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ABSTRACT

Super-resolution microscopy techniques have over-
come the limit of optical diffraction. Recently, the
Bayesian analysis of Bleaching and Blinking data (3B)
method has emerged as an important tool to obtain
super-resolution fluorescence images. 3B uses the
change in information caused by adding or removing
fluorophores in the cell to fit the data. When adding a
new fluorophore, 3B selects a random initial position,
optimizes this position and then determines its reliabil-
ity. However, the fluorophores are not evenly distributed
in the entire image region, and the fluorescence inten-
sity at a given position positively correlates with the
probability of observing a fluorophore at this position. In
this paper, we present a Bayesian analysis of Bleaching
and Blinking microscopy method based on fluorescence
intensity distribution (FID3B). We utilize the intensity
distribution to select more reliable positions as the ini-
tial positions of fluorophores. This approach can
improve the reconstruction results and significantly
reduce the computational time. We validate the perfor-
mance of our method using both simulated data and
experimental data from cellular structures. The results
confirm the effectiveness of our method.

KEYWORDS super-resolution, fluorescence image, 3B,
intensity distribution

INTRODUCTION

Fluorescence microscopy, which enables the observation of
living cell structures, organelles and even small molecules,
plays an indispensable role in life science. However, the
spatial resolution of conventional light microscopy is
restricted to approximately half the emission wavelength due
to optical diffraction (Hell, 2007). To overcome this limitation,
several super-resolution fluorescence microscopy tech-
niques based on single-molecule localization have been
developed in recent years, such as stochastic optical
reconstruction microscopy (STORM) (Rust et al., 2006),
photo-activated localization microscopy (PALM) (Betzig
et al., 2006) and fluorescence PALM (fPALM) (Hess et al.,
2006). These techniques utilize the on-off switching of fluo-
rescent probes to ensure that each active fluorophore is
isolated beyond the range of diffraction-limitation and ulti-
mately build a high-resolution image from the precise and
accurate positions of many single fluorophores (Deschout
et al., 2014). However, single-molecule localization tech-
niques require that the density of fluorophores in each frame
remains sufficiently low to prevent individual fluorophores
from overlapping, which leads to long imaging times and
increases the damage to live samples (Lippincott-Schwartz
and Manley, 2008). Thus, low temporal resolutions limit the
application of super-resolution microscopy techniques in
live-cell imaging. Although several methods have been
developed based on simultaneous fitting with multiple fluo-
rophores to deal with relatively dense fluorescent data
(DAOSTORM, 2011; Huang et al., 2011; Quan et al., 2011),
the localization accuracy of fluorophores dramatically
decreases as the density of emitters increases.

Recently, a localization microscopy analysis method
named the Bayesian analysis of bleaching and blinking (3B)
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method was developed to address the high-density fluoro-
phore data extracted from live cells with standard fluorescent
proteins (Cox et al., 2012). In the analysis of 3B, the entire
image sequences are modeled as a set of blinking and
bleaching fluorophores, and the properties of blinking and
bleaching are utilized by hybridizing two hidden Markov
model inference methods to improve the obtained accuracy
of fluorophore positions.

During the analysis, 3B uses the changed information by
adding or removing fluorophores in the cell to adjust the
model and further fit the data. When adding a new fluoro-
phore, the initial selected position is random, and the posi-
tion prior is assumed to be uniform in the optimization
iteration of 3B. 3B optimizes this random position to deter-
mine whether to keep this position as a true single molecule
in the model. In fact, the fluorophores are not evenly dis-
tributed in the entire image region, and the fluorescence
intensity positively correlates with the probability of observ-
ing a fluorophore at this position. If a presumed initial posi-
tion is far away from the real biological structure, re-
optimizing this position is a waste of time and leads to
inaccurate results. Thus, assuming that the position prior of
fluorophores is uniform in 3B is not appropriate.

In this article, we propose a Bayesian analysis of
Bleaching and Blinking microscopy method based on the
fluorescence intensity distribution (FID3B) to improve the
reconstruction results and accelerate computation. The key
techniques include two aspects: an intensity distribution cal-
culation to obtain the probability distribution of fluorophores
and a modified model to add a procedure that selects the
initial positions of fluorophores based on the intensity distri-
bution. In 3B, each fluorophore transitions between the
emitting state, non-emitting state and bleached state
according to a Markov process, and each transition is asso-
ciated with a transition probability. The transition probabilities,
together with the fluorophore’s previous state, are used to
determine the state of a fluorophore at a certain time. The
fluorescence intensity represents the probability of observing
a fluorophore at this position. We calculated the intensity
distribution of fluorophores at each pixel by combining tran-
sition probabilities and fluorescence intensity. Instead of
choosing randomly, we then selected a position with more
confidence for each newly added fluorophore according to
previous knowledge. As a consequence, the results of our
method are much more consistent with the real structure, and
the computational time can be significantly reduced. Both
simulated data and real cellular structures were tested to
validate the performance of our method. The results provide
convincing evidence of the effectiveness of our method.

RESULTS

Experimental validation using simulated dataset

We present two different simulated datasets to demonstrate
the performance of FID3B (Figs. 1 and 2). One is a grid

structure composed of 6 intersecting lines with evenly dis-
tributed brightness, named the grid dataset (Fig. 1A); the
other is also a grid structure composed of 6 intersecting
lines, but with gradually decaying brightness from left to
right, named the gradient grid dataset (Fig. 2A). Both data-
sets consist of 200 image frames, and the size of each frame
is 40 × 40 pixels (1 pixel = 100 nm). Here, the full width at
half maximum (FWHM) of the optical point spread function
(PSF) was set to 240 nm.

Figure 1 depicts the reconstruction results of 3B and FID3B
with the grid dataset. According to the characteristics of the
state transition of fluorophore in 3B, we generated the grid
dataset of 200 frames from the original image (Fig. 1A). The
fluorescence density of each frame was very high, and the
fluorescent molecules were overlapped. The superimposed
fluorescence data from 200 frames are shown in Fig. 1B. Both
3B and FID3B were run with a fixed number of iterations, 320,
and the reconstruction results are shown in Fig. 1C and 1D.
The brightness of the image that resulted from 3B is relatively
low, and the lines in the grid are discontinuous in many areas.
In contrast, the reconstruction result of FID3B retains more
details and thus is much more similar to the original image.

To validate the ability to process images with unevenly
distributed brightness, the reconstruction results of 3B and
FID3Bwith the gradient grid dataset are shown in Fig. 2. As for
the previous grid dataset, the gradient grid dataset of 200
frames was generated from the original image (Fig. 2A). The
brightness of the original image gradually decays from left to
right. The superimposed fluorescence data from 200 frames
are shown in Fig. 2B. Both 3B and FID3Bwere run with a fixed
number of iterations, 240, and the reconstruction results are
shown in Fig. 2C and 2D. In contrast to the reconstruction
result of 3B, the reconstruction result of FID3B reveals more
details. Moreover, the reconstruction result of FID3B exhibits
the same brightness gradient as the original image and thus is
much more similar to the real image.

To validate the capability of FID3B in resolving fine
structures, we generated simulated images with concentric
rings structures, where the distance between two neighbor-
ing rings is 200 nm (Fig. S1). Although it is difficult to see the
concentric rings structures from the superimposed fluores-
cence data, the reconstruction results of both 3B and FID3B
are consistent with the original image. Moreover, the
reconstruction result of FID3B has better continuity.

Quantitative analysis of image reconstruction quality

In previous studies, quantitative measurements have been
used to evaluate the performance and quality of localization
microscopy algorithms (Ram et al., 2006; Small, 2009; Hu-
ang et al., 2011; Wolter et al., 2011). These measurements
assess the detection and localization accuracy of single
or multi emitters in each frame. Because 3B analyzes the
entire image sequences to obtain a probability map of the
positions of fluorophores, which does not reflect the real
localization of fluorophores (Lidke, 2012), we sought to
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measure the quality of the overall reconstructed image
instead of the location of single or multi emitters. The simi-
larity between the original image and reconstructed image is
a good indicator of the reconstruction quality. In this work,
the structural similarity (SSIM) (Wang et al., 2004), which is
widely used in the digital image process field, was used to
measure the similarity.

SSIM assesses the visual impact of three aspects of an
image: luminance, contrast and structure, which are also the
main concern of 3B and FID3B. A large SSIM value repre-
sents high similarity. The measurement between the original
image x and reconstructed image y is defined as follows:

SSIM(x, y) =
(2μxμy +C1)(2σxy +C2)

(μ2
x + μ2

y +C1)(σ2
x +σ2

y +C2)
ð1Þ

where μx and μy are the mean values of x and y, σ2
x and σ2

y

are the variances of x and y, σxy is the covariance of x and y,
and C1 and C2 are two variables to stabilize a division with a
weak denominator.

Figure 3 illustrates the quantitative comparison between
3B and FID3B with the grid dataset and the gradient grid

dataset. The experimental output data of both 3B and FID3B
were recorded at an interval of 40 iterations. For every
intermediate output, their similarity with the original image
was measured by SSIM. The similarity curve shown in Fig. 3
indicates that FID3B is superior to 3B. The grid dataset and
gradient grid dataset mentioned above were used to evaluate
the reconstructed image. For the grid dataset (Fig. 3A), 3B no
longer improved the reconstructed image quality after 200
iterations, but FID3B continued to improve the reconstructed
image quality after 200 iterations. When convergence was
reached, the similarity value of 3B was 0.679, which was
0.728 of FID3B. For the gradient grid dataset (Fig. 3B), the
image quality of 3B essentially stopped improving after 320
iterations. When convergence was reached, the similarity
value of 3B was 0.683, and the similarity value of FID3B was
0.757. The similarity value of FID3B is clearly higher than that
of 3B for the same number of iterations.

In order to demonstrate the acceleration effect of our
method, experiments of both 3B and FID3B with the grid
dataset mentioned above were carried out on a platform with
an Intel E7500 (2.93 GHz) CPU. We used SSIM to measure
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Figure 1. Comparison of the reconstruction results of 3B and FID3B for the grid dataset. (A) The original image of the grid data.

(B) Superimposed fluorescence data from 200 frames representing the diffraction-limited image. (C) Reconstruction result of 3B (320

iterations). (D) Reconstruction result of FID3B (320 iterations). (Scale bar: 200 nm). Note that the result of FID3B is much more similar

to the original image, while the result of 3B shows many discontinuous areas.
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Figure 2. Comparison of the reconstruction results of 3B and FID3B for the gradient grid dataset. (A) The original image of the

gradient grid data (Brightness gradually decays from left to right). (B) Superimposed fluorescence data from 200 frames representing

the diffraction-limited image. (C) Reconstruction result of 3B (240 iterations). (D) Reconstruction result of FID3B (240 iterations).

(Scale bar: 200 nm). Note that the result of FID3B exhibits the same brightness gradient as the original image and thus is much more

similar to the real image.
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Figure 3. Quantitative comparison of the reconstruction results of the grid and gradient grid datasets with 3B and FID3B.

(A) Measuring image quality of the grid dataset with SSIM. (B) Measuring image quality of the gradient grid dataset with SSIM.
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the similarity between the original and reconstructed images
and recorded the computational time of 3B and FID3B.We ran
both 3B and FID3B in parallel for 2 days. 3B required nearly
38.5 h to converge to its best similarity value (0.679), while
FID3B required only 25.2 h to achieve the same similarity
value and continued to improve the result to a large extent.

Evaluating the performance by experimental data
of cellular structure

To evaluate the performance of our method in biological
samples, COS7 cells expressing mEos3.2-labeled Lifeact, an
actin binding peptide, were illuminated at 488 nm and imaged
with the total internal reflection fluorescence microscope
(Fig. 4). The experimental data consisted of 200 image
frames, and the sizeof each framewas38×50pixels (1 pixel =
100 nm). The superimposed fluorescence data from 200
frames show the diffraction-limited image (Fig. 4A). Two
methods, 3B and FID3B, were used to process the experi-
mental data and reconstruct the final super-resolution images

(Fig. 4B and 4C). Both methods were run with 160 iterations.
The reconstruction result of 3B shows many inconsecutive
point structures, while the reconstruction result of FID3B
shows improved image continuity and is much more consis-
tent with the real structure. Furthermore, some missing
structuresmarked by solid box in Fig. 4B are clearly visualized
in Fig. 4C. The magnification of the solid boxes is
shown in Fig. 4D. We calculated the distribution of fluores-
cence intensity along the solid line. In this distribution of fluo-
rescence intensity, FID3B is denser than 3B at all points of the
curve. At some points, the density of 3B is almost 0 (as shown
by the black cycles in Fig. 4D). These points correspond to
inconsecutive structures in the magnified area.

DISCUSSION

We propose a Bayesian analysis of Bleaching and Blinking
microscopy method based on fluorescence intensity distri-
bution (FID3B). Our method introduces statistical analysis to
estimate the distribution probability of fluorescently labeled
biological structures in images, and these data are utilized to
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Figure 4. Comparison of the reconstruction results of the two methods based on real experimental data. (A) Superimposed

fluorescence data from 200 frames data showing diffraction-limited resolution. (B) Reconstruction result of 3B (160 iterations).

(C) Reconstruction result of FID3B (160 iterations). (D) Magnification of solid box in B and C, showing the distribution of fluorescence

intensity along the solid line. The black cycles show some points of which the density is nearly down to 0. The scale bars are 200 nm

(A–C) and 100 nm (D). Note that the image continuity obtained with FID3B is better and much more consistent with the real structure.
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further guide the selection of the initial positions of fluoro-
phores. We validated our method with both simulated fluo-
rescence data and experimental data from cellular
structures. These experiments show that our method better
addresses both images with even and uneven brightness.
Compared with 3B, our method selects a better starting
position when adding a new fluorophore and involves more
positions in computation at the same number of iterations.
As a result, the reconstruction results can be improved, and
the computational time can be significantly reduced.

We explain how our method affects the reconstruction
results based on two aspects: the selection of the initial
positions of fluorophores and the number of retained and
discarded positions of fluorophores.

Comparison of the distribution of initial positions
of fluorophores

To illustrate the selection of the initial positions of fluoro-
phores, we compared the distribution of these generated
positions using 3B and FID3B. Both 3B and FID3B experi-
ments were carried out with the grid dataset and gradient grid
dataset mentioned above for the same 320 iterations. We

recorded the initial positions selected by each method and
calculated the distance from each initial position to the
nearest real molecule in the structure in each dataset. For the
grid dataset (Fig. 5A–D), the number of initial positions of
fluorophores was 407 for 3B and 562 for FID3B. Comparing
the geometry distributions of initial positions in Fig. 5A and 5B
to the corresponding original images mentioned above indi-
cated that the positions of the selected initial fluorophores of
FID3B are much closer to the real structures. The histograms
of the distances from initial positions to the nearest structure
provide solid support for our findings (Fig. 5C and 5D). The
number of selected initial positions with distances less than 1
is 100 in 3B, which consisted of only 24.6% of total initial
positions. In contrast, 367 initial positions with distances less
than 1 are observed in FID3B, comprising up to 65.3% of total
initial positions. For the gradient grid dataset (Fig. 5E–H), the
initial positions of FID3B are also much closer to the structure
of the original image (Fig. 5E and 5F). The results from 3B
and FID3B include 427 and 518 initial positions, respectively.
The histograms of distances are shown in Fig. 5G and 5H.
The number of selected positions with distances less than 1
in FID3B is 331 (63.9% in total), while in 3B this number is 90
(21.1%). The above comparison confirms the advantage of
FID3B in selecting initial positions.

Comparison of the number of retained and discarded
positions of fluorophores

3B uses the change in information caused by adding or
removing fluorophores in the cell to fit the data.When adding a
new fluorophore, 3B selects an initial position, optimizes this
position, and then determines whether it is a reliable position
of a fluorophore. If the position is reliable, it will be retained and

Figure 5. Comparison of the distribution of initial positions

for the grid dataset (A–D) and the gradient grid dataset

(E–H). (A) Distribution of initial positions using 3B. (B) Distribu-

tion of initial positions using FID3B. (C) Distances from initial

positions to image contour in 3B. (D) Distances from initial

positions to image contour in FID3B. (E–H) are interpreted as

the same as (A–D).
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referred to as a retained position; otherwise, it will be dis-
carded and referred to as a discarded position.We ran both 3B
and FID3B with the two datasets mentioned above for the
same320 iterations and recorded the numbers of retained and
discarded positions (Fig. 6). For the grid dataset (Fig. 6A), 3B
yielded 36,756 discarded positions and 36,311 retained
positions, resulting in a total of 73,067 positions with a discard
rate of 50.3%. In contrast, FID3B yielded 28,036 discarded
positions and 61,248 retained positions, resulting in 89,284
positions in total with a much lower discard rate of 31.4%. For
the gradient grid dataset (Fig. 6B), 3B yielded 40,792 dis-
carded positions and 31,938 retained positions, resulting in a
total of 72,730 positions with a discard rate of 56.1%. In con-
trast, FID3B yielded 28,736 discarded positions and 53,872
retained positions, resulting in 82,608 positions in total with a
much lower discard rate of 34.8%. Fig. 6 shows that FID3B
clearly involves more positions in computation for the same
number of iterations, as a result, the reconstruction result of
FID3B is much closer to the real structure than that of 3B.

MATERIALS AND METHODS

Plasmids construction

To express Lifeact-mEos3.2 in mammalian cells, mEos3.2 contain-

ing BamHI and NotI sites was first PCR-amplified and inserted into

the pmEos3.2-N1 (Clonetech) plasmid to replace EGFP. The Lifeact

sequence was then cloned into pmEos3.2-N1 with EcoRI and

BamHI. The synthetic DNA primers used for cloning were purchased

from Invitrogen. All plasmids were sequenced (The Beijing

Genomics Institute) before further analysis.

Cell culture, transfection and fixation

COS-7 cells were cultured in DMEM complete medium (Gibco) sup-

plemented with 10% fetal bovine serum and maintained at 37°C in a

humidified incubator (Thermo). Theywere then transiently transfected

using LipofectamineTM 2000 (Invitrogen) in accordance with the

manufacturer’s protocol when they reached 80% confluence. Before

fixation, the cells were grown in DMEM complete medium (Gibco) for

24 h. The cellswere then sub-cultured on coverslips (Fisher Scientific)

for another 24 h and fixed with 3% (w/v) paraformaldehyde and 0.5%

glutaraldehyde in PBS for 15min at 37°C, washed 3 timeswith filtered

PBS and stored in PBS until imaging.

Optical setup and imaging

The 3B imaging of Lifeact-mEos3.2 was performed as previously

described (Cox et al., 2012). We used an Olympus IX71 inverted

microscope equipped with a 100 × 1.45 numerical aperture (NA) oil

objective (Olympus PLAN APO). An internal 1.6× magnification was

used to yield a pixel size of 100 nm. An acousto-optic tunable filter

(AA Optoelectronic) was used to control the 488-nm laser (Sap-

phire). The fluorescence signals were acquired using an electron-

multiplying charge-coupled device (EMCCD) camera (Andor iXon

DU-897 BV). For 3B imaging, Lifeact-mEos3.2 constructs were

imaged by a 488-nm laser with 50 ms integration times. The 3B

datasets consisted of 200 frames and were corrected for drift.

Simulated dataset generation

We generated two different simulated datasets with overlapping

fluorophores in each frame. One was the grid dataset, whose bright-

ness was uniform in the grid region; the other was the gradient grid

dataset, whose brightness gradually decayed from left to right. Both

datasets consisted of 200 image frames, and the size of each frame

was 40 × 40 pixels (1 pixel = 100 nm). In all of our simulations, the

optical point spread function (PSF) was represented as a 2D

Gaussian shape with a width parameter of 100 nm. In 3B, the entire

dataset was generated from large numbers of fluorophores that had

blinking and bleaching properties. All of these fluorophores were

modeled after a Factorial Hidden Markov Model (FHMM) (Ghahra-

mani and Jordan, 1997), each of which was modeled after a Hidden

Markov Model (HMM) (MacKay, 2003) and had three possible states:

emitting (light), not emitting and bleached. The fluorophore can tran-

sition between the emitting and not emitting state as well as from the

not emitting to the bleach state. Once it has transferred to the bleach

state, the fluorophore can no longer transfer to the other states. We

assumed that the states of all fluorophores were statistically inde-

pendent. These characteristics of state transition proposed in 3B were

used to generate simulated datasets. In the first frame of the simu-

lation, half of the fluorophores were in the emitting state and half were

in the not emitting state. Subsequently, we created an image for each

frame that consisted of fluorophores whose states were randomly

decided by a state transition diagram. The stack of image frames was

degraded by both shot (Poisson) noise and read out (Gaussian) noise.

Bayesian analysis of bleaching and blinking (3B) method

3B utilizes a Bayesian model to generate fluorescence images with

a spatial resolution approaching 50 nanometers. It can handle the

high-density fluorophore image data extracted from live cells with

standard fluorescent proteins. In this Bayesian technique, 3B mod-

els the entire image sequences as a set of blinking and bleaching

fluorophores and generates a probability map of positions using a

maximum a posteriori (MAP) calculation.

The complete procedures for 3B are summarized as follows:

Step 1. Select the initial spot positions for a model.
Step 2. Optimize the entire model: re-optimizing each fluorophore
in turn to obtain a new position in the model.
Step 3. Model selection: incrementally adjusting the model to fit
the data, one fluorophore at a time. 3B either adds a new
fluorophore at a random position or selects a fluorophore in the
model for removal.

Repeating Step 2 and Step 3 generates a super-resolution fluo-

rescence image. The algorithm is terminated when the adjacent

reconstructed images no longer significantly differ.

The basic operation of Step 3 is adjusting the model to fit the

data. In this model selection step, 3B makes many local decisions to

incrementally adjust the model. It only allows one fluorophore to be

either added or removed at a time: either a new fluorophore is added

at a random position or a fluorophore in the model is selected for

removal. 3B optimizes this spot to search for a new position and then

decides whether to keep it in the model. After a series of such

decisions have been made, 3B re-optimizes the entire model (Step

2) and then repeats the model selection step (Step 3).
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During the analysis, 3B selects a random position as an initial

position of the fluorophore when adding a new fluorophore. 3B

considers that the position prior is uniform in all image areas. Intui-

tively, the distribution of fluorophores is uneven, and the fluores-

cence intensity at a given position positively correlates with the

probability of observing a fluorophore at this position. If the pre-

sumed initial position of the fluorophore is far away from the real

biological structure, finding the correct position of the fluorophore is

difficult. Thus, re-optimizing this position is a waste of time and leads

to inaccurate results.

3B method based on fluorescence intensity distribution (FID3B)

To improve the reconstruction results and accelerate the calculation,

we propose a Bayesian analysis of Bleaching and Blinking micros-

copy method based on fluorescence intensity distribution (FID3B). In

3B, each fluorophore transfers among an emitting state, non-emit-

ting state and bleached state according to a Markov process, and

each transfer is associated with a transition probability. The transi-

tion probabilities, together with the fluorophore’s previous state, are

used to determine the state of a fluorophore at a certain time. The

fluorescence intensity represents the probability of observing a

fluorophore at this position. By combining transition probabilities and

fluorescence intensity, we calculated the intensity distribution of

fluorophores at each pixel. Instead of choosing randomly, we then

selected a position with more confidence for each newly added

fluorophore.

The key techniques include two aspects: an intensity distribution

calculation to obtain the probability distribution of fluorophores and a

modified model selection to add a procedure that selects the initial

positions of fluorophores based on the intensity distribution.

Intensity distribution calculation

According to the state transition diagram of the fluorophore in 3B,

each fluorophore has three possible states, emitting (light), not

emitting and bleached, and transfers among the three states. The

transition probabilities, i.e., the probability of a fluorophore transfer-

ring from emitting to emitting or from not emitting to emitting, are α
and β, respectively, as shown in Fig. 7. We assumed that each

fluorophore’s transitions are statistically independent of other fluo-

rophore’s states. This state transition characteristic was used to

calculate the probability of the fluorophore at each pixel in the ima-

ges. We then used these probabilities as an intensity distribution to

guide the selection of the initial positions of fluorophores.

Figure 7 shows that two situations cause a fluorophore to emit

light: transferring from emitting to emitting and transferring from not

emitting to emitting. For convenience, we only considered two

states: emitting and not emitting. Like deconSTORM (Mukamel

et al., 2012), we assigned an exponential prior distribution to

parameter, γk(x), which represents the estimated intensity at location

x in frame k. γk(x) is based on a weighted average of the fluores-

cence intensity at location x in all K frames. The weight increases as

the distance to the current frame k decreases.

γk (x) = ∑
K

t=1

α | k -- t |

τ
+

β
K

� �
it(x) ð2Þ

where τ =∑K
t=1α

| k -- t | is the normalization factor. K is the total
number of image frames. ik(x) represents the fluorescence intensity
at location x in frame k. The first term in Eq. 2 indicates that the
observation of image intensity at a particular location in one image
frame is generated by a series of image frames. This process cal-
culates a weighted average based on all of image frames, and the
current frame is assigned the maximum weight. The weight
decreases as the distance from the current frame increases, which
decays exponentially. The second term in Eq. 2 indicates that an
emitting state detected in any image frame is due to a transition from
not emitting to emitting in any earlier or later image frame with
probabilityβ. We considered the average impact of re-emitting,
∑K
t=1β× it (x)

K , and combined the first and second term to obtain the

estimated intensity, γk(x), at each location in each image frame.

The total intensity at a certain location x, γ(x), is then obtained by

adding the estimated intensity, γk(x), in all K frames as shown in

equation 3.

γ(x) = ∑
K

k=1
γk (x) ð3Þ

Finally, γ(x) is normalized to obtain probability map of the image

at a certain location x, P(x) (Eq. 4). We utilized this probability map

as the intensity distribution of fluorophores to evaluate the selection

of initial positions. The intensity distribution interval ranges from 0 to

1. A large value represents a high probability of the selected

positions of fluorophores.

P(x) =
γ(x)

maxx γ(x)
ð4Þ

Modified model selection

Themodel selection in 3B (Step 3 in subsection “Bayesian analysis of

bleaching and blinking (3B) method”) is modified to improve the initial

positions of fluorophores. When adding a new fluorophore, we used

the intensity distribution to select a more reliable initial position. The

modified procedures are summarized as follows:

Step 1. Select the initial spot positions for a model.
Step 2. Optimize the entire model: re-optimizing each fluorophore
in turn to obtain a new position in the model.
Step 3. Model selection: incrementally adjusting the model to fit
the data, one fluorophore at a time. The operation details are
shown below:

a) Adding a new fluorophore at a random position (Op_a).
b) Adding a new fluorophore based on intensity distribution

(Op_b).
c) Randomly selecting a fluorophore in the model for removal

(Op_c).

Emitting Not emitting Bleached

α

1-α

β

Figure 7. State transition diagram of fluorophore.
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When model selection (Step 3) is executed to adjust the model to fit

the data, we take one fluorophore under consideration from three

operations: adding a new fluorophore at a random position (Op_a),

adding a new fluorophore based on intensity distribution (Op_b) and

randomly selectinga fluorophore in themodel for removal (Op_c). These

three operations are randomly selected with a certain probability. If the

probability ofOp_a is high, FID3B tends to selectmore randompositions

as new fluorophores. In contrast, if the probability ofOp_b is high, FID3B

tends to select more fluorophores based on intensity distribution. In

particular, if the probability ofOp_b is set to 0, FID3B is converted to the

3B. In our experiment, the probabilities of the three operations, Op_a,

Op_b andOp_c, were set to 0.2, 0.5 and 0.3, respectively.
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