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ABSTRACT

How follicular T-helper (Tfh) cells develop is incom-
pletely understood. We find that, upon antigen exposure
in vivo, both naïve and antigen-experienced T cells
sequentially upregulate CXCR5 and Bcl6 within the first
24 h, relocate to the T-B border, and give rise to phe-
notypic Bcl6+CXCR5+ Tfh cells before the first cell divi-
sion. CXCR5 upregulation is more dependent on ICOS
costimulation than that of Bcl6, and early Bcl6 induction
requires T-cell expression of CXCR5 and, presumably,
relocation toward the follicle. This early and rapid
upregulation of CXCR5 and Bcl6 depends on IL-6 pro-
duced by radiation-resistant cells. These results sug-
gest that a Bcl6hiCXCR5hi phenotype does not
automatically define a Tfh lineage but might reflect a
state of antigen exposure and non-commitment to ter-
minal effector fates and that niches in the T-B border
and/or the follicle are important for optimal Bcl6 induc-
tion and maintenance.
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INTRODUCTION

Tfh cells are functionally distinguished by their ability to
deliver contact-dependent help to B cells inside the follicle

(Crotty, 2011; Vinuesa and Cyster, 2011). Intrinsic T-cell
expression of the transcriptional repressor Bcl6 is required
for Tfh development and for germinal center (GC) formation
(Johnston et al., 2009; Nurieva et al., 2009; Yu et al., 2009).
How Bcl6 regulates Tfh development is not yet clear (Qi
et al., 2014). One proposal is that Bcl6 drives CXCR5
upregulation, which subsequently promotes follicular local-
ization of activated T cells. Consistent with this idea, Bcl6
overexpression in T cells in vitro downregulates multiple
microRNA species such as the mir-17∼92 cluster that
potentially suppress CXCR5 expression, leading to
increased CXCR5 transcript levels (Yu et al., 2009). How-
ever, genetic ablation of mir-17∼92 impairs rather than pro-
motes Tfh development and GC formation (Baumjohann
et al., 2013; Kang et al., 2013). No evidence yet indicates
direct Bcl6-mediated regulation of Cxcr5 gene expression,
and Bcl6-deficient T cells can upregulate CXCR5 under
certain conditions (Liu et al., 2012), whereas the transcription
factor Achaete-Scute homologue 2 (Ascl-2) directly binds to
the Cxcr5 locus and triggers CXCR5 upregulation (Liu et al.,
2014). An alternative scenario is that Bcl6 drives a com-
prehensive Tfh developmental program of which CXCR5
upregulation is a manifestation (Crotty, 2014; Hatzi et al.,
2015; Ueno et al., 2015). Consistent with this, T cells acti-
vated for 2 to 4 days in vivo are typically found to express
Bcl6, likely under the influence of IL-6 (Nurieva et al., 2008;
Harker et al., 2011; Choi et al., 2013), IL-12 (Ma et al., 2009;
Schmitt et al., 2009; Nakayamada et al., 2011) and ICOS
(Choi et al., 2011), while CXCR5+ T cells apparently only
appear at later time points (Choi et al., 2011; Kerfoot et al.,
2011; Kitano et al., 2011). Bcl6+CXCR5+ cells are located at
the T-B border (Kerfoot et al., 2011; Kitano et al., 2011) and
require DC- but not B cell-mediated antigen presentation

Xin Chen and Weiwei Ma have contributed equally to this work.

Electronic supplementary material The online version of this
article (doi:10.1007/s13238-015-0210-0) contains supplementary

material, which is available to authorized users.

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

Protein Cell 2015, 6(11):825–832
DOI 10.1007/s13238-015-0210-0 Protein&Cell

P
ro
te
in

&
C
e
ll

http://dx.doi.org/10.1007/s13238-015-0210-0
http://crossmark.crossref.org/dialog/?doi=10.1007/s13238-015-0210-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13238-015-0210-0&amp;domain=pdf


(Deenick et al., 2010; Choi et al., 2011; Goenka et al., 2011;
Kerfoot et al., 2011). In a kinetic study, dividing T cells were
found to express high levels of Bcl6 2 days after immu-
nization, while they did not express CXCR5 until approxi-
mately one day later (Baumjohann et al., 2011). Therefore,
the Tfh developmental program is thought to follow a typical
Th effector differentiation paradigm in that accessory signals
delivered by DCs drives expression of fate-determining
transcription factors, which then orchestrate epigenetically
inheritable lineage commitment through successive cell
cycles (Zhu et al., 2010; Crotty, 2011). However, here we
have examined the earliest kinetics of CXCR5 and Bcl6
expression by T cells activated in vivo and surprisingly found
that T cells with a Bcl6hiCXCR5hi phenotype arise before the
first cell cycle and that CXCR5 is required for optimal Bcl6
upregulation.

RESULTS

The rapid appearance of phenotypic Tfh cells
before cell divisions in vivo

To explore the earliest time point that Tcells upregulate Bcl6,
CXCR5 and acquire a Tfh phenotype following antigen
activation in vivo, we examined OVA-specific OT-II CD4+ T
cells in adoptive hosts at different time points after OVA
immunization. As shown in Fig. 1A, by 12 h post immu-
nization, OT-II T cells significantly upregulated CXCR5, while
increase in Bcl6 expression was still minimal. PD-1 upreg-
ulation followed a similar kinetics as CXCR5. By 24 h, Bcl6
upregulation became evident, giving rise to an overt
Bcl6hiCXCR5hi population (Fig. 1A and 1B), even though
virtually none of these cells divided (Fig. 1C). This rapid
appearance of Tfh-like cells was not a recall response of
memory cells potentially contaminating our T cell prepara-
tion, because CXCR5 and Bcl6 upregulation were also evi-
dent by 24 h when CD4+CD25-CD62LhighCD44low OT-II T
cells were tested (Fig. 1D). It was not a peculiar behavior of
naïve T cells, because OT-II T cells that were first activated
in vitro also rapidly and sequentially upregulated CXCR5 and
Bcl6 in vivo with an essentially identical kinetics after OVA
immunization (Fig. S1). Together, these data suggest that
CXCR5 and Bcl6 upregulation may be a stereotypic
behavior of T cells responding to antigenic stimulation in vivo
and that the appearance of a Bcl6hiCXCR5hi Tfh phenotype
per se could simply reflect acute antigenic activation rather
than a differentiation program.

Contribution of ICOS, CD40L and SAP signaling in early
CXCR5 and Bcl6 upregulation

It is well established that, by regulating T-B cell interactions
and T cell-intrinsic signaling properties, ICOS, CD40L, and
SAP are critical for Tfh development and GC formation
(Crotty, 2011). To test whether ICOS, CD40L or SAP has a
role in this rapid and early induction of the Tfh phenotype, we

analyzed Icos-/-, Cd40l-/- and Sap-/- OT-II T cells in adoptive
B6 hosts. As shown in Fig. 2A and 2B, normal CXCR5
upregulation required ICOS but not CD40L or SAP. Strik-
ingly, early Bcl6 upregulation did not require any of these
molecules. ICOS co-stimulation enhances calcium signaling
and PI3K activation (Parry et al., 2003; Gigoux et al., 2009),
with the Tec family kinase ITK serving as one intermediate
(Berg et al., 2005; Nurieva et al., 2007). Consistent with the
differential effect of ICOS on CXCR5 and Bcl6 upregulation,
enforced ITK over-expression on T cells significantly
enhanced early CXCR5 upregulation but had no effect on
Bcl6 expression (Fig. 2C, 2D and 2E). Therefore, early
CXCR5 and Bcl6 upregulation is a result of T cell receptor
signaling and costimulation but not likely coupled in a simple
regulatory circuit within T cells. CXCR5 upregulation is more
sensitive to deprivation of ICOS co-stimulation than that of
Bcl6.

Early CXCR5 and Bcl6 expression correlate with T cell
re-localization to the T-B border

Although results presented above imply a stereotypic CXCR5
and Bcl6 upregulation following antigenic activation, it is
important to note that mouse Tcells activated in vitro, either by
a combination of anti-CD3 and anti-CD28 stimulation or by
antigen-pulsed dendritic cells or B cells, do not upregulate
CXCR5 or Bcl6 with such kinetics (our unpublished data).
These latter results suggest the importance of tissue
microenvironment in vivo in permitting the rapid, antigen-trig-
gered CXCR5 and Bcl6 upregulation. The fact that CXCR5
expression precedes overt Bcl6 induction raises the interest-
ing question as to whether CXCR5-controlled T cell position-
ing in the tissue influences Bcl6 expression. As shown in
Fig. 3A and 3B, within the first 7 h post immunization, OT-II T
cells were uniformly distributed in the T cell zone. By 24 h,
however, many OT-II T cells migrated to the T-B border and
some were already inside the follicle. Such repositioning
required CXCR5 upregulation, as Cxcr5-/- OT-II T cells failed
to do so (Fig. 3C and 3D). Interestingly, these Cxcr5-/- OT-II T
cells also failed to upregulate Bcl6 normally (Fig. 3E). Toge-
ther, these data suggest environmental factors in the follicle or
at the T-B border might positively promote Bcl6 expression.

Early CXCR5 and Bcl6 expression are dependent
on radiation-resistant cell derived IL-6

IL-6 promotes Tfh cell development and germinal center
reaction in vivo (Nurieva et al., 2008; Wu et al., 2009), with
DC-derived IL-6 believed to be primarily responsible (Harker
et al., 2011; Vinuesa and Cyster, 2011; Choi et al., 2013).
Consistent with the importance of IL-6, the rapid upregulation
of CXCR5 and Bcl6 was impaired when OT-II cells were
activated in Il-6-/- recipients (Fig. 4A). We further constructed
mixed bone-marrow (BM) chimera using wildtype or Il-6-/-

donors and recipients. Interestingly, OT-II cells normally
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Figure 1. BCL6hiCXCR5hi T cells emerge before the first division following activation in vivo. (A) Representative histograms

and absolute MFI values of CXCR5, Bcl6, and PD-1 or corresponding isotype staining of CMFDA-labeled OT-II T cells at indicated

times after OVA/alum/LPS immunization. (B) Representative bivariate displays of Bcl6 and CXCR5 staining patterns.

(C) Representative CMFDA profile of OT-II T cells 24 h post immunization. (D) CXCR5, Bcl6, and PD-1 expression by

CD25-CD62LhighCD44lowCD4+ OT-II T cells 24 h post immunization, measured as in (A). Data represent more than 3 independent

experiments (3–4 mice per group). **P < 0.01; ***P < 0.001; n.s., not significant.
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upregulated CXCR5 and Bcl6 in wildtype recipients of Il-6-/-

donor BM cells under a condition of complete splenic DC
replacement (Fig. S2), and reconstitution of Il-6-/- recipients
with wildtype BM cells led to somewhat improved but still
significantly subdued upregulation of CXCR5 and Bcl6 on
OT-II cells (Fig. 4B). These data suggest that IL-6 from
radiation-resistant cells, possibly stromal cells, is essential
for normal CXCR5 and Bcl6 induction on T cells, while BM-
derived cells are not necessary or sufficient source of IL-6.

DISCUSSION

This study reveals extremely rapid CXCR5 and Bcl6
upregulation by undivided T cells in the first 24 h after anti-
gen exposure in vivo. Also using adoptive transfer of OT-II
cells, Baumjohann et al. found that, at day 3.5 post immu-
nization, Bcl6 was only upregulated in divided but not undi-
vided T cells (Baumjohann et al., 2011). This apparent
contradiction may be due to differences in anatomical loca-
tions examined or immunization routes utilized in the two
studies. Interestingly, undivided OT-II cells detected at day
3.5 in our system also did not express Bcl6 (data not shown),
suggesting above-mentioned factors cannot be solely
responsible. Alternatively, individual T cells may be able to

rapidly adjust CXCR5 and Bcl6 expression according to the
strength of antigen stimulation and other environmental cues
in the tissue, and lymphoid micro-environments in which
antigen-activated T cells are located may change over time
in content and distribution of such cues. Consistent with a
role for environmental cues, CXCR5 is required for optimal
Bcl6 upregulation in the very early phase, and CXCR5-me-
diated T-cell localization to the T-B border roughly coincides
with the Bcl6 induction. We have further defined radiation-
resistant cells as an important source of IL-6 that drives early
CXCR5 and Bcl6 upregulation. Because stromal cells pro-
duce other cytokines and chemokines that can influence T
cell functions (Malhotra et al., 2013), future studies of how
stromal cells may regulate Tfh development are warranted.
The fact that an apparent Tfh signature can be triggered in T
cells even without cell division cautions the use of a
CXCR5hiBcl6hi phenotype to automatically indicate a cell
cycle-coupled, fate-commitment program as in models for
Th1, Th2, and Th17 effector cell differentiation (Zhu et al.,
2010). It remains possible that upregulation and mainte-
nance of CXCR5 and Bcl6 represent a stereotypical
behavior of T cells being exposed to antigen in a permissive
tissue microenvironment and/or that a Tfh state can precede
commitment to any effector differentiation. As cells of the Tfh
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Figure 2. ICOS and ITK signaling affects CXCR5 but not Bcl6 induction. (A) Representative histograms of CXCR5 and Bcl6

expression by CMFDA-labeled OT-II T cells of indicated genotypes 24 h after OVA/alum/LPS immunization. Isotype staining was done

with a mixture of WT, Icos-/-, Sap-/-, and Cd40l-/- cells. (B) Normalized CXCR5 and Bcl6 expression (the mean MFI of the WT group set as

1), shown as mean ± SEM of 10–13 recipient mice per group. Data are pooled from 4 independent experiments. (C and D)

Representative histograms and normalized CXCR5 and Bcl6 expression (the mean MFI of the vector control group set as 1) on OT-II T

cells transduced with the control or an ITK-overexpressing vector 24 h post immunization. (E) ITK levels in transduced cells as measured

by Western blotting. Data are from two independent experiments involving 5 to 6 mice per group. *P < 0.05; n.s., not significant.
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phenotype are increasingly implicated in a large number of
pathophysiological conditions including tumors and inflam-
matory diseases (Crotty 2014), the under-appreciated pat-
tern of CXCR5 and Bcl6 expression on activated T cells as
revealed in this study cautions us about assigning simple
cause-effect relationship in situations involving potentially
very complex interactions between Tcells and their changing
tissue environment in vivo.

MATERIALS AND METHODS

Mice and bone-marrow chimeras

C57BL/6 (Jax 664), μMT (Jax 2288), Icos-/- (Jax 4859), GFP-ex-

pressing (Jax 4353), OVA323–339-specific T-cell receptor transgenic

OT-II (Jax 4194), Cd40l-/- (Jax 2770), Il-6-/- (Jax 2650), Cxcr5-/- (Jax

6659) mice were from the Jackson Laboratory. Sap-/- mice were a

kind gift of Dr. Pamela Schwartzberg (NIH). To construct chimeras,

WT or Il-6-/- mice were irradiated 2 × 500 rads with an X-ray source

and then reconstituted with 4 × 106 WT or Il-6-/- bone marrow cells.

Chimeras were used 8 weeks after reconstitution. All animal

experiments have been conducted in accordance of governmental

and institutional guidelines for animal welfare and approved by the

Institutional Animal Care and Use Committee.

Adoptive cell transfer and immunization

For naïve Tcell transfer, each mouse received 1 × 106–3 × 106 OT-II

CD4+ T cells isolated with the mouse CD4+ T cell isolation kit (Mil-

tenyi Biotec) or further sorted as CD4+CD25-CD62LhighCD44low cells

that were stained with 1 μmol/L CMFDA (Invitrogen). Recipient mice

were immunized one day later. When previously activated T cells

were used, 5 × 106– 5 × 107 OT-II T cells that were activated in vitro

with plate-bound anti-CD3 and anti-CD28 for 4 days were injected to

recipient mice 3 days prior to immunization. To immunize, 500 μg

OVA protein (Sigma) in alum (Thermo Scientific) together with 5 μg

LPS (Sigma) were intraperitoneally injected to recipient mice. For

experiments involving ITK-over-expression, OT-II T cells were

transduced with an MSCV-based vector that expresses GFP as a

marker for cell identification by flow cytometry, as previously

described (Xu et al., 2013). ITK overexpression was verified by

Western blotting (anti-ITK antibody from Cell Signaling Technology).

Flow cytometry

Single-cell suspensions were blocked with 20 μg/mL 2.4G2 (BioX-

cell) for 20 min and then stained with indicated primary antibodies for

90 min and secondary reagents for 30 min in PBS containing 1%

FBS and 5 mmol/L EDTA. Staining reagents included PE-CF594

anti-CD4, PE-Cy7 anti-CD4, APC-Cy7 anti-CD19, and DyLight649
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Figure 3. CXCR5 is required for early T cell relocation to the T-B border and Bcl6 upregulation. (A) Distribution patterns of OT-II

T cells at indicated times after immunization. Scale bar, 100 μm. (B) Distances of individual cells to the T-B border, with negative and

positive values indicating T-zone and follicular localization, respectively. Each symbol denotes one cell and lines denote mean values.

A total of 223, 227, and 442 cells at 7, 12, 24 h respectively from at least 4 mice per time point were quantitated. (C) Distribution

patterns of WT or Cxcr5-/- OT-II T cells 24 h post immunization. A total of 273 and 210 cells from WT and Cxcr5-/- group respectively

and at least 2 mice per group were quantitated. Scale bar, 100 μm. (D) Distances of WT or Cxcr5-/- OT-II cells to the T-B border.

(E) Representative histograms (left) and normalized Bcl6 expression (right) of WT or Cxcr5-/- OT-II T cells 24 h after OVA/alum/LPS

immunization. Data are pooled from 3 independent experiments involving 11 mice per group. In (A) and (C), CD3 staining was omitted

in the composite display for clarity. In (E), isotype staining was done with cells pooled from the respective two groups. **P < 0.01;

***P < 0.001.
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goat anti-hamster IgG antibody from Biolegend, purified anti-PD-1

from eBioscience, AlexaFluor 647 anti-Bcl6 (K112-91), biotinylated

anti-CXCR5, PE- and BV421-labeled streptavidin from BD Bio-

sciences. Isotype control antibodies included biotinylated Rat IgG2a

AlexaFluor 647 Mouse IgG1 from BD Biosciences and purified

hamster IgG from eBioscience. 7-AAD from Biotium was used to

exclude dead cells. To detect intracellular Bcl6, cells were stained in

the Foxp3/Transcription Factor Staining Buffer Set (eBioscience)

after surface staining. To accurately measure CXCR5 and Bcl6

expression, care was taken to stain the same cell samples with the

respective isotype control antibodies in parallel or, for certain

experiments, to use an equal-proportion mixture of cells from dif-

ferent treatment groups for shared isotype control staining. Data

were collected on BD LSR II or Aria III cytometers and analyzed with

FlowJo software (TreeStar). When data from multiple independent

experiments collected on different machines were pooled, we have

normalized CXCR5 or Bcl6 MFI of individual samples against the

mean MFI of the corresponding control group for each experiment.

Immunohistochemistry

T-cell distribution patterns in vivo was analyzed on immunohisto-

chemically stained splenic sections as previously described (Qi

et al., 2006). Staining reagents included eFluor450 anti-CD3 (eBio-

science) and AlexaFluor 647 anti-IgD (eBioscience). Sections were

mounted with the ProlongGold Antifade reagent (Invitrogen) and

imaged with an Olympus FV1000 microscope. To quantitatively

measure positions of individual T cells in reference to the follicle, the

T-B border was drawn as a line according to the CD3 staining pat-

terns by a person blinded to sample identification, and the shortest

distance from each Tcell to the line was recorded, with negative and

positive values indicating T-zone and follicular localization,

respectively.

Statistical analysis

For pairwise comparisons of endpoint means of experimental and

control groups, two-tailed t tests were conducted using Prism

(GraphPad).
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