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ABSTRACT

Autophagy is an evolutionarily conserved cellular pro-
cess which degrades intracellular contents. The Atg17-
Atg31-Atg29 complex plays a key role in autophagy in-
duction by various stimuli. In yeast, autophagy occurs
with autophagosome formation at a special site near the
vacuole named the pre-autophagosomal structure
(PAS). The Atg17-Atg31-Atg29 complex forms a scaffold
for PAS organization, and recruits other autophagy-re-
lated (Atg) proteins to the PAS. Here, we show that Atg31
is a phosphorylated protein. The phosphorylation sites
on Atg31 were identified by mass spectrometry. Analy-
sis of mutants in which the phosphorylated amino acids
were replaced by alanine, either individually or in var-
ious combinations, identified S174 as the functional
phosphorylation site. An S174A mutant showed a simi-
lar degree of autophagy impairment as an Atg31 deletion
mutant. S174 phosphorylation is required for autophagy
induced by various autophagy stimuli such as nitrogen
starvation and rapamycin treatment. Mass spectrometry
analysis showed that S174 is phosphorylated constitu-
tively, and expression of a phosphorylation-mimic mu-
tant (S174D) in the Atg31 deletion strain restores
autophagy. In the S174A mutant, Atg9-positive vesicles
accumulate at the PAS. Thus, S174 phosphorylation is
required for formation of autophagosomes, possibly by

facilitating the recycling of Atg9 from the PAS. Our data
demonstrate the role of phosphorylation of Atg31 in
autophagy.
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INTRODUCTION

Autophagy is an evolutionarily conserved, lysosome-based
degradation pathway. During autophagy, double-membrane
vesicles are formed which engulf cytosol or damaged orge-
nalles in a selective or non-selective manner. Autophagy
plays important roles in various physiological settings, and
disruption of autophagy has been shown to lead to many
pathological conditions (Winslow and Rubinsztein, 2008;
Hussey et al., 2009; Mizushima and Komatsu, 2011; Jiang
and Mizushima, 2014; Martin et al., 2014).

In yeast, autophagy is initiated at a specific site based on
a multi-protein complex named the pre-autophagosomal
structure (PAS). Formation of a double-membrane structure,
named the isolation membrane, is initiated at the PAS. The
isolation membrane extends and surrounds cytosolic car-
goes before sealing to form the completed autophagosome.

More than 30 Atg proteins involved in autophagy have
been identified using Saccharomyces cerevisiae as a model
organism since the 1990s (Tsukada and Ohsumi, 1993;
Thumm et al., 1994; Harding et al., 1995). Most of those Atg
proteins can be recruited to the PAS (Suzuki and Ohsumi,
2010). At the core of the PAS is a stable ternary complex of
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Atg17, Atg29 and Atg31 (Kabeya et al., 2009). Atg17 inter-
acts with Atg31 and Atg29 independent of nutrient condi-
tions. Under nutrient starvation conditions, the Tor complex
is inactivited, which causes dephosphorylation of Atg13,
followed by binding of dephosphorylated Atg13 to Atg1. The
Atg1-Atg13 complex is then recruited to the Atg17 complex,
thus activating the autophagy pathway. Atg31 was originally
found as a partner of Atg17 from yeast two-hybrid assays
and global mass spectrometry analysis (Kabeya et al.,
2007). Atg31 has been reported to be a phosphorylated
protein, but the phosphorylation site has not been identified
and the function of this phosphorylation remains to be
elucidated.

In this study, we demonstrate that Atg31 is constitutively
phosphorylated. Mass spectrometry identified 11 phospho-
rylation sites in Atg31, and analysis of mutants created by
alanine swapping confirmed that S174 is the functional
phosphorylation site. Autophagy is impaired to a similar de-
gree in the S174A mutant as in the Atg31 deletion mutant.
S174 phosphorylation is required for autophagy induced by
nitrogen starvation, amino acid starvation and rapamycin
treatment. Expression of a phosphorylation-mimic mutant
(S174D) in the Atg31 deletion strain restores autophagy.
Finally, we show that S174 phosphorylation is required for
recycling of Atg9 from the PAS. Our data demonstrate the
role of phosphorylation of Atg31 in autophagy.

RESULTS

Atg31 is a phosphorylated protein

We noticed that when cells were grown in both nutrient-rich
and starvation conditions, the Atg31 protein displayed

multiple bands of higher molecular weight when analyzed by
SDS-PAGE (Fig. 1A). Thus, Atg31 appears to undergo some
sort of post-translational modification in a nutrient-indepen-
dent manner. Treating the cell lysate with λ phosphatase
elimnated the multiple upper bands, suggesting that Atg31 is
modified by phosphorylation (Fig. 1B). To better monitor the
phosphorylation level of Atg31 during starvation, we used a
phos-tag detection assay which enhances the mobility shifts
of phosphorylated proteins on SDS-PAGE (Kinoshita et al.,
2004). We found the phosphorylation level of Atg13 is similar
in starved and un-starved cells (Fig. 1C).

Identification of Atg31 phosphorylation sites

To identify the Atg31 phosphorylation sites, we tagged Atg31
with an N-terminal GST tag and purified it from yeast under
nutrient-rich conditions and starvation conditions. When we
analyzed the protein by mass spectrometry (MS), we iden-
tified 11 phosphorylation sites (Fig. 1D).

Screening of functional phosphorylation sites in Atg31

Next, we screened the phosphorylation sites for their effect
on autophagosome formation using GFP-Atg8 as a marker.
We mutated each amino acid individually to alanine, and we
also generated mutants in which various combinations of
phosphorylation sites were changed to alanine. Then we
assessed autophagy activity by monitoring the ability of each
mutant to transport GFP-Atg8 into the vacuole. In yeast
carrying the S174A single mutant, a lower percentage of
cells had vacuolar Atg8. Therefore, our screening method
identified the Serine at 174 mutant as a potential functional
phosphorylation site (Fig. 2A and 2B).
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Figure 1. Identification and analysis of phosphorylation sites on Atg31. (A) Yeast cells expressing 3XHA-Atg31 were transferred

to SD-N medium for 1 h, 2 h or 4 h. Cell lysates were assessed by Western blotting with HA antibody. the grey value ratio of sample

1 h, 2 h, 4 h compared to 0 h is shown. (B) Cell lysates under full (SD) medium were treated with lambda PPase at 30°C for 0 h, 0.5 h

and 1 h, then samples were assessed by Western blotting with HA antibody. (C) Yeast cells expressing 3XHA-Atg31 were transferred

to SD-N medium for 2 h. Cells lysates were assessed by Phos-tag Western blotting to detect phosphorylation. The ratio is the same

as (A). (D) Atg31 protein was isolated by GST-tag purification from yeast grown in full or SD-N medium and analyzed by mass

spectrometry. Atg31 phosphorylation sites are shown as red rectangles.
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Phosphorylation at S174 is required for autophagy
induced by various cues

To confirm the role of S174 in nitrogen starvation-induced
autophagy, we compared the autophagy activity in wild-type
cells and cells carrying the Atg31 S174A mutant using

various stimuli including nitrogen starvation, amino acid
starvation and rapamycin treatment. Autophagy activity was
monitored microscopically by translocation of GFP-Atg8 into
vacuoles (Fig. 3A), and biochemically by cleavage of GFP-
Atg8 as detected by Western blotting (Fig. 3C). Both assays
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Figure 2. Mutagenisis screen. (A) The phosphorylated threonine and serine residues shown in Fig. 1D were mutated to alanine,

and Atg31 mutants with single mutations or multiple mutations in various combinations, as well as Atg31 deletion mutants, were

assessed for autophagy activity under nitrogen starvation conditions. Scale bar, 2 µm. (B) Autophagy activity was assessed by

monitoring the translocation of GFP-Atg8 into vacuoles. 100 cells were assessed in a blind fashion and quantified. Error bars indicate

standard deviation (s.d.) (n = 3).
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showed that autophagy activity was reduced by about 60%
(Fig. 3B and 3C). It is worth noting that this reduction is
similar to that observed when ATG31 deleted. Thus, we
concluded that phosphorylation at S174 is essential for
Atg31 to carry out its function in autophagy. Phosphorylation
of S174 can be detected in cells growing in nutrient-rich
conditions and in cells undergoing starvation, which implies
that phosphorylation of S174 is not regulated by nitrogen
starvation (Fig. 3D).

A phosphomimic mutant rescues autophagy

To rule out the possibility that reduction of autophagy activity
is due to the serine-to-alanine change, rather than loss of
phosphorylation at S174, we generated a phosphomimic
mutant strain in which serine 174 is replaced by aspartic acid
(S174D). We found that expression of the S174D plasmid
can rescue autophagy in the Atg31 deletion mutant (Fig. 3E
and 3F). Thus, phosphorylation at S174 is required for
autophagy.

Impairment of Atg9 recycling in the S174A mutant

Atg9 is a multi-pass transmembrane protein that plays a key
role in autophagosome formation. Atg9-positive vesicles are
highly mobile structures in the cytoplasm (Yamamoto et al.,
2012) that recycle Atg9 and other molecular from the PAS to
the cytoplasmic pool (Reggiori et al., 2004). We found that
the number of Atg9 puncta is reduced in the S174A mutant.
Furthermore, the fluorescence intensity of the Atg9 puncta is
dramatically enhanced, indicating that the dynamic recycling
of Atg9 between different pools is impaired and Atg9 accu-
mulates in these puncta (Fig. 4A and 4B). Since Atg9 puncta
in S174A mutants are co-localized with the PAS marker Atg8

(Fig. 4C and 4D), we conclude the recycling of Atg9 between
the PAS and the cytoplasmic pool is impaired.

S174 phosphorylation affects the interface
between Atg31and Atg17

The migration of Atg31 on SDS-PAGE is abnormal and much
slower than typical globular proteins. 3XHA-tagged Atg31
shows a molecular weight of about 40–45 kDa by SDS-
PAGE, and the dephosphorylated form is about 40 kDa.
However, the molecular weight of Atg31 calculated from its
amino acid sequence is 22 kDa. Since many proteins con-
taining intrinsically disordered regions have similar abnormal
migration on SDS-PAGE gels, we hypothesized that Atg31
may have characteristics of an intrinsically disordered pro-
tein (IDP). We used a disorder prediction tool, IUPred, to
analyze Atg31. IUPred assesses the tendency of a protein to
contain disordered regions based on whether the amino acid
sequence allows stable interactions (Dosztanyi et al., 2005).
The prediction shows that almost half of the Atg31 sequence
is disordered in solution (Fig. 5A).

To elucidate the possible role of S174 phosphorylation, we
built a structural model of Saccharomyces cerevisiae Atg31
using a homologous modeling method and a threading mod-
eling method (Pronk et al., 2013). As shown in Fig. 5B, the S.
cerevisiae Atg31 has a very similar structure to Lachancea
thermotolerans Atg31 (Protein Data Bank code 4PHQ:B)
(Ragusa Michael et al., 2012). After superimposing the Atg31
model structure onto the Atg17-Atg31-Atg29 complex struc-
ture (4HPQ), it is very clear that the S174 phosphorylation site
is located at the interface between Atg17 and Atg31. No other
phosphorylation site locates to the interface. Phosphorylation
of S174 increases the number of atoms in the side chain and
enlarges its volume, whichwill change the interaction of Atg31
with its binding partners (Fig. 5C).

Furthermore, from this model, we found that the sec-
ondary structure (SS) of the six residues 167–172 was
changed from a loop to a helix by phosphorylation of S174
(Fig. 5D). The increased number of atoms in phospho-serine
changes the local interactions between residue side chains
and makes the flexible loop transform into a stable helix, as
shown in Fig. 4D. This will also change the local motions of
the C-terminal helix. S174 phosphorylation also changes the
interaction between Atg31 and Atg17. Near S174, amino
acids 171 (arginine) and 175(leucine) are the two most
buried residues in the interface between non-phosphorylated
Atg31 and Atg17. Their buried areas are 150.5 Å and 113.3
Å respectively. Phosphorylation of S174 enlarges their bur-
ied areas by 12.1 Å and 8.5 Å respectively, which results in
an enlarged Atg31/Atg17 interface (Fig. 5E).

DISCUSSION

In this study, we identified 11 phosphorylation sites on Atg31.
Mutagenesis analysis showed that phosphorylation at serine

Figure 3. Ser174 phosphorylation is required for au-

tophagy under various conditions. (A) Cells of the Atg31Δ
strain expressing wild-type (WT) Atg31, the Atg31-Ser174

mutant (S174A), or a control vector were treated by nitrogen

starvation (SD-N), rapamycin or amino acid starvation (SD-AA)

and assessed for autophagy activity. Scale bar, 2 μm. (B) Cells

from (A) were assessed for autophagy activity by monitoring the

translocation of GFP-Atg8 into vacuoles. 100 cells were

assessed in a blind fashion and quantified. Error bars indicate

standard deviation (s.d.) (n = 3). (C) Cells from (A) were

analyzed for GFP-Atg8 cleavage by Western blotting with GFP

antibody. CR means the cleavage ratio between GFP-Atg8 and

GFP, using grey value statistic analysis of three independent

experiments. (D) Mass spectrometry analysis of Ser174 phos-

phorylation on Atg31 from cells grown in full medium (0 h) or

SD-N medium (1 h). (E) The phosphomimic mutant S174D was

assessed for autophagy activity by monitoring the translocation

of GFP-Atg8 into vacuoles. 100 cells were assessed in a blind

fashion and quantified. Error bars indicate standard deviation

(s.d.) (n = 3). (F) Cells from (E) were analyzed for GFP-Atg8

cleavage by Western blotting with GFP antibody.
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174 is required for Atg31 to carry out its function, while the
other phosphorylation sites have no function in the regulation
of autophagy. We further demonstrated that phosphorylation
at S174 is required for efficient Atg9 recycling, and the im-
pairment of this phosphorylation in the S174A mutant causes
accumulation of Atg9 puncta and impaired autophagy.

One obvious question remains unsolved: what is the ki-
nase responsible for phosphorylation of Atg31? So far, our
efforts to identify the kinase have been hampered by the lack
of a specific antibody against phospho-S174. We have failed
to generate such an antibody despite repeated attempts.

Atg31 has intrinsically disordered regions which means
that it can easily be phosphorylated (Tompa, 2002; Iak-
oucheva et al., 2004). Our structure simulations illustrate
how phosphorylation at S174 changes the C-terminal loop
into a helix. This helix makes additional contacts with the
crescent-shaped Atg17, thus enlarging the interface be-
tween Atg31 and Atg17. In the S174A mutant, the lack of
phosphorylation at S174 causes the C-terminal helix to be-
come a flexible loop. This may result in part of the Atg17
protein becoming exposed, thus leading to abnormal PAS
assembly, which eventially causes impaired Atg9 recycling.

MATERIALS AND METHODS

Strains and plasmids

Standard protocols were used for yeast manipulations (Kaiser,

1994). Cells were cultured at 30°C in SD medium (0.17% yeast

nitrogen base without amino acids and ammonium sulfate, 0.5%

ammonium sulfate, 0.5% casamino acids and 2% glucose) supple-

mented with appropriate nutrients. Autophagy was induced by

transferring the cells to SD-N medium (0.17% yeast nitrogen base,

without amino acids and ammonium sulfate, and 2% glucose).

Otherwise, to induce autophagy, cells were treated with 0.2 and

0.5 μg/mL rapamycin (Sigma-Aldrich), or transferred to SD-AA

medium respectively.

Yeast strains and media

BY4741 (MATa his3D leu2D met15Dura3D), ScLY4 (BY4741 atg31::

kanMX), ScLY5 (BY4741, ATG31-HA::HIS3) and ScLY6 (ScLY4,

YEPlac181 [Gal1-GST-ATG31]) were used in this study. The other

Atg disruptants are listed in Table S1. BY4741 was purchased from

Invitrogen. Media and methods for gene disruption have been de-

scribed previously (Longtine et al., 1998).
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Figure 4. Impairment of Atg9 recycling in the S174A mutant. (A) Wild-type or S174A mutant cells expressing Atg9-GFP were

transferred to nitrogen starvation for 0 h or 2 h and observed by confocal microscopy. Scale bar, 2 µm. (B) Cells from (A) were

assessed for the number and intensity of Atg9 puncta. (C) Wild-type or S174 mutant cells expressing Atg9-GFP and Cherry red-Atg8

were transferred to SD-N medium for 2 h and observed by confocal microscopy. Scale bar, 2 µm. (D) Cells from (C) were assessed for

co-localization between Atg9 and Atg8. 100 cells were assessed in a blind fashion and quantified. Error bars indicate standard

deviation (s.d.) (n = 3).
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Plasmids and other materials

The full length atg31 gene with its endogenous promoter and ter-

minator was amplified by PCR and ligated into pRS316, Yeplac181

and Ycplac111 plasmids with appropriate restriction endonucleases.

The atg31 ORF region and the downstream 600 bp was amplified by

PCR and inserted into YEplac181 plasmid after the GAL4 promoter

and the N-GST tag sequence. Site-specific mutagenesis was per-

formed with a simple PCR method. Plasmids containing atg31 were

amplified using primers containing sequences 15 bp upstream and

downstream of the mutation site. The products were cut by Dpn I
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Figure 5. Structure simulation of Atg31. (A) Tendency for intrinsic disorder within the amino acid sequence of Atg31, as predicted

by IUPed. The phosphorylation sites are marked by grey columns. (B) Structural modelling of Atg31. A model of Atg31 from

Saccharomyces cerevisiae was constructed with Modeller 9.11 and superimposed on the crystallographic structure of Atg31 from the

Lachancea thermotolerans Atg17-Atg31-Atg29 complex (Protein Data Bank code 4HPQ). The major secondary structure motifs

(alpha-helixes and beta-strands) are closely aligned in the two structures. The model of S. cerevisiae Atg31 is in green and the X-ray-

solved structure of L. thermotolerans Atg31 is in blue. The red arrow indicates S174. (C) Superimposition of the built model of

S. cerevisiae Atg31 (green) on the crystallographic structure of L. thermotolerans Atg31 (blue) complexed with Atg17 (pink). The

L. thermotolerans proteins are from the Atg17-Atg31-Atg29 complex (4HPQ). The phosphorylated serine residues in Atg31 are shown

as spheres, and S174 is additionally indicated by a mesh. S174 is located at the interface between Atg31 and Atg17.

(D) Superimposition of the local structure around S174 with or without phosphorylation. Non-phosphorylated S174 is shown as pink

spheres, and phosphorylated S174 is shown as orange spheres. The loop (green) near to S174 in the unmodified structure is

changed to a helix (red) by phosphorylation. (E) The arginine 171 and leucine 175 residues near the phosphorylation site are deeply

buried after S174 phosphorylation. Red spheres show the two buried residues, and the yellow stick shows phospho-S174.
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(New England Biolabs) and transformed into competent E. coli.

Mutations were confirmed by sequencing.

Phos-tag Western blotting assay

The phos-tag assay was performed as described before with

modifications (Kosako et al., 2009). For phosphate-affinity poly-

acrylamide gel electrophoresis, an 8%–10% separating gel con-

taining 25 mmol/L phos-tag acrylamide (AAL-107, Wako) and

50 mmol/L MnCl2 was prepared with a normal stacking gel. After

samples were loaded, the gel was run with a current of 15–20 mA for

about 2 h. The gel was washed with transfer buffer containing

1 mmol/L EDTA to move the Mn2+, then proteins were transferred to

PVDF membranes. The membranes were blocked, incubated with

antibodies and processed according to standard procedures.

Fluorescence microscopy

For fluorescence microscopy, cells were grown to OD600 = 0.8 − 1.0

in appropriate selective medium and shifted to SD-N medium for

various lengths of time as described (Cheong et al., 2005). The cells

were observed at room temperature using FV-1000 (Olympus)

confocal microscopes. The percentages of cells with vacuolar GFP-

Atg8 fluorescent signals were determined by counting 100 cells in

three separate experiments (Yi et al., 2012).

GST-tag protein purification

Plasmid Yeplac181, containing the GAL4 promoter and the ORF of

the atg31 gene, was transformed into BY4741 to purify Atg31 pro-

tein. Cells were incubated in up to 2 liters of SD-Leu medium con-

taining 2% raffinose instead of glucose from OD600 = 0.2 until

OD600 = 0.8 − 1.2 with rotation in a 30°C incubator. Galactose was

added at a final concentration of 2% to induce GST-Atg31 expres-

sion for 2–4 h. One liter of the culture was harvested as non-starved

cells. The remaining cells were washed three times with SD-N

medium containing 2% raffinose and glactose. The cells were then

starved for 1 h in this SD-N medium and then harvested and lysed

together with the non-starved cells. GST-Atg31 protein was purified

with Glutathione Sepharose TM 4B (GE Healthcare) as previously

described (Lu et al., 2011). Cells were vortexed with glass beads to

break them open, then centrifuged at high speed. The supernatant

was collected and incubated with Glutathione Sepharose for 2 h.

The column containing the lysate was washed slowly by wash buffer

with a high NaCl concentration, and then eluted by reduced GSH

(Sigma).

Disorder prediction

The Atg31 protein sequence was used for protein disorder predic-

tion, which was performed using online disorder prediction software,

including IUPed, Pondr-FIT and ANCHOR.

Mass spectrum analysis

For LC–MS/MS analysis, peptides were separated by a 90 min

gradient elution at a flow rate of 0.250 μL/min with a Thermo-Dionex

Ultimate 3000 HPLC system, which was directly interfaced with a

Thermo LTQ-Orbitrap Velos pro mass spectrometer. The analytical

column was a homemade fused silica capillary column (75 μm ID,

150mm length; Upchurch, Oak Harbor, WA) packed with C-18 resin

(300 A, 5 μm; Varian, Lexington, MA). Mobile phase A consisted of

0.1% formic acid, and mobile phase B consisted of 80% acetonitrile

and 0.1% formic acid. An LTQ-Orbitrap mass spectrometer was

operated in the data-dependent acquisition mode using Xcalibur 2.2

software and there was a single full-scan mass spectrum in the

Orbitrap (400–1800 m/z, 30,000 resolution) followed by 20 data-

dependent MS/MS scans in an ion trap at 35% normalized collision

energy (CID).

MS/MS spectra from each LC–MS/MS run were searched

against Atg31 in the Saccharomyces cerevisiae database using the

Proteome Discoverer (Version 1.4) searching algorithm. The search

criteria were as follows: full tryptic specificity was required; two

missed cleavages were allowed; carbamidomethylation was set as

fixed modification; oxidation (M) was set as a variable modification;

precursor ion mass tolerance was 10 ppm for all MS acquired in the

Orbitrap mass analyzer; and fragment ion mass tolerance was

0.8 Da for all MS2 spectra acquired in the LTQ. A high confidence

score filter (FDR < 1%) was used to select the “hit” peptides and their

corresponding MS/MS spectra were manually inspected.

Computational modeling of Atg31 structure

The comparative modeling tool Modeller 9.11 was first implemented

to build a model based on the homologous Lachancea thermotol-

erans Atg31 structure from the Protein Data Bank (code 4HPQ:B)

(Joosten et al., 2011). In order to obtain a good model, the I-TASSER

(Roy et al., 2010) server was also used, which takes advantage of

multiple-threading alignments and iterative template fragment

assembly simulations. The best model from Modeller and the best

model from I-TASSER were picked out and minimized using the

molecular dynamics simulation package Gromacs 4.5 (Gong et al.,

2010) using OPLS force field3. Then the model with the better en-

ergy score was selected as the built model. We used Pymol4 to

superimpose the built Atg31 model structure onto the structure of the

Atg17-Atg31-Atg29 complex (Protein Data Bank code 4HPQ)

(DeLano, 2002).
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