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ABSTRACT

Various liver diseases result in terminal hepatic failure, and
liver transplantation, cell transplantation and artificial liver
support systems are emerging as effective therapies for
severe hepatic disease. However, all of these treatments are
limitedbyorganorcell resources, sodevelopingasufficient
number of functional hepatocytes for liver regeneration is a
priority. Liver regeneration is a complex process regulated
by growth factors (GFs), cytokines, transcription factors
(TFs), hormones, oxidative stress products, metabolic net-
works, and microRNA. It is well-known that the function of
isolated primary hepatocytes is hard to maintain; when
cultured in vitro, these cells readily undergo dedifferentia-
tion, causing them to lose hepatocyte function. For this
reason, most studies focus on inducing stem cells, such as
embryonicstemcells (ESCs), inducedpluripotentstemcells
(iPSCs), hepatic progenitor cells (HPCs), andmesenchymal
stem cells (MSCs), to differentiate into hepatocyte-like cells
(HLCs) in vitro. In this review, wemainly focus on the nature
of the liver regeneration process and discuss how to main-
tainandenhance invitrohepatic functionof isolatedprimary
hepatocytes or stem cell-derived HLCs for liver regenera-
tion. In this way, hepatocytes or HLCs may be applied for
clinical use for the treatment of terminal liver diseases and
may prolong the survival time of patients in the near future.
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INTRODUCTION

Viral hepatitis, fatty liver disease, drug-induced liver injury,
liver cirrhosis, hepatic carcinoma, and other liver diseases

can cause acute or chronic liver failure. Approximately 10%
of patients with liver disease succumb to their condition while
waiting for liver sources each year (Kim et al., 2006).

Liver transplantation was once the only therapeutic option
for patients with end stage liver diseases, and its clinical use
was limited due to limited donor availability, surgical injuries,
a high incidence of surgical complications and the high cost
of the treatment (Duan et al., 2013). Later, cell transplanta-
tion and artificial liver support emerged as effective methods
for compensation of lost liver function and increased the
survival rate of patients; however, these two methods are
also limited by the availability of effective cell sources and
equipment. The inability of hepatocytes to proliferate in vitro
and the severely inadequate supply of hepatocytes due to
donor shortage are still the main problems for primary human
hepatocyte-based treatments. Stem cells have been pro-
posed as an ideal cell source because they have potent self-
renewal, low immunogenicity, and the capacity to differenti-
ate into various cell types. Furthermore, they can generate
unlimited hepatocytes with incomplete function (Sancho-Bru
et al., 2009) that are generally defined as hepatocyte-like
cells (HLCs). HLCs can be derived from multiple stem cell
types, such as embryonic stem cells (ESCs), induced
pluripotent stem cells (iPSCs), hepatic progenitor cells
(HPCs), and mesenchymal stem cells (MSCs). Therefore, it
is crucial to develop robust methods for differentiating stem
cells into mature hepatocytes in vitro for clinical use.

Here, we present an overview of isolated primary hepa-
tocytes and stem cell-derived HLCs used for liver regener-
ation and describe how the in vitro environment in which they
are cultured is continuously being optimized to mimic in vivo
conditions and maintain hepatic function. The main disad-
vantages, histologic origin, 3D, and co-culture environment
for in vitro culture of isolated hepatocytes or stem cell-
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derived hepatocytes were demonstrated in Table 1. Opti-
mization of in vitro culturing of functional hepatocytes will
solve the issues of limited cell numbers and limited function,
and sufficient numbers of functional hepatocytes will be used
to promote liver regeneration directly or indirectly.

NATURE OF LIVER REGENERATION

The liver serves as a major storage site of glycogen and
vitamin A and is one of only a few organs in adults that are
capable of regeneration. Normal mature hepatocytes and
cholangiocytes stay in the G0 phase of the cell cycle, exhibit
a quiescent phenotype and show minimal turnover, but in
response to partial hepatectomy (PH), they can undergo cell
proliferation to compensate for the lost cells, a process
called liver regeneration. However, severe damage caused

by liver diseases can significantly diminish the proliferative
ability of these cells and, thus, their liver regeneration ability.
When that is the case, liver tissue transplantation may be
required (Samuel et al., 2011).

Spontaneous liver tissue regeneration (Fujiyoshi and
Ozaki, 2011) is achieved by a complex interactive network
consisting of liver cells (hepatocytes, kupffer cells, sinusoidal
endothelial cells, hepatic stellate cells, and stem cells) and
extrahepatic organs (the thyroid gland, adrenal glands, pan-
creas, duodenum, and autonomic nervous system). Growth
factors (GFs), transcription factors (TFs), cytokines, hor-
mones, oxidative stress products, metabolic networks, and
microRNA are essential for liver regeneration to proceed in an
optimal manner to gain adequate hepatic mass (Mao et al.,
2014). Mitogenic GFs override the G1 restriction point and
promote hepatocytes to transit into S phase. The restoration

Table 1. Main disadvantages, histologic origin, 3D, and co-culture environment for in vitro culture of isolated hepatocytes or stem
cell-derived hepatocytes

Cell type Main
disadvantages

Histologic origin 3D environment Co-culture with other cells

Isolated
primary
hepatocyte

Hard to maintain
hepatic function

Liver Collagen sandwich, chitosan-
hyaluronic acid polyelectrolyte
multilayer (Kim and
Rajagopalan, 2010), matrigel
layer(Sellaro et al., 2010),
hydroxyethylmethacrylate and
ethoxyethylmethacrylate
copolymers (Marekova et al.,
2013)

3T3-J2 fibroblasts (Cho et al.,
2008), bone marrow
mesenchymal stem cells
(Marekova et al., 2013),
human adipose-derived stem
cells (No da et al., 2012)

ESC Carry problems of
ethics and
immunorejection

Inner mass cells or
primordial germ
cells

3D spheroid culture system,
rotating bioreactor, hollow
fiber (Subramanian et al.,
2014), biodegradable polymer
scaffold (Wang et al., 2012),
type I collagen and Swiss 3T3
cell sheets (Nagamoto et al.,
2012)

STO feeder cells, MLSgt20
cells, HSC (Ishii et al., 2010),
HepG2 cells (Lee et al., 2009),
xeno-free extracellular matrix
(Farzaneh et al., 2014)

iPSC Create chimeras
by germ line
transmission and
tetraploid
complementation

Skin and nucleated
blood cells and
other terminally
differentiated
cells

Hollow fiber/organoid (Amimoto
et al., 2011), micro-cavitary
hydrogel (MCG) system (Lau
et al., 2013), type I collagen
and Swiss 3T3 cell sheets
(Nagamoto et al., 2012), multi-
component hydrogel fibers
(Du et al., 2014)

Bone marrow mesenchymal
stem cells (Mobarra et al.,
2014), endothelial cells (Du
et al,. 2014), liver non-
parenchymal cell line TWNT-1
(Javed et al., 2014)

HPC Lack of sources Liver Biomatrix scaffolds (Wang et al.,
2011), 3D collagen gel matrix,
fibroblast feeder layer culture
system (Lazaro et al., 1998)

MSC Bone marrow,
adipose,
placenta,
umbilical cord,
amniotic
membrane and
other tissues

Nanofibers and alginate
scaffolds (Piryaei et al., 2011),
3D matrixes of poly (ethylene
glycol)-b-poly(l-alanine)
thermogel (Kim et al., 2014),
bioartificial liver system (Yang
et al., 2013)

Hepatoma-derived C3A cells
(Yang et al., 2013), cystic
fibrosis airway epithelial cells
(Paracchini et al., 2012)
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of liver volume depends on hepatocyte proliferation, which
includes initiation, proliferation, and termination phases.

After PH, more than 100 immediate early genes are acti-
vated by TFs that are latent in the quiescent liver. Interleukin
(IL)-6 (Li et al., 2001), lipopolysaccharide (Cornell et al.,
1990), C3a, and C5a (Strey et al., 2003) can initiate the
cytokine cascade and trigger liver regeneration. Nuclear fac-
tor-kB (Deng et al., 2009), calcitonin gene-related peptide
(Mizutani et al., 2013), caspase recruitment domain-contain-
ing protein 11, zinc finger protein 490 (Nygard et al., 2012),
and heat shock protein 70 (Wolf et al., 2014) contribute to the
early phase of successful liver regeneration. Pituitary hor-
mone prolactin administration directly or indirectly increases
the number of proliferating cells during the priming stage of
hepatectomy, which causes an increase in the binding activity
of several TFs involved in cell proliferation, liver-specific dif-
ferentiation, and the maintenance of energetic metabolism
(Olazabal et al., 2009). Furthermore, the process of liver
regeneration involves a general reduction of the levels of
many coagulation cascade proteins (Tatsumi et al., 2011).
Auxiliary mitogens include norepinephrine, vascular
endothelial growth factor, insulin, bile acids, serotonin, com-
plement, leptin, estrogens, fibroblast growth factor (FGF)-1,
FGF-2, and IL-4 are also indispensable for the hepatocyte cell
cycle (DeAngelis et al., 2012; Michalopoulos, 2010). Vitamin
D3 upregulated protein-1 regulates proliferative signaling
during liver regeneration by altering the activation of genes
involved in the extracellular signal-regulated kinase 1/2 and
AKTsignaling pathways (Kwon et al., 2011). Growth hormone
signaling molecules (Zerrad-Saadi et al., 2011) and the tran-
scription factor E2F2 (Delgado et al., 2011) are also key
regulators of the cell cycle. Activation of Notch, a signaling
pathway that mediates lineage segregation during liver
development, is sufficient to reprogram hepatocytes into bil-
iary epithelial cells (Yanger et al., 2013). FGF15 is an
essential mediator of the liver growth promoting effects of bile
acids and is necessary to maintain liver growth homeostasis
(Uriarte et al., 2013). P-element-induced wimpy testis inter-
acting RNAs exert regulatory functions on the cell genome
and transcriptome (Rizzo et al., 2014). Hepatic non-
parenchymal cells play a time-dependent regulatory role
(Nejak-Bowen et al., 2013). Nogo-B, also known as reticulon
4B, promotes liver fibrosis and cirrhosis by facilitating the
TGF-b signaling pathway in activated hepatic stellate cells
(HSCs) and facilitates hepatocyte proliferation and liver
regeneration (Gao et al., 2013). The termination of liver
regeneration is a complex process that is affected by integrin-
mediated signaling. The return of HGF and TGF-b to their
baseline levels (Michalopoulos, 2010) and activation of mito-
gen-activated protein kinase kinase-4 (Wuestefeld et al.,
2013) can cause complete termination of liver regeneration.

IN VITRO CELLS WITH HEPATIC FUNCTION

Liver regeneration can proceed through two different
mechanisms: replacement of lost tissue with cell types of

phenotypic fidelity; and replacement of tissue by activation of
transdifferentiation pathways originating from facultative
stem cells. Liver regeneration is a rapid and well-coordinated
process that requires contributions from multiple cell popu-
lations (Fig. 1).

Primary hepatocytes

The liver is primarily composed of two epithelial cell lineages,
namely hepatocytes and cholangiocytes, which originate
from hepatoblasts during fetal development. Hepatocytes
are the predominant cell type in the liver under nonpatho-
logical conditions. Isolated primary human hepatocytes are
currently the gold standard for in vitro drug screening
because they express the entire complement of hepatic drug
metabolizing enzymes and transporters. In spite of their
prolific growth ability in vivo, attempts to proliferate adult
hepatocytes in vitro have been less successful. It has taken
a long time to optimize the hepatocyte culture conditions to
allow them to grow steadily in vitro.

Once plated in a monolayer, primary hepatocytes typically
undergo progressive dedifferentiation, which is reflected at
the level of the drug transporters and the dramatic loss in the
phenotypic characteristics of the cells. Specifically, hepato-
cytes and liver sinusoidal endothelial cells dedifferentiate
within 72 h when cultured as monolayers in vitro. Conven-
tional approaches to counteract this dedifferentiation aim at
reestablishing the natural hepatocyte microenvironment
in vitro and include reintroduction of an extracellular matrix
(ECM) backbone (Skardal et al., 2012), addition of differen-
tiation promoting soluble compounds to the culture medium,
and boosting of homotypic hepatocyte interactions or
cocultivation of hepatocytes with other cell types. However,
the use of this approach is limited by the availability of
reproducible sources of hepatocytes.

The ability of EGF to induce DNA synthesis in primary
hepatocytes was first demonstrated in 1976. Thereafter,
many researchers have tried to determine the essential
factors for triggering hepatic regeneration. E-cadherin is
required for hepatocyte spheroid formation and may be
responsible for protecting hepatocytes from a novel form of
caspase-independent cell death (Luebke-Wheeler et al.,
2009). Culturing of rat liver sinusoidal endothelial cells in a
layered three-dimensional configuration, with the layers
separated by a chitosan-hyaluronic acid polyelectrolyte
multilayer, resulted in enhanced heterotypic cell-cell inter-
actions, which led to improvements in hepatocyte function
(Kim and Rajagopalan, 2010). PuraMatrix, a well-defined
synthetic peptide that can self-assemble into an interweav-
ing nanofiber scaffold to form a hydrogel, is an attractive
system for generating hepatocyte spheroids that quickly
restore liver function after seeding (Wang et al., 2008). More
recently, hepatocytes sandwiched between matrigel layers
were reported to have stable function. Despite their advan-
tages, collagen and matrigel sandwich cultures do not pro-
vide the complex multi-cellular environment found in vivo,
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and co-cultures do not mimic the layered liver architecture
(Sellaro et al., 2010). Current techniques that maintain
hepatocellular function in vitro with different biomaterials and
geometries exhibit a low cell density and functional capacity
per unit volume.

Stem cell-derived hepatocytes

Stem cells have the potential for numerous biomedical
applications, including therapeutic cell replacement to repair
damaged body organs, as tools for studying genetic defects
and testing drugs, and as models for studying cell differen-
tiation and early development. HLCs can be derived from
ESCs (Subramanian et al., 2014), iPSCs (Amimoto et al.,
2011), HPCs (Wang et al., 2011), and MSCs (Piryaei et al.,
2011), which have the capacity for unlimited proliferation and
multilineage differentiation. However, there are certain
requirements for the generation of HLCs: (a) an unlimited
source of initial cell material is needed to ensure routine
large-scale generation of the required cells; (b) the gener-
ated cultures should be reproducible in terms of their hep-
atic-like functionality; and (c) the established system should
allow for highly efficient selection of hepatocytes.

Embryonic stem cell-derived hepatocytes (ESC-Heps)

ESCs are derived from the inner cell mass of the fertilized
egg, which is pluripotent, and can be cultured indefinitely in
an undifferentiated state and have the potential to

differentiate into three germ layer cell types. They have been
shown to give rise to functional hepatocytes that effectively
integrate into and replace injured parenchyma in many
devastating liver diseases. Definitive endoderm (DE) cells
are the precursors of both the liver and pancreas, and they
have to be induced to undergo hepatic and pancreatic dif-
ferentiation (Murry and Keller, 2008). Moreover, the expres-
sion of alpha fetal protein (AFP), albumin (ALB), and a biliary
molecular marker appear sequentially, suggesting the dif-
ferentiation of ESCs recapitulates the normal developmental
processes of the liver. There are some issues with these the
current differentiation protocols, including spontaneous dif-
ferentiation, low yield, the presence of undefined and
xenogenetic compounds, necessity of cell sorting for specific
cell lineages, considerable enzymatic stress during repeated
culture (Haque et al., 2011) and cellular heterogeneity in the
culture (Nagaoka et al., 2008). Terminally specified cells of a
certain lineage represent only a minor cell fraction of the
differentiating ESCs in culture. Therefore, large-scale pro-
duction of highly purified cell lineages of interest is the
principle task of the ESC-based approach to regenerative
medicine. Potential therapeutic applications of ESC-Heps
are limited by their relatively low output in differentiating ESC
cultures and by the danger of contamination with tumori-
genic, undifferentiated ESCs. Furthermore, the use of ESCs
typically causes ethical and immunorejection issues, and the
elimination of these issues is critical for stem cell trans-
plantation therapies to be effective.

ESC

iPSC

HSC

MSC

Drug induced 
liver injury

Virus 
hepatitis 

Liver 
failure

Fatty liver 
disease 

Effective 
treatment

Liver cirrhosis

Hepatic 
carcinoma 

Artificial 
liver

Liver 
transplantation

In vivo
differentiation

in vitro
differentiation

Cell 
transplantation

Primary 
hepatocyte

Stem cell

Figure 1. Liver regeneration is a rapidandwell-coordinatedprocess that requirescontributions frommultiplecell populations.
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Many studies have made substantial contributions to the
differentiation of ESCs into hepatocytes by continuously
improving inducers of differentiation and optimizing their
combinations and sequences (Li et al., 2010b; Liu et al.,
2010b; Wang et al., 2012; Zhang et al., 2013b). Most
induction methods try to imitate the routine embryonic
developmental process of the liver within a few days of
in vitro culture. Most of the induction processes are ineffec-
tive, complicated, time-consuming, expensive, and limited by
the difficulties involved in scaling up the procedures. Cyto-
chrome P (CYP) activity in human ESC-Heps was much
lower than in human primary hepatocytes cultured for 4 h
and was stable or increased for at least one week in culture,
which contrasts the observation of rapid loss of CYP activity
in cultured human primary hepatocytes (Ulvestad et al.,
2013). However, ESC-Heps are unable to function as effi-
ciently as hepatoblasts or primary hepatocytes upon trans-
plantation in liver repopulation models. Clearly, improvement
of in vitro hepatic differentiation protocols and a better
understanding of the molecular mechanisms underlying liver
development are needed. Therefore, it can be speculated
that there are certain specific TFs, or a combination of TFs,
that can facilitate the differentiation of ESCs. Exposure of
adherent human ESCs in culture to activin A treatment fol-
lowed by various GFs, including dexamethasone, oncostatin
M, and HGF, results in the production of ESC-Heps that
possess hepatocyte-specific functions (Moore and Moghe,
2009). The signaling molecules bone morphogenic protein
(BMP) and FGF that have been implicated in hepatic differ-
entiation during normal embryonic development and have
been shown to play pivotal roles in generating hepatic cells
from DE cells derived from ESCs. Using a set of human adult
markers, including CAAT/enhancer binding protein
(C/EBPalpha), hepatocyte nuclear factor 4/7 ratio (HNF4al-
pha1/HNF4alpha7), CYP7A1, CYP3A4 and constitutive
androstane receptor, and fetal markers, including AFP,
CYP3A7, and glutathione S-transferase P1, by 21 days of
differentiation, ESC-Heps have the characteristics of fetal
hepatocytes at less than 20 weeks of gestation, but
extending the differentiation to 4 weeks does not improve
cell maturation (Funakoshi et al., 2011). Li et al. (Li et al.,
2011a) established an efficient method for the induction of
mouse ESC-derived DE cells in suspension embryonic body
culture. The chemical activation of the canonical Wnt sig-
naling pathway synergized with the activin A-mediated nodal
signaling pathway to promote the induction of DE cells, and
inhibition of BMP4 signaling by Noggin and activin A further
improved the efficiency of DE cell differentiation. A combined
treatment with Wnt3a and BMP4 efficiently differentiated
human ESCs (Kim et al., 2013); after co-culture with STO
feeder cells, human ESCs were able to differentiate into
HLCs and cholangiocyte-like cells (Zhao et al., 2009).
Forkhead box A2 (Liu et al., 2013) and synthesized base-
ment membrane components (Shiraki et al., 2011) signifi-
cantly increased the hepatic differentiation of ESCs.

Most studies demonstrating hepatic differentiation from
ESCs have been based on embryoid body (EB) formation,
aggregated colony formation in static culture. It has been
shown that dynamic three-dimensional perfusion culture is
superior to other culture systems for inducing maturation of
ESCs into fetal hepatocytes and prolonging the maintenance
of the hepatic functions of those cells. Ten pathways that were
significantly upregulated in cells differentiated in a bioreactor
compared to cells grown in static culture were shown to be
highly related to liver functions (Sivertsson et al., 2013). The
differentiated phenotype was sustained for more than 2
weeks in the three-dimensional spheroid culture system,
which is significantly longer than in monolayer culture
(Subramanian et al., 2014). EB-derived cells grown in a
rotating bioreactor exhibited higher levels of liver-specific
functions than those in static culture (Zhang et al., 2013a).
The hollow fiber/organoid culture method allows for cultured
ESCs to form an organoid, and the differentiating ESCs reach
a level of functionality comparable to or better than that of
primary mouse hepatocytes (Amimoto et al., 2011). Differen-
tiated cells grown on a biodegradable polymer scaffold and a
rotating bioreactor also exhibit morphologic traits and
biomarkers characteristic of liver cells (Wang et al., 2012).
Significantly upregulated hepatic gene expression was
observed in the hepatic differentiation hollow fiber-based
three-dimensional perfusion bioreactors with integral oxy-
genation culture group (Miki et al., 2011). However, most of
the current three-dimensional differentiation configurations
involve interruptive operations during the multistaged differ-
entiation process, which might impose unwanted influence on
cellular differentiation. Off-the-shelf micro-stencil arrays were
developed to generate adherent multilayered colonies com-
posed of human ESC-derived cells; the microscaled multi-
layered colonies with uniform and defined sizes constrained
within the microwells are composed of more homogenous and
mature HLCs with significantly lowered AFP expression and
elevated hepatic functions (Yao et al., 2014). A combination of
co-culture with non-parenchymal liver cells and optimal GF
stimulation was found to induce endoderm and hepatic phe-
notypes earlier and to a much greater extent than GF arrays
or micropatterned co-cultures used individually (Tuleuova
et al., 2010). When coculturing ESCs with MLSgt20 cells,
which are derived from mesenchymal cells residing in murine
fetal livers, human ESC-derived AFP-producing cells dis-
played higher hepatocyte functions (Ishii et al., 2010). A
similar effect was observed in mouse ESCs co-cultured with
mouse HSCs as feeder cells in basal medium without addi-
tional hepatocyte growth factors (Chan et al., 2013).

Induced pluripotent stem cell-derived hepatocytes
(iPSC-Heps)

iPSCs were initially generated from terminally differentiated
adult cells using viral vectors for specific TFs, and later using
the non-integrating methods of treating cells with small
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molecules that affect methylation or acetylation, mimic the
Wnt-signaling pathway, or modulate the TGF-b pathway (Li
et al., 2009). These methods raised few ethical concerns
because of their derivation from somatic cells and, thus, are
powerful tools for studying basic developmental biology.
iPSCs are now considered to have the same level of
pluripotency as ESCs (Jia et al., 2010), and the mitochondria
of iPSCs were shown to act like those of ESCs by measuring
oxygen concentration and pH in hepatic induction medium,
which indicate the oxygen consumption rate and extracel-
lular acidification rate, respectively (Tamai et al., 2011).
iPSCs can be differentiated into neural, osteogenic, cardiac,
adipogenic, pancreatic, vascular, hematopoietic, and
endothelial cells. In addition, they are potential sources of
hepatocytes for applications in regenerative medicine and
drug development (Noto et al., 2014). iPSCs from mouse
embryonic fibroblasts and human fibroblasts can be differ-
entiated into hepatic lineages with four reprogramming fac-
tors (Oct-4/Sox2/Klf-4/c-Myc) (Yamanaka and Blau, 2010). Li
et al. (Li et al., 2011b) demonstrated that iPSCs could be
differentiated into iPSC-Heps with biological functions with-
out being treated with c-Myc, and those iPSC-Heps reduced
the hepatic necrotic area and improved liver function. How-
ever, iPSCs in vivo are able to create chimeras by germ line
transmission and tetraploid complementation and form ter-
atomas containing various cell types from three embryonic
germ layers.

Liu et al. (Liu et al., 2010a) were the first to reprogram
primary hepatocytes to pluripotency, and these hepatocyte-
derived iPSCs were able to directly differentiate into DE,
HPCs, and mature hepatocytes. The derivation of iPSCs
from somatic cells of patients with liver diseases, including
tyrosinemia, glycogen storage disease, progressive familial
hereditary cholestasis, and Crigler-Najjar syndrome (two
siblings), through retroviral transduction of Yamanaka’s fac-
tors in serum and feeder-free culture conditions has been
shown (Ghodsizadeh et al., 2010). Furthermore, those
iPSCs were efficiently differentiated into functional HLCs
(Ghodsizadeh et al., 2010). iPSCs are specified to primitive
streak/mesendoderm/definitive endoderm by sequential
stimulation with liver development-related cytokines, result-
ing in differentiated cells with characteristics of HLCs. CYP
activities in iPSC-Heps were stable or increased for at least
one week in culture, which contrasts with the rapid loss of
CYP activities in cultured human primary hepatocytes
between 4 h and 48 h after plating (Ulvestad et al., 2013).
iPSC-Heps can be directed to differentiate into HLCs by
mimicking embryonic and fetal liver development (Hannan
et al., 2013; Kajiwara et al., 2012; Takebe et al., 2013), but
most differentiated cells co-express AFP and ALB, sug-
gesting incomplete cell maturation. Although progress in
developing differentiation procedures has been made, it
remains challenging to generate iPSC-derived mature hep-
atocytes. Umeda et al. (Umeda et al., 2013) performed
knock-in of a monomeric Kusabira orange (mKO1) cassette
into the ALB gene in iPSCs with the use of a helper-

dependent adenovirus vector, and the ALB/mKo1 knock-in
iPSCs are valuable resources, as they show enhanced
in vitro hepatic differentiation function.

Compared with the in vivo environment of the liver, culture
conditions are relatively artificial, and this is likely to impact
the function of iPSC-Heps (Si-Tayeb et al., 2010). Activin has
the opposing effects of promoting differentiation into endo-
derm and maintaining pluripotency by regulating the
expression of Nanog (Shin et al., 2011). Dexamethasone
and insulin-transferrin-selenium are used to maintain the
in vitro functions of hepatocytes. In consideration of the
tedious differentiation work and complex combination of
cytokines, many investigators have focused on developing
concise and rapid methods for differentiating iPSCs into
HLCs. Chen et al. (Chen et al., 2012) established a rapid and
efficient three-step differentiation protocol with HGF, activin
A, and Wnt3a that is able to generate functional HLCs from
human iPSCs. Then, Takata et al. (Takata et al., 2011)
described a two-step protocol for directing human iPSCs to
differentiate into hepatic cells using only two cytokines and a
short incubation time; furthermore, the differentiation effi-
ciency of the two-step protocol was comparable to that of the
three-step protocol, and the induced hepatic cells were
functional. In the latest study by Tomizawa et al. (Tomizawa
et al., 2013), a single-step protocol for the differentiation of
iPSCs into hepatocytes was designed and involved expo-
sure to FoxA2, GATA4, HEX, and C/EBPα and culturing with
OERDITS supplementation. This protocol has the potential
to induce the differentiation of iPSCs into HLCs within 8
days. Kondo et al. (Kondo et al., 2014) developed a simple
method of differentiation of human iPSCs into functional
HLCs with small-molecule compounds, which are conve-
nient and inexpensive to obtain for large scale production
and do not have the potential to be contaminated with
exogenous viruses or cells. However, Zhang et al. (Zhang
et al., 2014) showed that human iPSC-derived mature HLCs
hardly ever proliferated in vitro, and in contrast, human
iPSC-derived hepatic endoderm cells exhibited a marked
proliferative capability.

All of the protocols discussed above are static culture
protocols for iPSCs, and three-dimensional culturing proto-
cols can significantly enhance the function of HLCs. Hollow
fiber/organoid culture of mouse iPSCs to induce expression
of liver-specific genes and functions allows for spontaneous
differentiation with cell proliferation and self-organization,
high cell density, and the induction of differentiation in a large
number of cells (Amimoto et al., 2011). The micro-cavitary
hydrogel (MCG) system enhances nutrient exchange, per-
mits greater living space for the encapsulated pluripotent
stem cells to rapidly grow into colonies and results in sig-
nificantly greater production of endoderm markers, hepatic
markers, urea, and ALB by iPSCs compared to the typical
non-MCG system, or monolayer culture (Lau et al., 2013).
Zhang et al. (Liu et al., 2013) reported three-dimensional
clump culture collagen matrices compatible with high
throughput screening resulted in significantly increased
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functional maturation of iPSC-Heps towards an adult phe-
notype when compared to conventional culture systems.
Additionally, this approach spontaneously results in the
presence of polarized structures necessary for drug meta-
bolism and improves the functional longevity when culturing
in vitro over 75 days. Chiang et al. (Chiang et al., 2015)
reprogrammed human dental pulp-derived fibroblasts into
iPSCs, developed an injectable carboxymethyl-hexanoyl
chitosan hydrogel (CHC) with sustained HGF release and
investigated the hepatoprotective activity of HGF-CHC-de-
livered iPSC-Heps in vitro. Compared with PBS-delivered
iPSC-Heps, the HGF-CHC-delivered iPSC-Heps exhibited
higher antioxidant and anti-apoptotic activities, which resul-
ted in a reduction of the hepatic necrotic area. Chien et al.
(Chien et al., 2015) demonstrated that embedment of
miR122 complexed with a polyurethane-graft-short-branch
polyethylenimine copolymer in nanostructured amphiphatic
carboxymethyl-hexanoyl chitosan led to dramatically enhanced
miR122 delivery into human dental pulp-derived iPSCs and
facilitated these cells to differentiate into iPSC-Heps with
mature hepatocyte functions.

Hepatic progenitor cell-derived hepatocytes (HPC-Heps)

The first HPCs were identified by Farber (1956) and were
termed oval cells, a small bipotent cell type with a high
nuclear-to-cytoplasmic ratio, but in human it was defined as
HPCs. They have been shown to emerge in several human
liver diseases, including primary biliary cirrhosis (Crosby
et al., 1998), primary sclerosing cholangitis (Vessey and de
la Hall, 2001), and hepatocellular adenoma (Libbrecht et al.,
2001). PH-activated progenitor cells are hepatic stem-like
cells that can be cultured in vitro for more than 3 months,
with the number of cells doubling 100 times over that period
(He et al., 2004). Human liver-derived stem cells can be
isolated and expanded from donated livers unsuitable for
transplantation and present a comparable morphology to
that of HSCs, which express a-smooth muscle actin,
vimentin, fibronectin, CD73, and CD90 in accordance with
their mesenchymal origin (Berardis et al., 2014). They can
be induced to differentiate into cells with morphological,
phenotypic, and functional characteristics of mature hepa-
tocytes (He and Feng, 2011). Moreover, HPCs have a
greater regenerative capacity than adult hepatocytes and
participate in liver tissue repair and reconstruction following
injury. It has been reported that HPCs transplantation can be
used as a substitute for liver transplantation, and HPCs have
a definite therapeutic effect on patients with end-stage liver
diseases (Hughes et al., 2012). The effect of different PHs
and the duration of collagenase perfusion on hepatic stem
cell proliferation and differentiation varies; optimal differen-
tiation of hepatic stem cells to CK-18 and AFP-positive cells
was observed when stem cells isolated from 83.4% PH rats
were perfused with IV collagenase for 20 min (Gong et al.,
2013). Thy1 and CD44 oval and progenitor cells are able to
differentiate into hepatocytes, but the degree of maturation of

the induced hepatocytes may not be equal to that of healthy
resident hepatocytes (Ichinohe et al., 2013). Messenger
RNA expression levels of CYP1A2, CYP2B1/2, and CYP3A1
were higher in cells of young rats, and the proliferation and
differentiation potential of oval cells decreased with age
(Czekaj et al., 2010). Wang et al. (Wang et al., 2010)
demonstrated slight acceleration of proliferation of hepatic
oval cells after the 50th passage, but the cells remained
diploid with features of chromosomal stability. Furthermore,
they did not acquire anchorage-independent growth capacity
and did not develop into tumors in immunodeficient mice,
suggesting that hepatic oval cells do not undergo sponta-
neous malignant transformation.

Current protocols for the differentiation of oval cells make
use of multiple treatments of soluble signals and/or matrix
factors and typically result in partial differentiation of oval
cells to mature cells with under- or over-expression of adult
tissue-specific genes. The activation of AKT, p70s6k, and
ERK1/2 induced by HGF in OC/CDE22 rat oval cells was
abolished by pretreatment with a phosphoinositide 3-OH
kinase inhibitor and a mitogen-activated protein kinase/ERK
kinase inhibitor, respectively (Okano et al., 2003). This
finding suggested that this signaling pathway is responsible
for the biological effect of HGF. LE/2 and LE/6 oval cells are
non-tumorigenic cells that were derived from the livers of
adult rats fed a choline-deficient diet containing 0.1% ethio-
nin. After 4 weeks in a three-dimensional collagen gel matrix
and a fibroblast feeder layer culture system, these cells
acquired typical hepatocytic morphology; however in the
absence of a feeder layer and in the presence of HGF and/or
keratinocyte growth factor, the precursor cells formed ductal
structures, suggestive of differentiation along the bile duct
lineage (Lazaro et al., 1998). The hepatic stem cell lines
HY1, HY2, and HY3, which were derived from healthy livers
of adult rats, showed an expression pattern similar to oval
cells and efficiently induced hepatic differentiation following
sequential treatment with type I collagen, TGF-b1, and HGF
or oncostatin M (Hirata et al., 2009). Human hepatic stem
cells seeded onto liver biomatrix scaffolds in a hormonally
defined medium tailored for adult liver cells lost stem cell
markers and differentiated into mature, functional parenchy-
mal cells and remained viable with stable mature cell phe-
notypes for more than 8 weeks (Wang et al., 2011).

Mesenchymal stem cell-derived hepatocytes (MSC-Heps)

MSCs are highly proliferative, adherent mesenchymal cells
with a unique cell surface molecule expression profile. The
differentiation potential of adult stem cells has long been
believed to be limited to the tissue or germ layer of their
origin. In addition to long-term self-renewal capability, MSCs
possess versatile differentiation potential ranging from
mesenchyme-related multipotency to neuroectodermal and
endodermal competency. Furthermore, they have the ability
to differentiate into a number of organ-specific cell types,
including hepatocytes (Christ and Dollinger, 2011). Adult
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stem cells can be derived from different tissues, such as
bone marrow, adipose, placenta, umbilical cord blood,
menstrual blood, and synovial tissues, etc.

When MSCs are treated with an external factor, their
differentiation ability may be improved. Cytokines may play a
more important role in the differentiation of MSCs into hep-
atocytes. When HGF, nicotinamide, or dexamethasone was
added to MSCs individually, incomplete hepatocyte differ-
entiation was achieved; the obtained cell populations con-
tained progenitors that expressed both hepatic (ALB) and
biliary (CK19) markers as well as AFP. When all factors were
added to the culture medium, the cells exhibited features that
closely resembled human adult hepatocytes (Chivu et al.,
2009). A combination of insulin-like growth factor-I and liver-
specific factors supported the potential development of
MSCs into primary hepatocytes (Ayatollahi et al., 2011), and
the addition of dimethylsulfoxide enhanced their differentia-
tion into hepatocytes (Seo et al., 2005). Alpha-1 antitrypsin
(AAT) deficiency is a hereditary disorder characterized by a
severe decrease in AAT plasma level, which leads to pro-
gressive liver dysfunction; however, human MSC-Heps can
be AAT genetically modified as a novel paradigm of coupling
cell therapy for this disease (Ghaedi et al., 2010). Acute
hepatic failure-derived bone marrow mesenchymal stem
cells (BMMSCs) have a hepatic transcriptional profile,
express hepatocyte-specific genes early during differentia-
tion, and possess greater hepatogenic potency in vitro
compared to cells isolated from control animals (Li et al.,
2010a). Pretreatment of MSCs with injured liver tissue in an
in vitro model resulted in high expression of albumin, CK8,
CK18, transaminase, and HNF1a compared to untreated
MSCs, indicating that this pretreatment augmented the
homing and hepatic differentiation abilities of MSCs (Mohsin
et al., 2011). Culturing in hepatocyte-conditioned medium
without any cytokines can induce the differentiation of
BMMSCs into HLCs (Chen et al., 2007). Quiescent HSCs or
culture-activated HSCs do not have the ability to modulate
the differentiation of MSCs. Moreover, Kupffer cell-activated
HSCs expressed HGF mRNA, and culture-activated HSCs
did not (Deng et al., 2008).

MSCs grown on nanofibers showed enhanced differenti-
ation into HLCs and maintained their function in long-term
culture; hepatocyte markers ALB and HNF4α were elevated
in a time-dependent manner, and CYP450 enzymes were
significantly increased in the HLCs differentiated in vitro from
MSCs grown on nanofibers at day 36 (Piryaei et al., 2011).
BMMSCs cultured in alginate scaffolds in the presence of
specific GFs display several liver-specific markers and
functions (Lin et al., 2010). A three-dimensional co-culture
system of porcine hepatocytes and BMMSCs was estab-
lished in vitro, and the best hepatic function levels were
achieved on day 2 and moderately decreased in the fol-
lowing co-culture days (Gu et al., 2009). Culturing human
adipose-derived mesenchymal stem cells (ADMSCs) on top
of HGF/Col spots (HGF co-printed with collagen I to create
arrays of protein spots on glass) for 2 weeks can differentiate

them into HLCs (Ghaedi et al., 2011). Floating culture effi-
ciently induced human ADMSCs into functional HLCs in vitro
(Okura et al., 2010).

FUTURE DIRECTIONS

The liver regeneration process has been evaluated in PH
models. Although it has been studied extensively, many
important fundamental mechanisms remain undefined, such
as the mechanisms of cellular hypertrophy, cell division,
nuclear division, ploidy changes, and organ size control. The
current shortage of donor organs available for live transplan-
tation and the severe morbidity and mortality associated with
this procedure underscores the need for alternatives to liver
transplantation. In vivo hepatocytes proliferate to repair
injured liver tissue, but this process is too complex to mimic
in vitro to obtain functional hepatocytes. Culture methods for
the enhancement of isolated primary hepatocytes or HLCs
in vitro include the addition of GFs, TFs, and cytokines, the
activation of signaling pathways, the use of an optimized
matrix, and co-culture with various nonparenchymal cells. All
of these methods are able to improve the function of primary
hepatocytes or HLCs in vitro to a certain extent, but unfortu-
nately, the amount of available mature hepatocytes have
been insufficient for clinical use in the past several decades.
And the lack of standardization of protocols for isolating
specific cell types and the use of a variety of injury/disease
models have made the interpretation of these results rather
difficult and have left unanswered questions regarding the
mechanisms through which these cells generate their bene-
ficial effects.

The observed effects of cell therapies for liver regenera-
tion have certainly generated reserved optimism toward their
value for clinical use once the methodologies have become
standardized and optimized. With clarification of the process
of liver regeneration, hepatocytes or HLCs that can grow and
proliferate persistently and functionally in vitro and in vivo will
be able to be used to fulfill the needs of injured livers for
regeneration, and cell transplantation and artificial liver
support will completely replace liver transplantation.
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AAT, alpha-1 antitrypsin; ADMSCs, adipose derived mesenchymal

stem cells; AFP, alpha fetal protein; ALB, albumin; BMMSCs, bone
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cell-derived hepatocytes; FGF, fibroblast growth factor; GFs, growth

factors; HLCs, hepatocyte-like cells; HPC, hepatic progenitor cell;

HPC-Heps, hepatic progenitor cell-derived hepatocytes; HSCs,
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derived hepatocytes; PH, partial hepatectomy; SHs, small hepato-

cyte-like progenitor cells; TFs, transcription factors.

COMPLIANCE WITH ETHICS GUIDELINES

Chenxia Hu and Lanjuan Li declare that they have no conflict of

interest.

This article does not contain any studies with human or animal

subjects performed by the any of the authors.

OPEN ACCESS

This article is distributed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/

licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to

the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

REFERENCES

Amimoto N, Mizumoto H, Nakazawa K, Ijima H, Funatsu K, Kajiwara

T (2011) Hepatic differentiation of mouse embryonic stem cells

and induced pluripotent stem cells during organoid formation in

hollow fibers. Tissue Eng Part A 17:2071–2078

Ayatollahi M, Soleimani M, Tabei SZ, Salmani MK (2011) Hepato-

genic differentiation of mesenchymal stem cells induced by

insulin like growth factor-I. World J Stem Cells 3:113–121

Berardis S, Lombard C, Evraerts J, El Taghdouini A, Rosseels V,

Sancho-Bru P, Lozano JJ, van Grunsven L, Sokal E, Najimi M

(2014) Gene expression profiling and secretome analysis differ-

entiate adult-derived human liver stem/progenitor cells and

human hepatic stellate cells. PLoS One 9:e86137

Chan KM, Fu YH, Wu TJ, Hsu PY, Lee WC (2013) Hepatic stellate

cells promote the differentiation of embryonic stem cell-derived

definitive endodermal cells into hepatic progenitor cells. Hepatol

Res 43:648–657

Chen Y, Dong XJ, Zhang GR, Shao JZ, Xiang LX (2007) In vitro

differentiation of mouse bone marrow stromal stem cells into

hepatocytes induced by conditioned culture medium of hepato-

cytes. J Cell Biochem 102:52–63

Chen YF, Tseng CY, Wang HW, Kuo HC, Yang VW, Lee OK (2012)

Rapid generation of mature hepatocyte-like cells from human

induced pluripotent stem cells by an efficient three-step protocol.

Hepatology (Baltimore, Md.) 55:1193–1203

Chiang CH, Wu WW, Li HY, Chien Y, Sun CC, Peng CH, Lin AT,

Huang CS, Lai YH, Chiou SH et al (2015) Enhanced antioxidant

capacity of dental pulp-derived iPSC-differentiated hepatocytes

and liver regeneration by injectable HGF-releasing hydrogel in

fulminant hepatic failure. Cell Transplant 24:541

Chien Y, Chang YL, Li HY, Larsson M, Wu WW, Chien CS, Wang

CY, Chu PY, Chen KH, Lo WL et al (2015) Synergistic effects

of carboxymethyl-hexanoyl chitosan, cationic polyurethane-

short branch PEI in miR122 gene delivery: accelerated

differentiation of iPSCs into mature hepatocyte-like cells and

improved stem cell therapy in a hepatic failure model. Acta

Biomater 13:228–244

Chivu M, Dima SO, Stancu CI, Dobrea C, Uscatescu V, Necula LG,

Bleotu C, Tanase C, Albulescu R, Ardeleanu C et al (2009)

In vitro hepatic differentiation of human bone marrow mesenchy-

mal stem cells under differential exposure to liver-specific factors.

Transl Res 154:122–132

Cho CH, Berthiaume F, Tilles AW, Yarmush ML (2008) A new

technique for primary hepatocyte expansion in vitro. Biotechnol

Bioeng 101:345–356

Christ B, Dollinger MM (2011) The generation of hepatocytes from

mesenchymal stem cells and engraftment into the liver. Curr Opin

Organ Transplant 16:69–75

Cornell RP, Liljequist BL, Bartizal KF (1990) Depressed liver

regeneration after partial hepatectomy of germ-free, athymic

and lipopolysaccharide-resistant mice. Hepatology (Baltimore,

Md.) 11:916–922

Crosby HA, Hubscher S, Fabris L, Joplin R, Sell S, Kelly D, Strain AJ

(1998) Immunolocalization of putative human liver progenitor

cells in livers from patients with end-stage primary biliary cirrhosis

and sclerosing cholangitis using the monoclonal antibody OV-6.

Am J Pathol 152:771–779

Czekaj P, Bryzek A, Czekaj TM, Koryciak-Komarska H, Wiaderkie-

wicz A, Plewka D, Sieron AL (2010) Cytochrome P450 mRNA

expressions along with in vitro differentiation of hepatocyte

precursor cells from fetal, young and old rats. Folia Histochem

Cytobiol 48:46–57

da No Y, Lee SA, Choi YY, Park D, Jang JY, Kim DS, Lee SH (2012)

Functional 3D human primary hepatocyte spheroids made by co-

culturing hepatocytes from partial hepatectomy specimens and

human adipose-derived stem cells. PLoS One 7:e50723

DeAngelis RA, Markiewski MM, Kourtzelis I, Rafail S, Syriga M,

Sandor A, Maurya MR, Gupta S, Subramaniam S, Lambris JD

(2012) A complement-IL-4 regulatory circuit controls liver regen-

eration. J Immunol 188:641–648

Delgado I, Fresnedo O, Iglesias A, Rueda Y, Syn WK, Zubiaga AM,

Ochoa B (2011) A role for transcription factor E2F2 in hepatocyte

proliferation and timely liver regeneration. Am J Physiol Gas-

trointest Liver Physiol 301:G20–31

Deng X, Chen YX, Zhang X, Zhang JP, Yin C, Yue HY, Lin Y, Han

ZG, Xie WF (2008) Hepatic stellate cells modulate the differen-

tiation of bone marrow mesenchymal stem cells into hepatocyte-

like cells. J Cell Physiol 217:138–144

Deng X, Li W, Chen N, Sun Y, Wei H, Jiang Y, He F (2009) Exploring

the priming mechanism of liver regeneration: proteins and protein

complexes. Proteomics 9:2202–2216

Du C, Narayanan K, Leong MF, Wan AC (2014) Induced pluripotent

stem cell-derived hepatocytes and endothelial cells in multi-

component hydrogel fibers for liver tissue engineering. Biomate-

rials 35:6006–6014

Duan BW, Lu SC, Wang ML, Liu JN, Chi P, Lai W, Wu JS, Guo QL,

Lin DD, Liu Y et al (2013) Liver transplantation in acute-on-

chronic liver failure patients with high model for end-stage liver

disease (MELD) scores: a single center experience of 100

consecutive cases. J Surg Res 183:936–943

Farber E (1956) Similarities in the sequence of early histological

changes induced in the liver of the rat by ethionine, 2-acety-

lamino-fluorene, and 3’-methyl-4-dimethylaminoazobenzene.

Cancer Res 16:142–148

REVIEW Chenxia Hu, Lanjuan Li

570 © The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



Farzaneh Z, Pakzad M, Vosough M, Pournasr B, Baharvand H

(2014) Differentiation of human embryonic stem cells to hepato-

cyte-like cells on a new developed xeno-free extracellular matrix.

Histochem Cell Biol 142:217–226

Fujiyoshi M, Ozaki M (2011) Molecular mechanisms of liver

regeneration and protection for treatment of liver dysfunction

and diseases. J Hepato-Biliary-Pancreatic Sci 18:13–22

Funakoshi N, Duret C, Pascussi JM, Blanc P, Maurel P, Daujat-

Chavanieu M, Gerbal-Chaloin S (2011) Comparison of hepatic-

like cell production from human embryonic stem cells and adult

liver progenitor cells: CAR transduction activates a battery of

detoxification genes. Stem Cell Rev 7:518–531

Gao L, Utsumi T, Tashiro K, Liu B, Zhang D, Swenson ES, Iwakiri Y

(2013) Reticulon 4B (Nogo-B) facilitates hepatocyte proliferation

and liver regeneration in mice. Hepatology (Baltimore, Md.)

57:1992–2003

Ghaedi M, Lotfi AS, Soleimani M (2010) Establishment of lentiviral-

vector-mediated model of human alpha-1 antitrypsin delivery into

hepatocyte-like cells differentiated from mesenchymal stem cells.

Tissue Cell 42:181–189

Ghaedi M, Tuleuova N, Zern MA, Wu J, Revzin A (2011) Bottom-up

signaling from HGF-containing surfaces promotes hepatic differ-

entiation of mesenchymal stem cells. Biochem Biophys Res

Commun 407:295–300

Ghodsizadeh A, Taei A, Totonchi M, Seifinejad A, Gourabi H,

Pournasr B, Aghdami N, Malekzadeh R, Almadani N, Salekdeh

GH et al (2010) Generation of liver disease-specific induced

pluripotent stem cells along with efficient differentiation to

functional hepatocyte-like cells. Stem Cell Rev 6:622–632

Gong P, Wang Y, Zhang J, Wang Z (2013) Differential hepatic stem

cell proliferation and differentiation after partial hepatectomy in

rats. Mol Med Rep 8:1005–1010

Gu J, Shi X, Zhang Y, Chu X, Hang H, Ding Y (2009) Establishment

of a three-dimensional co-culture system by porcine hepatocytes

and bone marrow mesenchymal stem cells in vitro. Hepatol Res

39:398–407

Hannan NR, Segeritz CP, Touboul T, Vallier L (2013) Production of

hepatocyte-like cells from human pluripotent stem cells. Nat

Protoc 8:430–437

Haque A, Hexig B, Meng Q, Hossain S, Nagaoka M, Akaike T (2011)

The effect of recombinant E-cadherin substratum on the differ-

entiation of endoderm-derived hepatocyte-like cells from embry-

onic stem cells. Biomaterials 32:2032–2042

He Z, Feng M (2011) Activation, isolation, identification and culture

of hepatic stem cells from porcine liver tissues. Cell Prolif 44:558–

566

He ZP, Tan WQ, Tang YF, Zhang HJ, Feng MF (2004) Activation,

isolation, identification and in vitro proliferation of oval cells from

adult rat livers. Cell Prolif 37:177–187

Hirata M, Amano K, Miyashita A, Yasunaga M, Nakanishi T, Sato K

(2009) Establishment and characterization of hepatic stem-like

cell lines from normal adult rat liver. J Biochem 145:51–58

Hughes RD, Mitry RR, Dhawan A (2012) Current status of

hepatocyte transplantation. Transplantation 93:342–347

Ichinohe N, Tanimizu N, Ooe H, Nakamura Y, Mizuguchi T, Kon J,

Hirata K, Mitaka T (2013) Differentiation capacity of hepatic stem/

progenitor cells isolated from D-galactosamine-treated rat livers.

Hepatology (Baltimore, Md.) 57:1192–1202

Ishii T, Yasuchika K, Fukumitsu K, Kawamoto T, Kawamura-Saitoh

M, Amagai Y, Ikai I, Uemoto S, Kawase E, Suemori H et al (2010)

In vitro hepatic maturation of human embryonic stem cells by

using a mesenchymal cell line derived from murine fetal livers.

Cell Tissue Res 339:505–512

Javed MS, Yaqoob N, Iwamuro M, Kobayashi N, Fujiwara T (2014)

Generation of hepatocyte-like cells from human induced pluripo-

tent stem (iPS) cells by co-culturing embryoid body cells with liver

non-parenchymal cell line TWNT-1. J Coll Phys Surg-Pak 24:91–

96

Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ,

Chen ZY, Robbins RC, Kay MA et al (2010) A nonviral minicircle

vector for deriving human iPS cells. Nat Methods 7:197–199

Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, Endo

H, Eto K, Toguchida J, Uemoto S et al (2012) Donor-dependent

variations in hepatic differentiation from human-induced pluripotent

stem cells. Proc Natl Acad Sci USA 109:12538–12543

Kim Y, Rajagopalan P (2010) 3D hepatic cultures simultaneously

maintain primary hepatocyte and liver sinusoidal endothelial cell

phenotypes. PLoS One 5:e15456

Kim WR, Therneau TM, Benson JT, Kremers WK, Rosen CB, Gores

GJ, Dickson ER (2006) Deaths on the liver transplant waiting list:

an analysis of competing risks. Hepatology (Baltimore, Md.)

43:345–351

Kim SE, An SY, Woo DH, Han J, Kim JH, Jang YJ, Son JS, Yang H,

Cheon YP (2013) Engraftment potential of spheroid-forming

hepatic endoderm derived from human embryonic stem cells.

Stem Cells Dev 22:1818–1829

Kim SJ, Park MH, Moon HJ, Park JH, du Ko Y, Jeong B (2014)

Polypeptide thermogels as a three dimensional culture scaffold

for hepatogenic differentiation of human tonsil-derived mes-

enchymal stem cells. ACS Appl Mater Interfaces 6:17034–17043

Kondo Y, Iwao T, Yoshihashi S, Mimori K, Ogihara R, Nagata K,

Kurose K, Saito M, Niwa T, Suzuki T et al (2014) Histone

deacetylase inhibitor valproic acid promotes the differentiation of

human induced pluripotent stem cells into hepatocyte-like cells.

PLoS One 9:e104010

Kwon HJ, Won YS, Yoon YD, Yoon WK, Nam KH, Choi IP, Kim DY,

Kim HC (2011) Vitamin D3 up-regulated protein 1 deficiency

accelerates liver regeneration after partial hepatectomy in mice.

J Hepatol 54:1168–1176

Lau TT, Ho LW, Wang DA (2013) Hepatogenesis of murine induced

pluripotent stem cells in 3D micro-cavitary hydrogel system for

liver regeneration. Biomaterials 34:6659–6669

Lazaro CA, Rhim JA, Yamada Y, Fausto N (1998) Generation of

hepatocytes from oval cell precursors in culture. Cancer Res

58:5514–5522

Lee JY, Tuleuova N, Jones CN, Ramanculov E, Zern MA, Revzin A

(2009) Directing hepatic differentiation of embryonic stem cells

with protein microarray-based co-cultures. Integr Biol 1:460–468

Li W, Liang X, Leu JI, Kovalovich K, Ciliberto G, Taub R (2001)

Global changes in interleukin-6-dependent gene expression

patterns in mouse livers after partial hepatectomy. Hepatology

(Baltimore, Md.) 33:1377–1386

In vitro culture of hepatocytes/HLCs REVIEW

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn 571

P
ro
te
in

&
C
e
ll



Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T, Hao E, Hayek A, Deng H,

Ding S (2009) Generation of rat and human induced pluripotent

stem cells by combining genetic reprogramming and chemical

inhibitors. Cell Stem Cell 4:16–19

Li J, Tao R, Wu W, Cao H, Xin J, Guo J, Jiang L, Hong X, Demetriou

AA, Farkas D et al (2010a) Transcriptional profiling and hepato-

genic potential of acute hepatic failure-derived bone marrow

mesenchymal stem cells. Differentiation 80:166–174

Li W, Wang D, Qin J, Liu C, Zhang Q, Zhang X, Yu X, Lahn BT, Mao

FF, Xiang AP (2010b) Generation of functional hepatocytes from

mouse induced pluripotent stem cells. J Cell Physiol 222:492–

501

Li F, He Z, Li Y, Liu P, Chen F, Wang M, Zhu H, Ding X, Wangensteen

KJ, Hu Y et al (2011a) Combined activin A/LiCl/Noggin treatment

improves production of mouse embryonic stem cell-derived

definitive endoderm cells. J Cell Biochem 112:1022–1034

Li HY, Chien Y, Chen YJ, Chen SF, Chang YL, Chiang CH, Jeng SY,

Chang CM, Wang ML, Chen LK et al (2011b) Reprogramming

induced pluripotent stem cells in the absence of c-Myc for

differentiation into hepatocyte-like cells. Biomaterials 32:5994–

6005

Libbrecht L, De Vos R, Cassiman D, Desmet V, Aerts R, Roskams T

(2001) Hepatic progenitor cells in hepatocellular adenomas. Am J

Surg Pathol 25:1388–1396

Lin N, Lin J, Bo L, Weidong P, Chen S, Xu R (2010) Differentiation of

bone marrow-derived mesenchymal stem cells into hepatocyte-

like cells in an alginate scaffold. Cell Prolif 43:427–434

Liu H, Ye Z, Kim Y, Sharkis S, Jang YY (2010a) Generation of

endoderm-derived human induced pluripotent stem cells from

primary hepatocytes. Hepatology (Baltimore, Md.) 51:1810–1819

Liu T, Zhang S, Chen X, Li G, Wang Y (2010b) Hepatic differentiation

of mouse embryonic stem cells in three-dimensional polymer

scaffolds. Tissue Eng Part A 16:1115–1122

Liu T, Zhang S, Xiang D,WangY (2013) Induction of hepatocyte-like cells

from mouse embryonic stem cells by lentivirus-mediated constitutive

expression of Foxa2/Hnf4a. J Cell Biochem 114:2531–2541

Luebke-Wheeler JL, Nedredal G, Yee L, Amiot BP, Nyberg SL

(2009) E-cadherin protects primary hepatocyte spheroids from

cell death by a caspase-independent mechanism. Cell Transplant

18:1281–1287

Mao SA, Glorioso JM, Nyberg SL (2014) Liver regeneration. Transl

Res 163:352–362

Marekova D, Lesny P, Jendelova P, Michalek J, Kostecka P, Pradny

M, Martinova L, Pantoflicek T, Ryska M, Sykova E (2013)

Hepatocyte growth on polycapronolactone and 2-hydroxyethyl-

methacrylate nanofiber sheets enhanced by bone marrow-

derived mesenchymal stromal cells. Hepato-gastroenterology

60:1156–1163

Michalopoulos GK (2010) Liver regeneration after partial hepatec-

tomy: critical analysis of mechanistic dilemmas. Am J Pathol

176:2–13

Miki T, Ring A, Gerlach J (2011) Hepatic differentiation of human

embryonic stem cells is promoted by three-dimensional dynamic

perfusion culture conditions. Tissue Eng 17:557–568

Mizutani T, Yokoyama Y, Kokuryo T, Kawai K, Miyake T, Nagino M

(2013) Calcitonin gene-related peptide regulates the early phase

of liver regeneration. J Surg Res 183:138–145

Mobarra N, Soleimani M, Kouhkan F, Hesari Z, Lahmy R, Mossa-

hebi-Mohammadi M, Arefian E, Jaafarpour Z, Nasiri H, Pakzad R

et al (2014) Efficient differentiation of human induced pluripotent

stem cell (hiPSC) derived hepatocyte-like cells on hMSCs

Feeder. Int J Hematol-Oncol Stem Cell Res 8:20–29

Mohsin S, Shams S, Ali Nasir G, Khan M, Javaid Awan S, Khan SN,

Riazuddin S (2011) Enhanced hepatic differentiation of mes-

enchymal stem cells after pretreatment with injured liver tissue.

Differentiation 81:42–48

Moore RN, Moghe PV (2009) Expedited growth factor-mediated

specification of human embryonic stem cells toward the hepatic

lineage. Stem Cell Res 3:51–62

Murry CE, Keller G (2008) Differentiation of embryonic stem cells to

clinically relevant populations: lessons from embryonic develop-

ment. Cell 132:661–680

Nagamoto Y, Tashiro K, Takayama K, Ohashi K, Kawabata K,

Sakurai F, Tachibana M, Hayakawa T, Furue MK, Mizuguchi H

(2012) The promotion of hepatic maturation of human pluripotent

stem cells in 3D co-culture using type I collagen and Swiss 3T3

cell sheets. Biomaterials 33:4526–4534

Nagaoka M, Hagiwara Y, Takemura K, Murakami Y, Li J, Duncan SA,

Akaike T (2008) Design of the artificial acellular feeder layer for

the efficient propagation of mouse embryonic stem cells. J Biol

Chem 283:26468–26476

Nejak-Bowen KN, Orr AV, Bowen WC Jr, Michalopoulos GK (2013)

Gliotoxin-induced changes in rat liver regeneration after partial

hepatectomy. Liver Int 33:1044–1055

No da Y, Lee SA, Choi YY, Park D, Jang JY, Kim DS, Lee SH (2012)

Functional 3D human primary hepatocyte spheroids made by co-

culturing hepatocytes from partial hepatectomy specimens and

human adipose-derived stem cells. PloS one 7:e50723

Noto FK, Determan MR, Cai J, Cayo MA, Mallanna SK, Duncan SA

(2014) Aneuploidy is permissive for hepatocyte-like cell differen-

tiation from human induced pluripotent stem cells. BMC Res

Notes 7:437

Nygard IE, Mortensen KE, Hedegaard J, Conley LN, Kalstad T,

Bendixen C, Revhaug A (2012) The genetic regulation of the

terminating phase of liver regeneration. Comp Hepatol 11:3

Okano J, Shiota G, Matsumoto K, Yasui S, Kurimasa A, Hisatome I,

Steinberg P, Murawaki Y (2003) Hepatocyte growth factor exerts

a proliferative effect on oval cells through the PI3K/AKT signaling

pathway. Biochem Biophys Res Commun 309:298–304

Okura H, Komoda H, Saga A, Kakuta-Yamamoto A, Hamada Y,

Fumimoto Y, Lee CM, Ichinose A, Sawa Y, Matsuyama A (2010)

Properties of hepatocyte-like cell clusters from human adipose

tissue-derived mesenchymal stem cells. Tissue Eng 16:761–770

Olazabal IM, Munoz JA, Rodriguez-Navas C, Alvarez L, Delgado-

Baeza E, Garcia-Ruiz JP (2009) Prolactin’s role in the early

stages of liver regeneration in rats. J Cell Physiol 219:626–633

Paracchini V, Carbone A, Colombo F, Castellani S, Mazzucchelli S,

Gioia SD, Degiorgio D, Seia M, Porretti L, Colombo C et al (2012)

Amniotic mesenchymal stem cells: a new source for hepatocyte-like

cells and induction of CFTR expression by coculture with cystic

fibrosis airway epithelial cells. J Biomed Biotechnol 2012:575471

Piryaei A, Valojerdi MR, Shahsavani M, Baharvand H (2011)

Differentiation of bone marrow-derived mesenchymal stem cells

into hepatocyte-like cells on nanofibers and their transplantation

REVIEW Chenxia Hu, Lanjuan Li

572 © The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



into a carbon tetrachloride-induced liver fibrosis model. Stem cell

Rev 7:103–118

Rizzo F, Hashim A, Marchese G, Ravo M, Tarallo R, Nassa G,

Giurato G, Rinaldi A, Cordella A, Persico M et al (2014) Timed

regulation of P-element-induced wimpy testis-interacting RNA

expression during rat liver regeneration. Hepatology (Baltimore,

Md.) 60:798–806

Samuel D, Colombo M, El-Serag H, Sobesky R, Heaton N (2011)

Toward optimizing the indications for orthotopic liver transplantation

in hepatocellular carcinoma. Liver Transplant 17(Suppl 2):S6–13

Sancho-Bru P, Najimi M, Caruso M, Pauwelyn K, Cantz T, Forbes S,

Roskams T, Ott M, Gehling U, Sokal E et al (2009) Stem and

progenitor cells for liver repopulation: can we standardise the

process from bench to bedside? Gut 58:594–603

Sellaro TL, Ranade A, Faulk DM, McCabe GP, Dorko K, Badylak SF,

Strom SC (2010) Maintenance of human hepatocyte function

in vitro by liver-derived extracellular matrix gels. Tissue Eng

16:1075–1082

Seo MJ, Suh SY, Bae YC, Jung JS (2005) Differentiation of human

adipose stromal cells into hepatic lineage in vitro and in vivo.

Biochem Biophys Res Commun 328:258–264

Shin M, Alev C, Wu Y, Nagai H, Sheng G (2011) Activin/TGF-beta

signaling regulates Nanog expression in the epiblast during

gastrulation. Mech Dev 128:268–278

Shiraki N, Yamazoe T, Qin Z, Ohgomori K, Mochitate K, Kume K,

Kume S (2011) Efficient differentiation of embryonic stem cells

into hepatic cells in vitro using a feeder-free basement membrane

substratum. PLoS One 6:e24228

Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE,

Dalton S, Duncan SA (2010) Highly efficient generation of human

hepatocyte-like cells from induced pluripotent stem cells. Hepa-

tology (Baltimore, Md.) 51:297–305

Sivertsson L, Synnergren J, Jensen J, Bjorquist P, Ingelman-

Sundberg M (2013) Hepatic differentiation and maturation of

human embryonic stem cells cultured in a perfused three-

dimensional bioreactor. Stem Cells Dev 22:581–594

Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang Y (2012)

Tissue specific synthetic ECM hydrogels for 3-D in vitro mainte-

nance of hepatocyte function. Biomaterials 33:4565–4575

Strey CW, Markiewski M, Mastellos D, Tudoran R, Spruce LA,

Greenbaum LE, Lambris JD (2003) The proinflammatory medi-

ators C3a and C5a are essential for liver regeneration. J Exp Med

198:913–923

Subramanian K, Owens DJ, Raju R, Firpo M, O’Brien TD, Verfaillie

CM, Hu WS (2014) Spheroid culture for enhanced differentiation

of human embryonic stem cells to hepatocyte-like cells. Stem

Cells Dev 23:124–131

Takata A, Otsuka M, Kogiso T, Kojima K, Yoshikawa T, Tateishi R,

Kato N, Shiina S, Yoshida H, Omata M et al (2011) Direct

differentiation of hepatic cells from human induced pluripotent

stem cells using a limited number of cytokines. Hepatol Int 5:890

Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T,

Zhang RR, Ueno Y, Zheng YW, Koike N et al (2013) Vascularized

and functional human liver from an iPSC-derived organ bud

transplant. Nature 499:481–484

Tamai M, Yamashita A, Tagawa Y (2011) Mitochondrial development

of the in vitro hepatic organogenesis model with simultaneous

cardiac mesoderm differentiation from murine induced pluripotent

stem cells. J Biosci Bioeng 112:495–500

Tatsumi K, Ohashi K, Taminishi S, Sakurai Y, Ogiwara K, Yoshioka

A, Okano T, Shima M (2011) Regulation of coagulation factors

during liver regeneration in mice: mechanism of factor VIII

elevation in plasma. Thromb Res 128:54–61

Tomizawa M, Shinozaki F, Sugiyama T, Yamamoto S, Sueishi M,

Yoshida T (2013) Single-step protocol for the differentiation of

human-induced pluripotent stem cells into hepatic progenitor-like

cells. Biomed Rep 1:18–22

Tuleuova N, Lee JY, Lee J, Ramanculov E, Zern MA, Revzin A

(2010) Using growth factor arrays and micropatterned co-cultures

to induce hepatic differentiation of embryonic stem cells. Bioma-

terials 31:9221–9231

Ulvestad M, Nordell P, Asplund A, Rehnstrom M, Jacobsson S,

Holmgren G, Davidson L, Brolen G, Edsbagge J, Bjorquist P et al

(2013) Drug metabolizing enzyme and transporter protein profiles

of hepatocytes derived from human embryonic and induced

pluripotent stem cells. Biochem Pharmacol 86:691–702

Umeda K, Suzuki K, Yamazoe T, Shiraki N, Higuchi Y, Tokieda K,

Kume K, Mitani K, Kume S (2013) Albumin gene targeting in

human embryonic stem cells and induced pluripotent stem cells

with helper-dependent adenoviral vector to monitor hepatic

differentiation. Stem Cell Res 10:179–194

Uriarte I, Fernandez-Barrena MG, Monte MJ, Latasa MU, Chang

HC, Carotti S, Vespasiani-Gentilucci U, Morini S, Vicente E,

Concepcion AR et al (2013) Identification of fibroblast growth

factor 15 as a novel mediator of liver regeneration and its

application in the prevention of post-resection liver failure in mice.

Gut 62:899–910

Vessey CJ, de la Hall PM (2001) Hepatic stem cells: a review.

Pathology 33:130–141

Wang S, Nagrath D, Chen PC, Berthiaume F, Yarmush ML (2008)

Three-dimensional primary hepatocyte culture in synthetic self-

assembling peptide hydrogel. Tissue Eng 14:227–236

Wang P, Cong M, Liu TH, Yang AT, Cong R, Wu P, Tang SZ, Xu Y,

Wang H, Wang BE et al (2010) Primary isolated hepatic oval cells

maintain progenitor cell phenotypes after two-year prolonged

cultivation. J Hepatol 53:863–871

Wang Y, Cui CB, Yamauchi M, Miguez P, Roach M, Malavarca R,

Costello MJ, Cardinale V, Wauthier E, Barbier C et al (2011)

Lineage restriction of human hepatic stem cells to mature fates is

made efficient by tissue-specific biomatrix scaffolds. Hepatology

(Baltimore, Md.) 53:293–305

Wang Y, Zhang Y, Zhang S, Peng G, Liu T, Li Y, Xiang D, Wassler

MJ, Shelat HS, Geng Y (2012) Rotating microgravity-bioreactor

cultivation enhances the hepatic differentiation of mouse embry-

onic stem cells on biodegradable polymer scaffolds. Tissue Eng

18:2376–2385

Wolf JH, Bhatti TR, Fouraschen S, Chakravorty S, Wang L, Kurian

S, Salomon D, Olthoff KM, Hancock WW, Levine MH (2014) Heat

shock protein 70 is required for optimal liver regeneration after

partial hepatectomy in mice. Liver Transplant 20:376–385

Wuestefeld T, Pesic M, Rudalska R, Dauch D, Longerich T, Kang

TW, Yevsa T, Heinzmann F, Hoenicke L, Hohmeyer A et al (2013)

A Direct in vivo RNAi screen identifies MKK4 as a key regulator of

liver regeneration. Cell 153:389–401

In vitro culture of hepatocytes/HLCs REVIEW

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn 573

P
ro
te
in

&
C
e
ll



Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripo-

tent state by three approaches. Nature 465:704–712

Yang Y, Li J, Pan X, Zhou P, Yu X, Cao H, Wang Y, Li L (2013) Co-

culture with mesenchymal stem cells enhances metabolic func-

tions of liver cells in bioartificial liver system. Biotechnol Bioeng

110:958–968

Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R, Aiello NM,

Thung SN, Wells RG, Greenbaum LE, Stanger BZ (2013) Robust

cellular reprogramming occurs spontaneously during liver regen-

eration. Genes Dev 27:719–724

Yao R, Wang J, Li X, Jung Jung D, Qi H, Kee KK, Du Y (2014)

Hepatic differentiation of human embryonic stem cells as

microscaled multilayered colonies leading to enhanced homo-

geneity and maturation. Small 10:4311–4323

Zerrad-Saadi A, Lambert-Blot M, Mitchell C, Bretes H, Collin de

l’Hortet A, Baud V, Chereau F, Sotiropoulos A, Kopchick JJ, Liao

L et al (2011) GH receptor plays a major role in liver regeneration

through the control of EGFR and ERK1/2 activation. Endocrinol-

ogy 152:2731–2741

Zhang S, Zhang Y, Chen L, Liu T, Li Y, Wang Y, Geng Y (2013a)

Efficient large-scale generation of functional hepatocytes from

mouse embryonic stem cells grown in a rotating bioreactor with

exogenous growth factors and hormones. Stem Cell Res Ther

4:145

Zhang Z, Liu J, Liu Y, Li Z, Gao WQ, He Z (2013b) Generation,

characterization and potential therapeutic applications of mature

and functional hepatocytes from stem cells. J Cell Physiol

228:298–305

Zhang R, Takebe T, Sekine K, Koike H, Zheng Y, Taniguchi H (2014)

Identification of proliferating human hepatic cells from human

induced pluripotent stem cells. Transplant Proc 46:1201–1204

Zhao D, Chen S, Cai J, Guo Y, Song Z, Che J, Liu C, Wu C, Ding M,

Deng H (2009) Derivation and characterization of hepatic

progenitor cells from human embryonic stem cells. PLoS One

4:e6468

REVIEW Chenxia Hu, Lanjuan Li

574 © The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll


	In vitro culture of isolated primary hepatocytes
and stem cell-derived hepatocyte-like cells
for liver regeneration
	ABSTRACT
	INTRODUCTION
	NATURE OF LIVER REGENERATION
	IN VITRO CELLS WITH HEPATIC FUNCTION
	Primary hepatocytes
	Stem cell-derived hepatocytes
	Embryonic stem cell-derived hepatocytes (ESC-Heps)
	Induced pluripotent stem cell-derived hepatocytes (iPSC-Heps)
	Hepatic progenitor cell-derived hepatocytes (HPC-Heps)
	Mesenchymal stem cell-derived hepatocytes (MSC-Heps)


	FUTURE DIRECTIONS
	ABBREVIATIONS
	COMPLIANCE WITH ETHICS GUIDELINES
	OPEN ACCESS
	REFERENCES




