values of an amino acid always get a sum up
value equals to x. For amino acids only encoded by one or two
codons, there is no extreme distribution in it, but others are
quite different. We calculated the RSCU range value of a set of
codon related to one amino acid. By comparing this value, we
can tell in which species this set of codon have greater bias.
For example, the range value of arginine, isoleucine, leucine
and proline in BL21 reached 2.29, 1.32, 2.81 and 1.63, while
the minimum codon’s RSCU is only 0.13, 0.21, 0.21 and 0.49.
This situation exactly indicates that optimization of codon
usage is of great significance. For instance, if BL21 is used to
produce recombinant protein, failure to avoid these minimum
codons may dramatically reduce the expression level.

In comparison with the range and standard deviation
values in all species, no matter which amino acid you are
using, both High Five and Sf21’s range value are at a rela-
tively low level. The homogeneity of codon usage in bac-
ulovirus-insect system could be an advantage for protein
expression. Coding sequence cloned from most species
could be normally expressed in insect cells without codon
optimization. This robust property of codon usage in bac-
ulovirus-insect system made it a good platform for both
eukaryotic and prokaryotic recombinant protein expression.
But some previous publications claim that codon with lower
RSCU value is intended to slow down the translation speed
in order to produce well-folded proteins (Chaney and Clark
2015). More experimental evidence is required to show
whether the usage of codon with relative higher RSCU val-
ues could become a disadvantage for expression of proteins
of complex folding.
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Figure 1. Assembly quality assessment. (A) Full-length transcript assessment. Bin on x-axis represent the percentage of the hit’s

length included in the alignment to the Trinity transcript. Left y-axis with bar plot is the transcript count in each bin and right y-axis with

point plot is the accumulate count below that bin. (B) N50 of subset of transcript by decreasing the expression level. Ex is the top most

expressed transcripts that represent x% of the data. ExN50 is the length of a transcript while the total length of transcripts shorter that

it reached 50% of total length of all transcripts in this dataset. (C) Transcript count with a threshold of negative minimum TPM value.
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Glycogene profile in protein expression insect cells

Post-translational modification is one of the most important
characteristics of baculovirus-insect expression system. But
the truncated N-glycosylation pathways in insect cells limit its
application on some glycoprotein expression (Jarvis 2003).
Several glyco-engineering modifications have been reported
in the past two decades. Some modifications require impor-
tation of glycogenes into baculovirus-insect system. Glyco-
sylation is mediated with complicated pathways and a number
of genes are involved. Without a global gene map of the
insect cells, we cannot thoroughly understand glycosylation
related problems. Since GGDB and CAZy databases included
genes associated with glycan synthesis procedural, we used
them as references to find homologs of glycogenes in our
High Five transcriptome and previous Sf21 transcriptome.

Here we identified 69 glycogenes in the High Five tran-
scriptome and 72 in Sf21, with an overlap of 66 genes.
Those genes are marked in blue with their expression value
in Fig. 5A, and detailed informations are described in sup-
plemental file S2. Glycogenes can be classified into several
types according to their functions. Total gene counts of each
type in High Five and Sf21 are shown in Fig. 5B. Insect cells
have more or less homologs among most types. But for
sialyltransferases and N-acetylgalactosaminyltransferases,
no similar transcript was found in these two cell lines. That is
the main reason why baculovirus-insect cannot produce
complete mammalian N-glycosylation proteins. O-glycan

modification is more complicated and not well studied. From
the gene matrix, we found that some O-glycosylation
required enzymes are detectable, such as OGT, POFUT1/2,
XYLT1, POMT2, etc. Previous study suggests that O-man-
nosylation in insect species may occur more frequently than
what is currently believed (Vandenborre et al. 2011).
Understanding the profile of glycogenes in insect cells would
be helpful for more detailed research on glycosylation.

We also compared the glycogenes’ functioning mecha-
nism and structure status in High Five and Sf21 (Fig. 5C).
More than 50% of the glycosyltransferases function as
inverting mechanism by catalyzing group transfer with
inversion at anomeric reaction center of substrate, and less
than 30% are for retentions. About 30% glycosyltransferase
consist of two closely abutting β/α/β Rossmann domains,
20% consist of two β/α/β Rossmann domains that face each
other and is flexibly linked. Remaining part have not yet been
experimentally determined or studied (Lairson et al. 2008).

Here we complemented the glycogene database with
data from baculovirus-insect expression system related cell
lines. Our data would be valuable for introducing supple-
mental mammalian glycogesnes into insect cell lines and
more efficiently modifying their glycosylation properties.

Highly expressed signal peptide containing genes

Baculovirus-insect system is a good platform for secretory
protein expression. When there is a signal peptide fused to

High Five
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Figure 2. Gene Ontology of High Five and Sf21 transcriptome. Summarized in three main GO categories: Cellular component,

Molecular function and Biological process. Right y-axis is the transcript count in that function item, left y-axis is the corresponding

percentage of transcripts number.
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the recombinant protein, product usually secreted to the out-
side environment through the secretory pathway. Optimization
of signal peptide would be helpful to get a better yield (Olczak
and Olczak 2006). Here we used SignalP software (Petersen
et al. 2011) to predict all possible signal peptide in all protein
sequences, and then sorted them with their transcript
expression value. Fig. 6 showed all predicted transcripts that
may have signal peptide sequence in High Five and Sf21
transcriptome. We identified signal peptide sequences from
top 100 expressed transcripts and believe they are good
candidates for higher protein production. Related peptide
sequence, CDS sequence and functional annotation are
described in supplementary file S3. Because higher expres-
sion value usually means higher protein amount, secretion
efficiency could be closely linked with the amount of the signal
peptide containing protein. Moreover, signal peptide
sequence from insect itself is of the best choice because
endogenous secretory signal peptide is more efficient than
exogenous signal peptides (von Heijne and Abrahmsén 1989;
Soejima et al. 2013). Combined with expression value and
corresponding function of these proteins, we believe this
approach would be useful and simplify the complexity of
finding good signal peptides for protein expression.

MATERIALS AND METHODS

RNA extraction and library construction

High Five cell line in this study was purchased from Life technolo-

gies, USA. Cells were cultured in serum free medium containing

0.5% Penicillin-Streptomycin (Gibco 15140-122) for 24 h at 27°C in

suspension at a shaking speed of 110 rpm. When cell density

reached 2.4 × 106/mL, 2 × 107 cells were collected by centrifugation.

Total RNA was extracted with QIAGEN RNeasy Mini Kit (QIAGEN,

74104) immediately after cell collection. RNA quality was examined

using Agilent 2100 RNA chip (standard setting). Poly-A tailed RNA

was enriched and used to construct sequencing library with Illumina

TruSeq RNA Sample Prep Kit (Illumina, RS-122-2001), following

standard instruction. RNA-seq library was sequenced on Illumina

HiSeq 2000 platform.

Assembly and statistics

After we got the raw reads, quality control was performed to remove

poor-quality reads with in-house QC script. Then we used Trimmo-

matic (v0.32) (Bolger et al. 2014) software to trim low quality ends of

all reads. Reference transcriptome was assembled with trimmed

reads using Trinity (v2.0.6) (Grabherr et al. 2011; Haas et al. 2013).
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To reduce the assembly redundancy, cd-hit-est (v4.6.1) (Fu et al.

2012) was used to cluster reads with 90% identity. At this time, the

remaining contigs are the so called ‘unigenes’. Coding peptide

sequences were predicted with TransDecoder.

Weused theSwissProt database to check the integrity of transcripts

to evaluate the quality of our assembly result. All transcript sequences

were aligned toSwissProt using blastx (Camachoet al. 2009), and only

the most similar target was kept with the e-value cutoff of 1 × 10−20.

Length coverage of aligned transcript was examined (Fig. 1A).

Function annotation

Function annotation was performed at both transcript and protein

level. All transcripts were aligned to SwissProt, TrEMBL90 and NCBI

nr database with blastx (Camacho et al. 2009; UniProt Consortium

2015). Predicted protein sequences were aligned to SwissProt,

TrEMBL90 and EggNOG 4.1 with blastp (Powell et al. 2014). We

also aligned protein sequences to Pfam28 database with hmm-

search (Finn et al. 2014). Subsequently, we annotated Gene

Ontology (GO) and related pathways with blast2go and KOBAS

(Conesa and Götz 2008; Xie et al. 2011). The GO annotation is

presented in figure with WEGO (Ye et al. 2006). We also used

SignalP (v4.1) (Petersen et al. 2011) for signal peptide prediction.
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Figure 4. Codon usage of 20 amino acids across 10 different species. Each subplot is an amino acid, x-axis is different species

and y-axis is the RSCU value of codons coding that amino acid.

cFigure 5. Glycogene profile of High Five and Sf21 cell

line. (A) Heatmap represents the gene constituent of each

species. Blue mark of Sf21 and High Five showed the

expression value of each gene. Red mark only represent

they have this gene. (B) Bar plot of glycogene categories.

(C) Ring plot representing the properties of glycogenes in

High Five and Sf21 cell lines.
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Since some protein sequences are 5′ truncated or predicted starting

from an upstream point, we manually checked the prediction of top

expression of transcripts containing signal peptides.

To compare the constituent of glycogenes, we collected glycogene

sequences from GGDB as reference (Narimatsu 2004). Published Sf21

transcriptome was downloaded from TSA database with accession No.

GCTM00000000 (Kakumani et al. 2015). Protein sequences were

aligned to this reference with blastp. Blast results of glycogenes were

manually checked by aligning sequences to the TrEMBL90 and nr

databases, to eliminate false positive hits. Classification by function,

mechanism and structure were based on information from GGDB and

CAZy database (Narimatsu 2004; Lombard et al. 2014).

Codon usage evaluation

We used our predicted coding sequences in codon usage evalua-

tion. CDS sequences from other species were downloaded from

Ensembl and NCBI genome databases. Only those sequences

longer than 100 amino acids (300 bp CDS sequence) were used for

calculation. All codons were counted with our script by shifting a

simulated reading frame from 5′ end to 3′ end. With the count data of

all codons, we calculated RSCU value according to the formula as

described (Cannarozzi and Schneider 2012).

Expression analysis

To evaluate the transcript abundance, Bowtie (v1.0.0) and RSEM

(v1.2.15) were used for sequence alignment and calculation of TPM

(Transcripts Per Million) and FPKM (Fragments Per Kilobase of

transcript per Million mapped reads) (Langmead et al. 2009; Li and

Dewey 2011). This value could measure the transcripts abundance

with transcript length, thus we can compare it among different genes

or samples.
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