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CRISPR/Cas9 and TALE: beyond cut and paste
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ABSTRACT

Nuclease-based genome editing has proven to be a
powerful and promising tool for disease modeling and
gene therapy. Recent advances in CRISPR/Cas and
TALE indicate that they could also be used as a targeted
regulator of gene expression, as well as being utilized
for illuminating specific chromosomal structures or ge-
nomic regions.
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Nuclease-based genome editing tools, including zinc finger
nuclease (ZFN), transcriptional activator-like effector nucle-
ases (TALENs), and the recently developed CRISPR (clus-
tered regularly interspaced short palindromic repeat)–Cas
system, have been progressing at an unprecedented pace for
gene therapy and diseasemodeling (Gaj et al. 2013; Pan et al.
2011; Liu et al. 2014; Li et al. 2014). Recent advances have
carved out new paths leading to novel applications of these
genome engineering tools including visualization of specific
loci of thegenomeand targeted regulationof geneexpression.

In addition to their genome-editing capabilities, TALE and
Cas9 have also been harnessed for targeted regulation of
gene expression. Several studies exploited TALE and Cas9’s
DNA binding abilities and converted them into synthetic
transcriptional factors or epigenetic modifiers to modulate
gene expression. Synthetic transcription factors created by
fusing TALE or catalytically dead Cas9 (dCas9) to effector
domainswere successfully used to gain transcriptional control
of gene expression. Binding of dCas9 to DNA alone could

repress transcription (CRISPRi), possibly through stalling
transcription elongation. Fusing dCas9 to protein domains
that can recruit repressive chromatin-modifying complexes, e.
g. the KRAB domain of Kox12, can further enhance CRISPRi.
To activate genes, in one study Therizols et al. (2014) fused
TALE to VP64, a tetramer of the VP16 acidic transcriptional
activator and used the fusion protein to ectopically activate
genes normally silenced, leading to novel insights of nuclear
reorganization in embryonic stem cells (ESCs). Similarly,
Gilbert et al. fused dCas9 to the activation domains of either
VP64 or p65 to activate targeted genes (Gilbert et al. 2013).
Synthetic epigenetic modifiers were created in Maeder et al.’s
study (2013) by fusing a hydroxylase catalytic domain of TET1
to TALE, leading to targeted demethylation of specific pro-
moter CpGs. Removal of the methylation from key promoter
CpGs can result in enhanced transcription of endogenous
genes. Tethering Tet1 hydroxylase domain to a target pro-
moter thus constitutes a proof-of-concept in epigenetic acti-
vation of specific gene transcription. To epigenetically repress
transcription of target genes, Mendenhall et al. (2013) fused
TALE with the LSD1 histone demethylase which enabled
targeted demethylation of enhancer-associated histone
modifications thereby repressing the proximal genes. Fur-
thermore, a recent study achieved spatiotemporal transcrip-
tional regulation by combining TALE and a popular
optogenetic approach and created a LITE (light-inducible
transcriptional effectors) system (Konermann et al. 2013). The
LITE system includes two parts: a customizable TALE DNA-
binding domain, fused with light-sensitive cryptochrome 2
(CRY2), and transcriptional regulator-fused CIB1 (an inter-
acting partner of CRY2). The LITE system allows for precise
spatiotemporal control of genetic and epigenetic factors con-
tributing to a variety of biological processes in vivo. Very re-
cently, two studies further expanded the application of
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through systematic transcriptional perturbation. One study by
Zalatan et al. (2014) incorporated modular RNA domains into
the sgRNA design and repurposed sgRNA as scaffolding
molecules that encode both target and function in a single
scaffold RNA (scRNA). scRNA enables simultaneous multi-
directional regulation of multiple target genes. In the second
study, Konermann et al. (2014) showed that following struc-
ture-guided design, a novel CRISPR–Cas9 complex could
drive transcriptional activation at endogenous gene loci effi-
ciently. Moreover, genome-wide transcriptional activation was
realizedwith a library composed of 70,290 engineering guides
targeting all coding isoforms of human RefSeq, with which
they screened genes exhibiting resistance to a BRAF inhibitor
upon activation.

Interestingly, TALE and Cas9 have also been brought to
service to visualize specific genomic loci in live cells, which
provide a novel way to uncover the functional relevance
between chromatin spatial organization and genome func-
tion. Traditionally fluorescent in situ hybridization (FISH) is
the method of choice to label DNA. However, FISH requires
sample fixation and is incompatible for monitoring live cel-
lular processes. Three recent studies turned TALE or Cas9
into powerful live cell imaging tools. In Miyanari et al.’s
(2013), fluorescent TALE was designed to visualize major
satellites in cultured mouse cells, including centromeric and
telomeric elements in the genome. Moreover, the TALE-
based approach exhibited high specificity allowing for dis-
tinguishing single-nucleotide polymorphisms (SNPs). Ma
et al. (2013) successfully labeled telomeres in human cells
by fusing fluorescent protein (FP) to a TALE targeting a
telomeric sequence. They also designed unique centromeric
sequences specifically associated with certain chromo-
somes to visualize individual chromosomes in human cells.
Meanwhile, since signals generated by FP-TALE positively
correlated with telomere length, they could measure telom-
ere length in human cells. Results from the above methods
are consistent with those obtained by DNA-FISH, suggesting
their potential in labeling specific genomic sequences with
high accuracy. Therefore, TALE-based strategies hold im-
mense promise to gain insight into the chromatin dynamics
associated with different cellular physiologies by visualizing
genomic DNA repetitive sequences. Importantly, an opti-
mized CRISPR-Cas system with structure-guided sgRNA
was recently employed for efficiently labeling arbitrary ge-
nomic sequences in live mammalian cells (Chen et al. 2013).
It proved to be a robust method for imaging of both repetitive
elements and coding genes. Although genome-scale imag-
ing has not been implemented with a library of sgRNA, vi-
sualization of specific genomic loci paves the way for further
study of dynamic organization of the human genome.

The advances in targeted genome engineering technolo-
gies via CRISPR/Cas9 and TALE may lead to a revolution in
cell biology research. Several considerations nevertheless
should be taken into account for future applications. (1)
Whether potential off-target effects can contribute to certain

bias or misinterpretation in obtained results. While the current
whole-genome sequencing has indicated that gene editing
mediated by well-designed sgRNA and TALEN leads to
minimal mutational load at global level (Hsu et al. 2013; Smith
et al. 2014; Suzuki et al. 2014; Veres et al. 2014), precautions
need to be taken to minimize off-targets caused by poor
sgRNA and TALE design. (2) Choice of TALE vs Cas9 in
specific application? From the aspect of construct size, TALE
is relatively smaller than Cas9 and is easier to be delivered
into cells; engineered TALE may be advantageous in site-
specific transcriptional manipulation by serving as a direct
transcriptional regulator or, alternatively, establishing a bridge
between protein and DNA or between two genomic DNA loci
without involving exogenous gRNA molecules. By contrast,
while Cas9 with larger size is difficult to get into cells, it holds
the potential for multiplex targeting. (3) It still remains unclear
whether binding of TALE or Cas9–gRNA complex to the target
sites would perturb the function of the native DNA-binding
proteins and cause unwanted perturbation of cellular function.
(4) Whether intra-nuclear localization, three-dimensional or-
ganization, or epigenetic modifications of target DNA element
potentially affect the binding of engineered TALE and Cas9–
gRNA warrants further investigations. Also how these factors
contribute to unbiased interpretation of the observed results
needs to be considered.

Collectively, despite some current concerns for using
engineered Cas9 and TALE for exploring uncharted cellular
events, esp. in a physiologically relevant context, these tools
undoubtedly open a new avenue to uncover novel events
underlying gene expression regulation and dynamic nuclear
organization of chromatin, and may greatly facilitate trans-
lation of basic studies into clinical therapies.
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