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ABSTRACT

Circular RNAs (circRNAs), a kind of covalently closed
RNA molecule, were used to be considered a type of by-
products of mis-splicing events and were discovered
sporadically due to the technological limits in the early
years. With the great technological progress such as
high-throughput next-generation sequencing, numerous
circRNAs have recently been detected in many species.
CircRNAs were expressed in a spatio-temporally specific
manner, suggesting their regulatory functional potentials
were overlooked previously. Intriguingly, some circRNAs
were indeed found with critical physiological functions in
certain circumstances. CircRNAs have a more stable
molecular structure that can resist to exoribonuclease
comparing to those linear ones, and their molecular
functions include microRNA sponge, regulatory roles in
transcription, mRNA traps that compete with linear
splicing, templates for translation and possibly other
presently unknown roles. Here, we review the discovery
and characterization of circRNAs, the origination and
formation mechanism, the physiological functions and
the molecular roles, along with the methods for detection
of circRNAs. We further look into the future and propose
key questions to be answered for these magical RNA
molecules.
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INTRODUCTION

CircRNA is a member of the non-coding RNA kingdom.
Unlike the traditionally known RNA species, sequence of
circRNA is not arranged in a normal order relative to the

genomic context but arrays in a scrambled manner, in which
the 3′ downstream sequences are joined to the 5′ upstream
sequences, resulting in a covalent-closed circular molecule
without free terminals, resemble that of plasmids.

Although circRNA was first discovered in eukaryotes two
decades ago, it has just become a new research focus in
recent years. Prior to the accidental experimental discovery
of a few scrambled transcripts with low abundances from the
DCC gene in the human cell line (Nigro et al., 1991), a study
using an electron microscope had already reported that RNA
could be present in a circular form in the eukaryotic cell
cytoplasm ten years ago (Hsu and Coca-Prados, 1979). It
should be noted that circRNAs can not only be the transcripts
derived from a genome, but also can act as the germ plasm.
Numerous viroids and viroid-like subviruses were found
possessing circRNA genomes (Flores et al., 2014; Kos et al.,
1986; Roossinck et al., 1992; Sanger et al., 1976; Schneider,
1969). In addition, certain genes in humans (Burd et al., 2010;
Caldas et al., 1998; Cocquerelle et al., 1992; Cocquerelle
et al., 1993; Li and Lytton, 1999; Surono et al., 1999; Zaphi-
ropoulos, 1997), rats (Zaphiropoulos, 1996, 1997), mice
(Capel et al., 1993), and Drosophila (Houseley et al., 2006),
such as ETS1 (Cocquerelle et al., 1992), P450 2C24
(Zaphiropoulos, 1996), Sry (Capel et al., 1993), and Droso-
phila muscleblind (MBL/MBNL1) (Houseley et al., 2006),
were reported occasionally containing one or more circular
transcripts in the past years. Due to the improvement of
biochemical methods and the application of high-throughput
sequencing technology, circRNAs have been widely discov-
ered in cells and tissues of various species recently (Jeck
et al., 2013; Memczak et al., 2013; Salzman et al., 2013;
Salzman et al., 2012; Wang et al., 2014; Zhang et al., 2013).
Therefore, circRNA is a universal RNA species and unlikely
an abnormal splicing by-product or experimental artifact.

Like long non-coding RNAs (lncRNAs), the functions of
circRNAs may depend on the features of their sequences
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and structures. Recent studies had revealed that the anti-
sense transcript of cerebellar degeneration-related protein 1
(CDR1as), a circular RNA, which contained dozens of
microRNA-7 (miR-7) binding sites, could resist the micro-
RNA (miRNA)-mediated endocleavage pathway and acted
as a competing endogenous molecule in gene expression
regulation (Hansen et al., 2013; Memczak et al., 2013).
Besides, sex-determining gene (Sry) circRNA could also
function as a decoy to absorb miR-138 (Hansen et al., 2013).
What’s more, a kind of exon-intron-derived circRNAs was
able to interact with U1 snRNA based on complementary
base pairing, which was advantageous for the circRNA’s
parent gene expression (Li et al., 2015). Although the pre-
sent understanding of the function of circRNAs is limited,
their widespread existence and evolutionary conservation
among species have been confirmed, suggesting that these
molecules may have more regulatory functions that have yet
to be revealed.

CHARACTERISTICS OF CIRCULAR RNA

The main feature of circRNA is the intramolecular circular
structure wherein the 3′ ends of some exons turns back and
joins the 5′ ends of other upstream exons to form a closed
molecule. Therefore, unlike those typical linear RNAs, the 5′
cap and 3′ polyadenylation tail (poly-(A) tail) are absent in
these transcripts. Because of the absence of free terminals,
these molecules can easily antagonize the hydrolysis by
various cellular exoribonucleases. Jeck et al. proved that the
half-lives of four circular RNAs exceeded 48 h, whereas the
linear transcripts of corresponding parent genes (HIPK3,
KIAA0812, ASXL1, and LPAR1) had half-lives of less than
20 h (Jeck et al., 2013).

Due to the low abundance, many circRNAs had just been
discovered sporadically in the eukaryotic cell by using
polymerase chain reaction (PCR) and usually considered to
be by-products of splicing in the past a few years. For
example, the abundances of circRNA derived from the DCC
gene, took less than 0.1% of the total transcriptional level of
the gene (Nigro et al., 1991). But an exceptional example
was Sry circRNA, which was a more plentiful transcript than
its linear partner in the adult testis (Capel et al., 1993). Then
based on expressed sequence tag (EST) analysis, hundreds
of scrambled exons were discovered, however, it failed to
distinguish circRNAs from trans-splicing transcripts and
exon repetition (Dixon, 2005; Shao et al., 2006). Benefiting
from the rapid progress in next-generation sequencing
technology, a huge number of these low abundant circRNA
transcripts have sprung up in recent years (Jeck et al., 2013;
Memczak et al., 2013; Salzman et al., 2013; Salzman et al.,
2012; Wang et al., 2014; Zhang et al., 2013). It should also
be noted that the abundance of some circRNAs could be
over ten times as much as their linear transcript partners
(Jeck et al., 2013; Salzman et al., 2013).

Nevertheless, the abundance of circRNA and the ratio
between circular and linear RNA isoforms of a given gene

are dynamic and often show tissue/developmental-stage-
specific expression. As an example, circular RNA molecules
derived from Sry gene are the main transcripts in embryonic
brains on Days 11–19, whereas linear molecules become
more ample in postnatal brains, wherein circRNAs can even
be absent (Mayer et al., 2000). During the development of
cell/tissue, circRNAs can authentically be modulated. When
epithelial-mesenchymal transition (EMT) happened to
human mammary epithelial (HMLE) cells in response to the
treatment of TGF-β, hundreds of circRNAs were regulated
(Conn et al., 2015). What’s more, the abundance of many
circRNAs exhibited substantial fluctuation in response to
synaptogenesis, consistent with the idea that circRNAs
might regulate synaptic function during development (You
et al., 2015). Other studies also provided evidences that
circRNA expression was cell-, tissue- and developmental
stage-specific (Memczak et al., 2013; Salzman et al., 2013).

CircRNAs can be derived from either exons or introns or
both, and all are with great diversity in length. Most circRNAs
overlap with coding exons, but some are derived from 3′
untranslated regions (3′ UTRs) and some are originated from
lncRNAs (Burd et al., 2010; Memczak et al., 2013). Some
introns, which are usually excised off from pre-mRNA for
linear RNA, can also produce circRNAs (Memczak et al.,
2013; Zhang et al., 2013). Besides, circRNA can be com-
posed of exons and retained introns, and a parent gene can
produce multiple circRNAs composed of various exons or
derived from different introns (Li et al., 2015). An illustrative
example is the dystrophin gene in humans, here, 11 cir-
cRNAs are identified in the 5′ region of this gene (Surono
et al., 1999). Although most circRNAs seem to be coupled
with the transcription and post-transcriptional processing of
their parent genes, there exist exceptions: Sry circRNA is
originated from the initial transcription driven by a distal
promoter different from that of the linear transcript (Dolci
et al., 1997), and CDR1as is a natural antisense long non-
coding circular transcript derived from the opposite strand of
CDR1 gene (Hansen et al., 2011). The length of the circRNA
can vary greatly, from hundreds to thousands of nucleotides
in length. For example, a circRNA from the aforementioned
dystrophin gene composes of two exons with the length of
about two hundred bases, while another circRNA including
16 exons composed of the 2nd- to 17th-exon of the same
gene exceeds 2 kilobases (kb) in length (Surono et al.,
1999).

The common feature shared by all circRNAs is that they
are resistant to RNase R, which digests linear RNAs
(Suzuki, 2006). However, divergences exist in the structure
or physiological property for circRNAs, owing to their differ-
ent origin. Exon-shuffling-derived circRNA (ecRNA), includ-
ing exon-intron circRNAs (ElciRNAs) consist of 3′–5′ carbon
links throughout the molecule, but circular intronic RNA
(ciRNA) contains a 2′–5′ link in the head-tail joint (Zhang
et al., 2013), making it very sensitive or fragile to hydrolysis
by debranching enzymes (Table 1). These two types of cir-
cRNAs also have other distinct sequence characteristics.
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For example, the canonical splice site AG/GU typically exists
near the two sides of ecRNA exons, and the two introns
flanking the ecRNA exons usually contain reverse-oriented
repeats, which may be necessary for exon circularization
(Jeck et al., 2013; Zhang et al., 2014). For ciRNA, some
unique motifs exist near the 5ʹ splice site containing 7-nt GU-
rich and 11-nt C-rich elements proximal to the branch point
site, suggesting that these consensus motifs are critical for
protecting lariat from nuclease-mediated degradation (Zhang
et al., 2013). What’s more, subcellular localization for these
two types of circRNAs is also different, ecRNAs are mainly
present in the cytoplasm, while ciRNAs usually exist in the
nucleus, indicating that they may have different functions in
the cell (Jeck et al., 2013; Zhang et al., 2013).

Another property of the circRNA that should not be ignored,
is the evolutionary conservation. The discoveries of circRNAs
in fungi, plants, and protists indicate that circRNA is an ancient
molecule tracing back over one billion years (Wang et al.,
2014). In addition, circRNAs also exhibit sequence conser-
vation. Salzman et al. showed that approximately 4% of
humans and mice orthologous genes can produce circRNAs
(Salzman et al., 2013). By using CircleSeq to analyze RNA-
seq data generated by Salzman et al., Jeck et al. found that
44% (646/1477) of circRNAs in the murine brain were also
present in the murine testis (Jeck et al., 2013). Furthermore,
457 out of 2,121 circRNAs in humans were found with circular
orthologues in murine, and 69 murine circRNAs can be
exactly mapped to the start and stop sites of human circRNAs
(Memczak et al., 2013). The NCX1 circular transcript was
identified in humans, rats, mice, rabbits, and monkeys, indi-
cating some circRNAs are conserved amongmultiple species
and probably have important functions during evolution (Li
and Lytton, 1999). Based on genome-wide analysis, coding-
region-derived circRNAs exhibit high universal sequence
conservation and more significant conservation in the third
position of genetic codon (Memczak et al., 2013). Additionally,
for intergenic and intronic circRNAs, the conservation is

moderate, but they still exhibit a remarkable enrichment of
conserved nucleotides (Memczak et al., 2013).

Mechanism of circular RNA formation

Because circRNAs are usually coupled with the transcription
of their parent genes, their dissociation from linear tran-
scripts may be associated with nascent RNA processing,
and splicing may be the event driving dissociation. Previous
studies have shown that circRNA formation is interrelated
with splicing, for example, ETS1 circRNA is considered a
mis-splicing product that occurs during exon skipping (Coc-
querelle et al., 1993). Furthermore, the junction sites of the
circRNA identified among various eukaryotic species are
mostly flanked by canonical splice sites, the 5′ donor site GU
and 3′ acceptor site AG, caused by a splicing event called
the “back splice” (Jeck et al., 2013).

As mentioned above, biogenesis of circRNAs usually
accompanies with the transcription and splicing of the parent
gene, suggesting that their formation may compete with lin-
ear splicing. Splicing efficiency had been reported to have an
effect on whether an exon is spliced into a linear or circular
transcript (Ashwal-Fluss et al., 2014). Efficient splicing may
promote mature linear RNA formation, otherwise antagonize
this process. RNA polymerase II (Pol II) might be involved in
this event, since several studies have shown evidence that
the Pol II elongation rate is antagonistic to splicing efficiency
(de la Mata et al., 2003; Ip et al., 2011; Khodor et al., 2011). It
can be supposed that Pol II moving along DNA and
extending RNA strand at an increasing speed would
decrease the splicing efficiency. Therefore, the fast-moving
Pol II could potentially provide an opportunity for some
responsible trans-acting factors to recognize the exposed
binding sites within the retained introns, and lead the dis-
persed introns to approach each other to generate circRNAs.

Some linear RNAs and circRNAs can be mutually
exclusively transcribed. In this scenario, independently

Table 1. Characteristics of circRNAs

Derivation Localization Joint site Biochemical
property

Sequence feature

ecRNA (Salzman et al.,
2013; Memczak et al.,
2013; Jeck et al., 2013;
Salzman et al., 2012)

Exon Cytoplasm 3′-5′
phosphodiester
linkage

Resistant to
debranching
enzyme and
RNase R

Long intron with reverse
complementary
sequences flanking
the joined exons

ciRNA (Zhang et al., 2013) Intron Nuclear 2′-5′
phosphodiester
linkage

Sensitive to
debranching
enzyme and
resistant to
RNase R

7 nt GU-rich near 5′
splice site and 11 nt
C-rich in proximal to
the branch point

EIciRNA (Li et al., 2015) Exon–
Intron

Nuclear 3′-5′
phosphodiester
linkage

Resistant to
debranching
enzyme and
RNase R

Long intron with reverse
complementary
sequences flanking
the joined exons
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transcribed pre-mRNA serves as the precursor of circRNA,
similar to that of miRNA. For example, the promoter of the
Sry circRNA transcript differs from that of canonical linear
transcript. The alternative promoter of the Sry gene produces
a precursor transcript with long reverse-orientated repeats at
the 5′ and 3′ arms, which may facilitate the Sry circRNA
formation (Dolci et al., 1997). Another example is CDR1as
circRNA, which is derived from the minus strand of CDR1
gene and transcribed at opposite direction (Hansen et al.,
2011). It then undergoes backsplice event to produce cir-
cular molecules during RNA processing.

Since not all exons of a gene can form circRNAs, some
elements within the gene may promote to determine which
exons are circularized. Introns, particularly the large ones
adjacent to the joined exons tend to be involved in the
backsplice. Some sequence features are favorable for cir-
cRNAs formation, though it is not clear how exons far apart
come close to each other. Repeat elements (such as ALU) in
inverted orientation within the introns flanking the joined
exons are indispensable cis- elements, and they are reported
contributing to the circularization of RNA (Jeck et al., 2013;
Zhang et al., 2014). In human, the amount of ALU repeats
within introns adjacent to the circularized exons is twofold as
that in the introns flanking linear exons, and the pairs of ALU
sequences in the flanking introns tend to be complementary
(Jeck et al., 2013). Repetitive sequences are dispersed and
can amount to nearly half of the genome, and ALU sequen-
ces are the most abundant repeat elements and reside
mainly within introns (Batzer and Deininger, 2002; Chen and
Sarnow, 1995; Price et al., 2004; Waterston et al., 2002). This
feature increases the possibility that larger introns contain
more repeat elements than smaller introns, and thus, larger
introns could facilitate the circularization of adjacent exons. In
addition, circularized exons tend to be skipped exons in the
linear isoforms (Surono et al., 1999; Zaphiropoulos, 1996,
1997). Moreover, one of the features of skipped exons is
flanked by longer introns, and there is evidence supporting
that complementary motif sequences in the adjacent introns
are associated with exon skipping (Keren et al., 2010).

Many proteins are most likely to be involved in this pro-
cess and may also help determine which exons would
undergo backsplice. A study has confirmed that spliceosome
participated in this process (Ashwal-Fluss et al., 2014), in
which proteins recognize sequence elements in flanking
introns or exons, recruit other proteins, such as U1 snRNP,
hnRNP proteins, and SR proteins, thus change RNA con-
formation and cause to-be-joined exons to approach each
other (Kramer, 1996). Mouseblind (MBL/MBNL1), a splicing
factor, is thought to promote its own circRNA biogenesis
from the second exon in Drosophila and humans (Ashwal-
Fluss et al., 2014). Both the flanking introns and second
exon contain predicted MBL-binding sites, and the MBL
levels could have a considerable effect on circRNA forma-
tion. However, the sites within the flanking introns affect MBL
binding more than those in the exons do. Furthermore, MBL
may bind to an intron to drive both sides of the intron

approaching and to form a favorable structure for the back-
splice (Ashwal-Fluss et al., 2014). Because circRNA pro-
duction is tissue and developmental stage specific, the
dynamic expression of some trans-acting proteins may be
associated with such specificity. Intriguingly, Quaking (QKI)
protein, an RNA binding protein containing KH domain and
also an alternative splicing factor, was found to be correlate
well with the circRNAs dynamic change during EMT,
wherein, QKI protein recognizes the QKI binding motifs
within the introns adjacent to the joined exons of circRNAs to
promote the circRNAs biogenesis (Conn et al., 2015).

Various models trying to explain the circRNA generation
mechanism have been proposed. The exon-skipping-cir-
cRNA hypothesis was proposed first based on the observa-
tion that the circRNA derived from PC450 2C24 gene are
correlated with related exon skipping. The author put forward
two models to explain the hypothesis. The first model is
inverse splicing, in which the downstream exon turns around
to become proximal to the upstream exon and ready for
splicing, resulting in a circular and exon-skipped linear tran-
script. The second model is lariat splicing, which produces
alternatively spliced RNA and a lariat intermediate, and then
the introns in the lariat are removed as the canonical-splicing
process (Zaphiropoulos, 1996). However, recent evidence
has indicated that exon skipping is not necessarily associ-
ated with circRNA formation. For example, alternatively
spliced transcripts of the dystrophin gene can be detected,
but the corresponding circRNA is absent (Surono et al.,
1999). Recently, several studies have proposed two other
revised models based on additional data. The first is the
lariat-driven model, which is consistent with lariat splicing and
predicts the co-occurrence of circRNA and exon skipping.
The second is the intron-pairing-driven model, which
emphasizes that flanking inverted repeats aside back-spliced
exons are crucial for the direct splicing and ligation between
the downstream donor site and the upstream acceptor site
(Jeck et al., 2013; Jeck and Sharpless, 2014; Zhang et al.,
2014). However, which model is preferentially adopted in a
certain gene or cell is still unknown at present.

BIOLOGICAL FUNCTIONS OF CIRCULAR RNAs

Recent investigations have suggested four possible biolog-
ical functions of circRNAs (Fig. 1); specifically, they can
serve as microRNA sponges (Hansen et al., 2013; Memczak
et al., 2013), promoting transcription of parent gene (Li et al.,
2015; Zhang et al., 2013), mRNA traps (competing with lin-
ear splicing) (Ashwal-Fluss et al., 2014; Chao et al., 1998),
and templates for translation (Surono et al., 1999; Wang and
Wang, 2014).

Because of the stability of the circular structure and the
microRNA-binding capacity for some circRNAs, circRNA is
an ideal molecule to serve as a microRNA sponge (Fig. 1,
function III), as confirmed in CDR1as and Sry (Hansen et al.,
2013). CDR1as circRNA is a competing endogenous RNA
containing more than 70 miRNA target sites for miR-7. The
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abundance of miR-7 targeted transcripts increased when
CDR1as circRNA was over-expressed in HEK293 cell line,
similar to the effects observed after miR-7 knockdown
(Hansen et al., 2013; Memczak et al., 2013). Furthermore, a
mammalian CDR1as circRNA over-expression vector was
injected into zebrafish embryos with the genetic background
of normal expression of conserved miR-7 but depletion of the
CDR1 gene locus in the embryonic brain (Kapsimali et al.,
2007). The results demonstrated an obvious reduction in
midbrain size of the embryos, consistent with the observa-
tion when miR-7 morpholino was injected into the zebrafish

embryos (Memczak et al., 2013). In addition, Sry circRNA is
also assumed to be an antagonist of miR-138 (Hansen et al.,
2013). Since that some circRNAs contained one or more
types of miRNA seed sequences based on the sequences
analysis, the association of miRNAs with diseases indicated
that circRNAs may have a regulatory role in the development
of certain diseases (Ghosal et al., 2013). For example, miR-7
is related to numerous diseases, such as Parkinson dis-
eases (Junn et al., 2009), diabetes (Wang et al., 2013), and
cancer (Kefas et al., 2008; Saydam et al., 2011; Webster
et al., 2009), raising the possibility that CDR1as circRNA
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Figure 1. Circular RNA formation and function. CircRNAs can be categorized into three classes based on their origination. Here,

exons of the gene model is illustrated with rectangle highlighted with different colors and introns is presented by thin lines, and

transcriptional start site is drawn as right-angled arrow. Exon-shuffling-derived circRNA (ecRNA) is only comprised of exons (A), and

circularization of intron forms another kind of circular RNA—circular intronic RNA (ciRNA) (B). The third categorization is elciRNAs

which is made up of exon and retained intron (C). Four potential biological functions of circRNAs have been suggested. I. Promote

transcription. CiRNAs and elciRNAs are retained in the nuclear and they can interact with transcription machinery (Pol II shown by

green pentagon, U1 snRNP depicted as oval) to promote their parent gene expression. II. mRNA trap. The biogenesis of circRNAs is

usually coupled with transcription and processing of their parent gene. Therefore, circRNA may negatively regulate the abundance of

mature linear RNA (described by four colored rectangle with 5′ cap and 3’ polyadenylation tail (poly-(A) tail) to some extent. III.

MicroRNA sponge. EcRNAs locating in the cytoplasm can antagonize microRNA-mediated endocleavage pathway (Ago-microRNA

complexes presented by semicircle and comb) and function as competing endogenous molecules of microRNA. IV. Translation.

EcRNAs containing the internal ribosome entry site (IRES) can be bound by ribosomes (shown by two closely-combined oval) and

translated from the AUG start codon.
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might also be involved in these diseases by sequestering
miR-7. However, most circRNAs have less than 10 miRNA
binding sites (Jeck and Sharpless, 2014) and may not be
effective miRNA sponges. Moreover, circRNA holds poten-
tial to function through other means, such as recruiting pro-
tein as a storage pool or transport, similar to the role of
lncRNA in regulating networks or removing excessive
proteins.

Considering the correlation between circRNAs and their
parent gene transcription, circRNA may affect parent gene
expression through cis- or trans- actions. Intron-derived cir-
cRNAs (ciRNA) retained in the nucleus can act as activators
of parent gene by interacting with Pol II machinery (Fig. 1,
function I) (Li et al., 2015; Zhang et al., 2013). Besides,
EIciRNAs (exon-intron circRNAs) have analogous effects to
parent gene transcription by interacting with U1 snRNP and
Pol II through complementary sequence pairing between
EIciRNA and U1 snRNA (Fig. 1, function I) (Li et al., 2015).
What’s more, the modulation of the relative abundance
between some ecRNA and the protein of its linear partner
can resemble (in some degree) the universal positive feed-
back in gene regulation network. For example, though the
MBL protein is required for its congenetic circRNA produc-
tion by binding to corresponding element in the exon and
intron of the pre-mRNA, the resulted circRNA can also
recruit MBL to remove redundant cellular proteins (Ashwal-
Fluss et al., 2014).

However, negative correlation is also found between for-
mation of some ecRNA and their mature linear RNA, pos-
sibly caused by competition between forward splicing and
reverse splicing (or back splice). It is assumed that back-
splice produces circular RNA and corresponding truncated
linear transcript (Fig. 1, function II), which is unable to
translate, reducing the functional protein level as a result.
The phenomenon that circRNA formation competed with
productive linear mRNA was called mRNA trap (Fig. 1,
function II) (Chao et al., 1998). Although in the mRNA trap
model, the major role of circRNA is the linear splicing com-
petition, one cannot rule out certain function by circular RNA
itself. Take fmn gene as an example, mutations of the
acceptor site in the fourth or fifth exon of the fmn gene lead
to the depletion of corresponding ecRNA, but did not affect
on the productive (or translatable) linear RNA. Further study
demonstrated that this specific fmn mutant mice exhibited an
incomplete penetrant renal agenesis phenotype, suggesting
that the unproductive circRNA could have important physi-
ological roles in regulating developmental process (Chao
et al., 1998; Kramer, 1996), though the molecular mecha-
nism remains elusive.

Although many circRNAs overlap with coding exons, the
translation ability of circRNA remains debated (Fig. 1, func-
tion IV). Some studies have shown that circRNAs containing
the internal ribosome entry site (IRES) can be translated
from AUG start codon (Chen and Sarnow, 1995; Wang and

Wang, 2014), while another study indicated that circRNAs
cannot be accessed by ribosomes (Jeck et al., 2013). It is
speculated that the absence of a 5′ cap and 3′ poly-(A) tail
limits translation initiation. However, opposite arguments
exist that the circular structure can be beneficial for ribosome
recycling once translation initiated, which would facilitate
producing more proteins than linear RNA (Perriman and
Ares, 1998). Intriguingly, a truncated protein was obtained
from a circRNA of the Na/Ca exchanger gene 1 (NCX1) in
transfected cells. The size of the truncated protein was
consistent with the predicted molecular weight (MW) of
approximately 70 kDa, and also exhibited Na/Ca exchange
activity (Li and Lytton, 1999). Although the author could not
identify the same-sized proteins in native tissue, a distin-
guished and slightly smaller band could be observed, sug-
gesting that this protein may be the hydrolysis residual of the
circRNA-derived protein (Li and Lytton, 1999). Additionally,
Wang et al. evidenced that plasmid-derived circRNA can
produce a GFP protein, if IRES was introduced before the
open reading frame of the GFP gene (Wang and Wang,
2014). Another example that circRNA can be translated into
a protein in a mammalian cell was the single stranded cir-
cular RNA genome of the hepatitis δ virus, which was a
satellite virus of the hepatitis B virus (Kos et al., 1986). Thus,
some circRNAs could have translation potential, which might
be triggered under certain conditions.

METHODS FOR IDENTIFYING AND VALIDATING
CIRCULAR RNAs

Due to its circular structure, the migration rate of circRNA is
different from that of linear, interlocked, and lariat RNAs in
eletrophoresis (Hansen et al., 2013; Tabak et al., 1988).
CircRNA can also be characterized through Gel trapping
since it can attach to a well when mixed with melted agarose
due to its circular structure (Schindler et al., 1982). The more
credible way to recognize circRNA for a specific gene is
using PCR with out-facing primer pair (located near the
back-splicing sites on the corresponding linear transcript),
though false-positive cannot be excluded because of various
reasons. Both genome rearrangement and trans-splicing can
produce exon shuffling transcripts, and dislocated exons
produced by template switch in in vitro reverse transcription
(RT) is another artifact in circRNA detection using RT-PCR.
Therefore, more accurate methods are required to confirm
the positive results, such as using the same out-facing pri-
mer pair for the genomic DNA as a control when PCR was
carried out. There are optional ways to improve the accuracy
in identifying circRNA, such as enriching circRNA by
degrading linear RNA with exonuclease—RNase R or
tobacco acid pyrophosphatase combined with 5′-phosphate-
dependent exonuclease (Hansen et al., 2011b). Northern
blotting and RNase protection assay can also serve as
complementary methods for validating circRNAs.
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The extremely low abundance of circRNA is a constraint
for its PCR-based detection. High-throughput sequencing
combined with bioinformatic analysis has greatly facilitated
the discovery of this kind of RNA molecule (Table 2). Unlike
the normal RNA sequencing library preparation step, dis-
posing samples through methods such as ribosomal RNA
depletion and poly (A) minus RNA selection alone or in
combination with RNase R treatment is indispensable prior
to library construction, which has favored the discovery of
circRNAs (Danan et al., 2012; Jeck et al., 2013; Zhang et al.,
2013).

To exclude confounding interferences and obtain con-
vincing results, various algorithms have been developed to
analyze high-throughput sequencing data. On the basis of
the sequence order or any abnormal exon–exon junction
boundaries from annotated exon, scrambled RNA molecules
have been distinguished from linear molecules (Memczak
et al., 2013; Salzman et al., 2013). Reads aligned to the
known spliced junctions are considered as linear splicing
and thus are filtered out, while reads that only span the 3′
end of the downstream exon and 5′ end of the upstream
exon are considered potential signals of circRNA, in which

Table 2. Discovery of circRNAs by high-throughput RNA sequencing

Cell types Methods of RNA-seq
library construction

Scrambled transcripts Strategies for
identification of
circRNAs

References

Human CD19+ B cells, CD34+ stem
cells and neutrophils

Ribosomal RNA-
depleted paired-end
RNA-seq

Comprising ∼10%
transcripts from more
than 800 genes

Based on
annotated exons
and utility of
paired-end RNA-
seq data property

Salzman
et al.
(2012)

15 cell types, poly-(A) minus RNA-
seq data from ENCODE project

Ribosomal RNA-
depleted paired-end
RNA-seq

46,866 intragenic splice
junctions in 8466 genes

Based on
annotated exons
and utility of pair-
end RNA-seq
data property

Salzman
et al.
(2013)

Human cell line Hs68 and
Jurkat E6-1

Ribosomal RNA-
depleted paired-end
RNA-seq combined
with digestion of
RNase R

25,166 backsplice
events, representing
∼14.4% activated
transcribed genes in
human fibrolasts

CircleSeq Jeck et al.
(2013)

Human CD19+, CD34+, neutrophils
and HEK293; Mouse brains, fetal
head and differentiation-induced
embryonic stem cells; C. elegans:
oocyte, 1-cell embryo and 2-cell
embryo

Ribosomal RNA-
depleted paired-end
RNA-seq

1950 circRNAs in
human, 1903 circRNAs
in mouse and 724
circRNAs in nematode

Based on splice
sites and
annotated
transcripts

Memczak
et al.
(2013)

Human stem cell line H9 Poly-(A) minus and
ribo-depleted and
RNase R digested
RNA-seq

103 circular intronic
RNAs

Based on
alignment to
annotated human
RefSeq
databases

Zhang
et al.
(2013)

Fungi, Arabidopsis thaliana, and
protists

Ribosomal RNA-
depleted paired-end
RNA-seq

Based on
annotated exons
and utility of
paired-end RNA-
seq data property

Wang et al.
(2014)

Human stem cell line H9 Poly-(A) minus and
ribo-depleted and
RNase R digested
RNA-seq

9639 exonic circular RNA Based on
alignment to
annotated human
RefSeq
databases

Zhang
et al.
(2014)

Human cell lines HeLa, HEK293 Pol II CLIP followed
by RNA sequencing

111 circRNAs with intron
‘retained’, termed
exon–intron cicrRNAs
or EIciRNAs

Pol II CLIP
followed by 80-nt
single-end RNA
sequencing

Li et al.
(2015)
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the junction is AG/GU but not the canonical GU/AG (Mem-
czak et al., 2013). In addition, other innovative strategy or
bioinformatic analysis methods can also be applied to
identify novel circRNAs (Salzman et al., 2013).

Lastly, to detect low-abundance circRNAs, RNase R
nucleases were used to enrich circRNA by eliminating linear
RNA prior to RNA-seq library construction (Jeck et al., 2013;
Zhang et al., 2013). Mapping algorithms dependent (e.g.,
MapSplice (Jeck et al., 2013; Wang et al., 2010)) or inde-
pendent on gene annotation (e.g., TopHat-Fusion (Zhang
et al., 2013)) could be used to detect the potential junctions
of circRNAs. Experimental validation was followed to confirm
the existence of identified circRNAs.

CONCLUSION AND PERSPECTIVE

Recently, the discovery of circRNAs derived from thousands
of genes had disclosed a new layer of post-transcriptional
regulation in many species, and greatly expanded our
knowledge in understanding the complexity of gene regula-
tion. Increasing studies are continuing to prove the universal
presence and evolutionary conservation of circRNA. How-
ever, there are still some important aspects that future
studies should focus on.

The function and physiological/pathological relevance of
most circRNAs remained to be elucidated, although a few
studies had shown promising roles of circRNAs, such as
miRNA sponge, promoting transcription of parent gene,
mRNA traps, and translation templates. Linear lncRNAs can
act as a scaffold to recruit proteins depending on their
sequence or structure. It is thus possible that circRNAs, as a
special type of lncRNA, can also hold the potential to func-
tion in a similar way. CircRNAs had been widely identified in
many species or special context such as developing stages
or clinical samples, but their physiological/pathological roles
remained elusive. Further intensive studies are warranted to
explore the molecular and biological functions of circRNAs.

The biogenesis mechanism of circRNAs is under intensive
investigation recently.Multiple lines of evidence supported the
hypothesis that complementary-sequence-mediated exon
circularization could be a broad source of circRNA production
(Jeck et al., 2013; Zhang et al., 2014). However, most studies
illustrating the mechanism are based on exogenous plasmid
transient infection rather than manipulate corresponding ele-
ments in the host genome by genome editing strategy such as
CRISPR/Cas9. In addition, trans-acting factors involved in
circRNA biogenesis and those determine their tissue/stage/
environment specific expression are urgently to be identified
for fully understanding the molecular mechanism by which
circRNAs are generated and regulated. Promisingly, some
RNA binding proteins (RBPs) with dynamic expression
changes were supposed to be involved in the circRNA bio-
genesis, such asQKI protein (Conn et al., 2015). It is expected
that the list of responsible RBPs will show a growing increase
in the next few years. Similar to the idea that RBPs can reg-
ulate alternative splicing and alternative polyadenylation, the

local concentration of RBPs also holds the potential to affect
the alternative circularization in circRNA formation, and may
eventually contribute to the tissue/stage/environment specific
expression of circular RNAs.

Moreover, future studies should take into consideration of
circRNA degradation or turn-over, since both degradation
and biogenesis of circRNA determine their temporal-spatial
specific accumulation, and contribute to their biological
function in certain circumstances. However, it is almost
totally unknown in this important aspect for circRNAs, though
a conformed evidence has shown that a circRNA, CDR1as,
can be negatively regulated by miR-671 through Ago2-me-
diated endocleavage pathway (Hansen et al., 2011). Identi-
fication of factors such as ribonucleases responsible for the
degradation of circular RNAs in the cell may be a key and
fundamental question.

With the continuous decrease of sequencing cost, RNA-
seq become the most prevalent method for identification of
circRNAs. Although a few bioinformatic algorithms such as
MapSplice (Wang et al., 2010), TopHat-Fusion (Kim and
Salzberg, 2011), and CIRI (Gao et al., 2015) were developed
for global discovery of circular RNAs, the consistency of
these computational tools remains relatively low. RNase R
treatment largely removes the false positive results, how-
ever, this strategy also impairs the quantitative feature of the
circRNAs, especially the co-expression correlation between
circRNAs and their parent genes. Furthermore, how to
accurately quantify the expression of circRNAs is still a
challenge since existing methods only count the junction
reads, which are easily affected by multiple factors such as
sequencing depth, read length, and fragmentation condition
during RNA-seq library construction. A comprehensive
comparison of existing computational methods and devel-
oping more robust and accurate bioinformatic tools will def-
initely move this field forward.

Lastly, future studies should also attach some importance
to circRNA-involved regulatory network, which would help us
comprehensively understand the formation, biological and
physiological function, and degradation of circRNAs. To sum
up, circRNA, acting as a new transcriptome regulation
player, is attracting an increasing number of researchers to
this emerging field.
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circRNAs, circular RNAs; ciRNA, circular intronic RNA; ecRNA,
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tag; lncRNAs, long non-coding RNAs; miRNA, microRNA; PCR,
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