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Analysis of the preferences for splice codes
across tissues

Dear Editor,

Alternative splicing (AS) is a post-transcriptional process that
can add complexity to proteome greatly by producing multi-
ple different mature transcripts from the same pre-RNA
(Black, 2003). Ever since its discovery, multiple kinds of
different AS types have been identified, for example, exon
skipping (or cassette exon), intron retention, alternative 3′/5′
splice site (SS) and so on (Wang et al., 2008). Among them,
the exon skipping event is expected to be the most abundant
(Black, 2003). By applying different kinds of large scale data,
such as exon array and EST, lots of progresses have been
made. Recently, with the development of high throughput
RNA-sequencing technology, our knowledge about AS has
been further exploded (Wang et al., 2008).

Four elements are primarily needed for splicing, which are
the 5′ and 3′ SS (typical GT/GC at the 5′ end of intron, and
AG at the 3′ end of intron), the branch site (usual a ‘A’ within
intron near the 3′ SS), and the polypyrimidine tract which is
an region enriched of pyrimidines (C or T) between branch
site and 3′ SS. During the splicing process, several small
nuclear RNAs and more than 100 proteins are incorporated,
forming many associated complexes (snRNPs), the combi-
nation of which is also called “spliceosome” (Matlin et al.,
2005). These snRNPs can recognize and bind with these
sites, further mediate the removal of introns and the joint of
exons.

In addition to these sites, plenty of other cis-acting ele-
ments or motifs have been identified to be associated with
the splicing activity of genes. These elements or motifs, or
splicing regulation elements (SREs), include well docu-
mented or predicted exon splicing enhancers and silencers
(ESEs and ESSs), and intron splicing enhancers and silen-
cers (ISEs and ISSs). Some clarified motifs such as YCAY
clusters, CU-rich sequences and [U]GCAUG can bound
directly with splicing factors, such as Nova, PTB, Fox pro-
teins and so on, and promote or repress the splicing pro-
cesses. At the mean time, hundreds of other motifs are
predicted or experimentally supported to be associated with
splicing with little or no relevant information of trans-acting
factors.

Given such high abundance of splicing influencing ele-
ments, one may wonder how do they interact with each

other, and function as a whole to determine the splicing or
AS processes. Xiao, X. et al. (Xiao et al., 2007) found that
several elements, such as 5′ SS with ESEs and others,
evolve in a compensatory manner. Other works also indi-
cated co-regulation among different cis- elements, together
with trans- splicing factors (Wang et al., 2012). Another key
question is that since AS is mostly tissue-specific, then how
are these elements chosen, or used preferentially across
different tissues? Castle, J. C et al. (Castle et al., 2008) used
data of 48 human cell lines or tissues, and predicted a total
of 143 “words” or short sequences that may contribute to
tissue specific regulation of cassette exons. Barash, Y. et al.
(Barash et al., 2010) further collected a comprehensive list of
1014 cis- features to meet this purpose.

However, this question still holds since former studies
have limited power. Thus in this study, we analyzed the
alternative splicing dataset from Barash, Y. et al. (Barash
et al., 2010) with mutual information based feature analysis
to further address it. We observed that for different tissues,
the preferred features vary to some extent. Further analyses
indicated that transcript structure features tend to be pre-
ferred universally. And finally, some of the features we
identified were supported by existing reports, while others
provided guidelines for further experimental studies.

For each tissue, we compiled six balanced non-alterna-
tive spliced (NAS) and alternative spliced (AS) datasets and
on each dataset, the key features for discriminating NAS and
AS cassette exons were identified with mRMR + IFS
approach as described in Supplementary Materials. As
shown in Fig. 1, the IFS curves were used to identify the key
features on each dataset that achieved the highest MCC.
The number of key features and their MCCs were shown in
Table S3. In CNS, muscle, embryo and digestive tissues, the
numbers of key features were 122, 391, 343 and 464,
respectively. These features were shown in Table S4. We
grouped the key features from each tissue into known motifs,
new motifs, short motifs and transcript structure features as
in Barash, Y. et al (Barash et al., 2010). The compositions of
different feature groups in each tissue were shown in
Fig. S3. And their average MCCs were 0.373 ± 0.019,
0.328 ± 0.034, 0.246 ± 0.016 and 0.268 ± 0.038, respec-
tively. The preference of the key features may illustrate the
splicing difference between tissues.
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Since AS often show tissue-specific manner, and that the
abundances of splicing factors are not likely expressed
equally across different tissues (Grosso et al., 2008), one
may wonder how cis- splicing elements co-operate with
these splicing factors within tissues. Note that several
splicing elements, such as the 5′ splice site, 3′ splice site,
branch site and polypyrimidine tract, are needed in almost all
kinds of splicing processes (Black, 2003), it is thus expected
that there must be other motifs contribute to tissue-specific
manner, and the preference of some motifs should be dif-
ferent in different tissues.

Our results indicate that 45.8% of all identified features
are found in one particular tissue, but not the other three
ones (Fig. S4). We found that the binding of same splicing
factor onto different regions is often associated with regu-
lated splicing in different tissues. For example, the binding of
Nova to upstream exon is often associated with AS in
embryo; whereas its binding to the alternative exon exactly
may be preferred in muscle.

We also found 35.9%, 14.6% and 3.7% of total features in
2, 3 and 4 tissue types respectively. This result reflects the
complex situation of both similarity and inconformity among
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Figure 1. The IFS curves in four tissues. The x axis was the number of features and the y axis was the 10-fold cross validation

MCC. The features achieved the highest MCC were selected as key features.
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tissues. For example, the position of alternative GT is
associated in both muscle and digestive tissues but not the
other two; the length of alternative exon is associated in
embryo and digestive tissue but not the other two. Our
observation may provide valuable information for exploring
such relationship of multiple tissue types.

The above result suggests that most features may be
preferred in particular tissues, and that the occurrences of
features vary. The occurrence of feature may reflect the
weight for AS, features with high occurrences likely are more
important than others. We thus ask whether the occurrences
of all features types are equally or not.

We classified the features into 4 groups as well. As a
result, we observed that for features with different occur-
rences, the compositions are significantly different (Fig. 2,
chi-square test: P = 1.69 × 10−5). Specifically, the proportion
of short motifs was lower for those identified within all 4
tissue types (comparing occurrence = 4 with the combination
of other 3 groups: 10.7% vs. 44.2%); meanwhile, higher
proportion of transcript structure features was observed for
those with greater occurrence (comparing occurrence = 4
with the combination of other 3 groups: 28.6% vs. 5.3%).
This result indicates that even though all groups of motifs
contribute to alternative splicing, their usage among different
tissue types varies: short motifs are likely used for regulated
AS within partial tissue types; and features from transcript
structures, though fewer compared with other groups, tend to
be used universally.

Given the set of features that have been shown to be
responsible for AS in these 4 tissue types, we next wonder
whether our results are consistent with other studies. As a
result, we found that many features we classified can be

supported by former studies. For example, the position of
alternative AG was found to be associated with AS (Gooding
et al., 2006), and in our results, this feature is relevant with
tissue-specific splicing in all 4 tissues. The downstream intron
binding sites for Mbnl gene was found in our results and has
also been reported (Faustino and Cooper, 2005). We also
identified the binding sites for PTB, also intronic splicing silen-
cers (Ashiya and Grabowski, 1997; Chan and Black, 1997).

On the other hand, we further identified several features
that previously have no or limited evidence associated with
AS. For example, short sequences such as CCC and TTG
within alternative exon, CAG within upstream constitutive
exon. New motifs such as TGTCT, TGCCTTT within down-
stream intron regions were also found though having been
predicted with few supports to be associated with splicing
(Yeo et al., 2007). Thus, our study actually provide useful
hints for further research of AS.
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Figure 2. The compositions of different feature groups with different occurrences. The horizontal axis indicates the

occurrences for features across tissues. “1” means the number of features that are only occurred in one tissue. “2” means the number

of features that are discovered in two tissues and so on.
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