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hCLP46 increases Smad3 protein stability
via inhibiting its ubiquitin-proteasomal
degradation

Dear Editor,

hCLP46 (human CAP10-like protein 46 kDa) was initially
isolated and identified from human acute myeloid leukemia
transformed from myelodysplastic syndrome (MDS-AML)
CD34+ cells (Teng et al., 2006) and we demonstrated previ-
ously that hCLP46 is abnormally expressed in many
hematopoietic malignancies (Wang et al., 2010). Studies from
its Drosophila homolog, Rumi, suggested that Notch is a
potential target of hCLP46 (Acar et al., 2008). We also found
that overexpression of hCLP46 enhances Notch activation
and regulates cell proliferation in a cell type-dependent man-
ner (Ma et al., 2011; Chu et al., 2013). However, hCLP46−/−

embryos show more severe phenotypes compared to those
displayed by other global regulators of canonical Notch sig-
naling, suggesting that hCLP46 is likely to have additional
important targets during mammalian development (Fernan-
dez-Valdivia et al., 2011). Based on the crosstalk between
Notch and the transforming growth factor-β (TGF-β) signaling,
we proposed that hCLP46 might be involved in TGF-β signal
regulation, but the detail mechanism remains unclear.

With the full length or truncated plasmids encoding
hCLP46 1–120 aa (no CAP10 domain) or hCLP46 121–392
aa (with CAP10 domain), we found that overexpression of
hCLP46 1–120 aa had no obvious effect on Smad3 expres-
sion, whereas both hCLP46 121–392 aa and hCLP46-full
length significantly increased Smad3 protein expression,
suggesting that hCLP46 increases Smad3 expression in a
CAP10 domain dependent manner (Fig. 1A and 1B). To
determine the mechanism through which hCLP46 regulates
Smad3 expression, we generated a stable cell line inducibly
overexpressing hCLP46, which is named as 293TRex-
hCLP46 hereinafter. When cells were incubated with 0.5 μg/mL
Tetracycline (Tet) for 24 h, the pronounced induction of
hCLP46 resulted in 85% increase of Smad3 expression
(Fig. 1C and 1D). We then examined Smad3 protein turnover
in 293TRex-hCLP46 cells by blocking protein synthesis. In
Tet off cells, administration of CHX (50 μg/mL) caused a
remarkable decrease of Smad3 in a time dependent manner
(Fig. 1C and 1D). The half-life is only about 0.5 h, suggesting
that endogenous Smad3 undergoes fast degradation at the

steady state. However, the half-life of Smad3 protein was
significantly longer in Tet on cells as compared with that
observed in Tet off cells, suggesting that hCLP46 could
increase Smad3 protein stability (Fig. 1C and 1D). When
endogenous hCLP46 was knocked down by siRNA, signifi-
cantly reduction in Smad3 expression was observed
(Fig. 1E). It is notable that the mRNA levels of Smad3 were
not affected by overexpression or knockdown of hCLP46
(Fig. S1A and S1B). To determine whether the degradation of
Smad3 is mediated by proteasome, we treated 293TRex-
hCLP46 cells with 20 μmol/L 26S proteasome inhibitor MG-
132 for 3 h, which resulted in a two-fold increase in Smad3
expression in Tet off cells (Fig. 1F and 1G). In the presence of
MG132, hCLP46 overexpression still significantly increased
Smad3 protein level whereas hCLP46 knockdown had no
obvious effect on Smad3 expression (Fig. 1F and 1G).
Consistently, we found that Smad3 was polyubiquitinated in
cells treated with MG132 and the ubiquitination of Smad3
was attenuated by overexpression of hCLP46 (Fig. 1H), but
enhanced by knockdown of endogenous hCLP46 (Fig. 1I),
suggesting that hCLP46 increases Smad3 expression and
protein stability through inhibiting proteasomal degradation of
Smad3.

We then attempted to evaluate the impact of hCLP46 on
TGF-β signaling. Overexpression of hCLP46 inhibited cell
viability at basal condition and further exacerbated TGF-β1
induced cell viability inhibition (2 ng/mL, 24 h) (Fig. 2A). In
contrast, knockdown of hCLP46 by siRNA increased cell
viability and almost totally blocked the inhibition of cell
proliferation by TGF-β1 (Fig. 2B). In addition, TGF-β1
treatment significantly increased the expression of two cell
cycle inhibitors (p21 and p27) as compared to control cells,
which were further enhanced by overexpression of hCLP46
(Fig. 2C and 2D), whereas attenuated by knockdown of
hCLP46 (Fig. 2E and 2F), suggesting that hCLP46
enhances TGF-β signaling by modulating Smad3
expression.

As Notch signaling might be involved in Smad3 regula-
tion, we treated cells with DAPT (2 μmol/L, 12 h) or EDTA
(5 mmol/L, 15 min and then replaced with fresh DMEM plus
10% FBS and cultured for additional 6 h) to inhibit or activate
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Notch signaling respectively. DAPT treatment resulted in
dramatically decrease of the NICD expression, but has no
effect on Smad3 expression (Fig. S2A–C). EDTA signifi-
cantly increased NICD and Smad3 levels. However, cells
with hCLP46 overexpression still had more Smad3 expres-
sion than that of control cells (Fig. S2D–F). Together, these

data suggest that hCLP46 regulates Smad3 expression is
not affected by Notch signaling.

As the primary intracellular transducer, Smad3 is a critical
mediator of the cytostatic response to TGF-β (Zhang et al.,
2014). Evidence for this comes from the observation that a
variety of primary cells from Smad3-null mice are partially
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Figure 1. hCLP46 increases Smad3 expression by preventing its proteasomal degradation in 293TRex cells. (A) 293TRex

cells were transfected with full length of hCLP46 or truncated plasmids encoding hCLP46 1–120 aa or hCLP46 121–392 aa for 48 h,

the protein levels of Myc and Smad3 were determined by Western blot. (C) 293TRex-hCLP46 cells were cultured in absence or

presence of 0.5 μg/mL Tet for 24 h and 50 μg/mL CHX was then added as indicated. Total cell lysates were probed for Myc and

Smad3. (E) After transfected with control or hCLP46 specific siRNA for 72 h, the protein level of Smad3 was determined.

(F) 293TRex-hCLP46 cells were incubated with or without 0.5 μg/mL Tet for 24 h or transfected with hCLP46 specific siRNA for 72 h,

20 μmol/L MG132 was then added for 3 h. Cell lysates were examined by Western blot for Smad3 or used for immunoprecipitation

(IP) with no antibody (−) or anti-Smad3 then probed with ubiquitin antibody (anti-Ub) (H and I). β-Tubulin was used as a loading

control in (A), (C), (E) and (F). Immunoblot band intensities were quantified using loading controls (B, D and G). n = 4 in each group.

*Indicates P < 0.05 comparing to control and hCLP46 plasmids transfected or CHX/MG132 treated cells. #Indicates P < 0.05

comparing to control and hCLP46 overexpressed cells.
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resistant to TGF-β induced growth arrest (Datto et al., 1999;
Yang et al., 1999) and exogenous overexpression of Smad3
sensitizes cells to TGF-β induced growth arrest and apop-
tosis (Wildey et al., 2003). Importantly, it was found that
treatment with the proteasome inhibitor caused an accu-
mulation of Smad3 protein in absence of TGF-β1, suggest-
ing that not only in response to TGF-β but also in a steady
state, the level of Smad3 is regulated by the proteasome

pathway (Inoue et al., 2004). In addition, several studies
demonstrated that the steady-state stability of Smad3 is an
important determinant of cellular sensitivity to TGF-β (Guo
et al., 2008) and the U-box-containing carboxyl terminus of
Hsc70-interacting protein has been identified as an E3
ubiquitin ligase to degrade Smad3 at steady state (Xin et al.,
2005). In agreement with those findings, we demonstrated
that hCLP46 modulates Smad3 protein stability by inhibiting
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Figure 2. hCLP46 enhanced TGF-β1 induced cell growth arrest and up-regulation of cell cycle inhibitors. (A) 293TRex-

hCLP46 cells were cultured in absence or presence of 0.5 μg/mL Tet for 24 h and 2 ng/mL TGF-β1 was then added for 24 h. Cell

viability was determined by MTT method. (B) 293TRex-hCLP46 cells were maintained in absence of Tet and transfected with control

or hCLP46 specific siRNA for 48 h. Then cells were treated with 2 ng/mL TGF-β1 for additional 24 h. Cell viability was determined by

MTT method. In (A) and (B), data were collected from 8 independent experiments. (C) Lysates from control, Tet, TGF-β1 and Tet plus

TGF-β1 treated cells were probed for p21 and p27. (E) The protein levels of p21 and p27 were also determined in lysates from control,

hCLP46 siRNA, TGF-β1 and hCLP46 siRNA plus TGF-β1 treated cells. β-Tubulin was used as a loading control in (C) and (E).

Immunoblot band intensities were quantified using loading controls (D and F). n = 3 in each group. *Indicates P < 0.05 comparing to

control and TGF-β1 treated cells. #Indicates P < 0.05 comparing to control and hCLP46 overexpressed or hCLP46 siRNA transfected

cells.
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its proteasomal degradation and consequently enhances
cellular sensitivity to the TGF-β signal. Our findings suggest
a new function of hCLP46 in modulating critical TGF-β/
Smad3-regulated processes during development and tumor
progression.
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