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ABSTRACT

The mitochondria-mediated caspase activation pathway
is a major apoptotic pathway characterized by mito-
chondrial outer membrane permeabilization (MOMP)
and subsequent release of cytochrome c into the
cytoplasm to activate caspases. MOMP is regulated by
the Bcl-2 family of proteins. This pathway plays
important roles not only in normal development, main-
tenance of tissue homeostasis and the regulation of
immune system, but also in human diseases such as
immune disorders, neurodegeneration and cancer. In
the past decades the molecular basis of this pathway
and the regulatory mechanism have been comprehen-
sively studied, yet a great deal of new evidence indi-
cates that cytochrome c release from mitochondria
does not always lead to irreversible cell death, and that
caspase activation can also have non-death functions.
Thus, many unsolved questions and new challenges
are still remaining. Furthermore, the dysfunction of this
pathway involved in cancer development is obvious,
and targeting the pathway as a therapeutic strategy has
been extensively explored, but the efficacy of the tar-
geted therapies is still under development. In this
review we will discuss the mitochondria-mediated
apoptosis pathway and its physiological roles and
therapeutic implications.
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INTRODUCTION

The term “apoptosis” was originally coined to describe a
specific type of cell death characterized by specific cellular
morphological changes, including membrane blebbing, cell

shrinkage, nuclear fragmentation, chromatin condensation,
and chromosomal DNA fragmentation. (Kerr, 2002; Kerr et al.,
1972; Taylor et al., 2008). Thenatureof apoptosis asaprocess
of “programmed” cell deathwas established atmolecular level
mainly by twowaves of studies; the discovery of the oncogene
product Bcl-2 as an inhibitor of apoptosis, by Korsmeyer, Cory,
and others (Bakhshi et al., 1985; Hockenbery et al., 1990;
Vaux et al., 1988), and the C. elegans genetic studies by
Horvitz and colleagues leading to the identification of a path-
way controlling development-associated death of a group of
cells in the organism (Ellis and Horvitz, 1986; Horvitz, 1999;
Horvitz et al., 1994). The prominent role of mitochondria in
apoptosis was subsequently unveiled by XiaodongWang and
colleagues through their discovery of the cytochrome c-med-
iated caspase activation pathway (Li et al., 1997; Liu et al.,
1996; Zou et al., 1997).

THE BCL-2 FAMILY PROTEINS IN MITOCHONDRIAL
APOPTOSIS

The first regulatory step for mitochondrial apoptosis is med-
iated by Bcl-2 family proteins. Bcl-2, also known as B-cell
lymphoma 2, was the first member identified as an apoptosis
inhibitory protein overexpressed in human follicular B-cell
lymphomas due to t(14;18) chromosomal translocation
(Bakhshi et al., 1985; Tsujimoto et al., 1985). Subsequently,
three major mammalian groups of Bcl-2 family proteins have
been identified. The original pro-survival group includes Bcl2,
Bcl-xL, Mcl-1, etc.; an opposite functional group also called
pro-apoptotic BH123 protein group includes Bax and Bak;
and the third group called apoptosis initiator group is made of
BH3 domain-only proteins including Bad, Bid, Bim, Puma,
and Noxa (Fig. 1). Without apoptotic stress, Bcl-2 and Bcl-xL
(pro-survival) form heterodimers with Bax and Bak (pro-
apoptotic) to maintain the outer mitochondrial membrane
(OMM) integrity and block mitochondrial apoptosis. In the
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presence of apoptotic stimuli, the expression of pro-apoptotic
proteins Bax and/or BH3-only proteins (apoptosis initiator)
increased, following which they bind to pro-survival Bcl-2
proteins to release Bax/Bak from inhibition. Free Bax and Bak
form oligomers, leading to cytochrome c release from the
intermembrane space of mitochondria to the cytoplasm, likely

by forming a channel in OMM. The released cytochrome
c activates the caspase cascade to induce apoptosis (Hard-
wick and Soane, 2013) (Fig. 2).

To understand the roles of Bcl-2 family protein in vivo,
many mouse models have been developed. Loss of Bcl-2 in
mouse results in numerous defects, including growth
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Figure 2. An overview of the mitochondria-mediated caspase activation pathway. Upon apoptotic stimuli such as DNA damage,

growth factor deprivation, etc. BAX/BAK form oligomeric complexes to mediate cytochrome c release from the mitochondria to the

cytosol. The released cytochrome c forms the apoptosome with Apaf-1 and subsequently activates the initiator caspase, caspase-9,

which cleaves and activates effector caspases, caspase-3 and caspase-7, leading to ultimate apoptotic cell death. Other proapoptotic

proteins including Smac, Omi, and ARTS also function to repress IAPs to enhance apoptosis. WD40: WD40 repeat domain; CARD: a
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retardation, short life span, polycystic kidney, apoptosis-
induced atrophy in thymus and spleen (Kamada et al., 1995).
Bcl-2 null mice also show defects in subpopulation of neu-
rons during neonatal period (Michaelidis et al., 1996). Addi-
tionally, mice lacking Bcl-xL show early embryonic lethality
due to the excess apoptosis of immature neurons in brain,
spinal cord, and erythroid cells in the liver, indicating the role
of Bcl-xL during neuron and erythrocyte maturation (Motoy-
ama et al., 1999; Motoyama et al., 1995). The data strongly
support the inhibitory roles of Bcl-2 and Bcl-xL in apoptosis,
though the function may be tissue and developmental stage
specific. On the contrary, the Bax/Bak knockout mice fail to
promote MOMP and are resistant to various apoptotic stim-
uli, demonstrating the essential role of BAK and BAX in
mitochondria-mediated apoptosis (Lindsten et al., 2000; Wei
et al., 2001). Deletion of any single BH3-only gene in mice,
on the other hand, does not result in obvious developmental
defects (Ren et al., 2010; Villunger et al., 2011), although Bid
deletion inhibits Fas-induced apoptosis in certain cell types
(Yin et al., 1999). Intriguingly, mice with Bid, Bim, and Puma
triple knockout showed embryonic lethality, and a subset of
the viable triple null mice displayed similar developmental
defects to those of Bax-/-Bak-/- mice with persistent inter-
digital webs of skin on their feet and imperforate vaginas,
indicating these three BH3-only proteins in combination are
essential for Bak/Bax activation (Ren et al., 2010; Villunger
et al., 2011).

THE APOPTOSOME FORMATION AND CASPASE
CASCADE AFTER CYTOCHROME C RELEASE

The second regulatory step of mitochondrial apoptosis is the
formation of apoptosome. After MOMP is triggered, mito-
chondrial proteins such as cytochrome c can be released to
the cytoplasm. The released cytochrome c binds to apoptotic
protease activating factor-1 (Apaf-1), and activates nucleotide
exchange activity of Apaf-1. The ADP/dADP-associated,
inactive Apaf-1 becomes active, ATP/dATP-bound Apaf-1,
and forms the apoptosome, a wheel-shaped homo-hepta-
meric Apaf-1 complex. Interestingly, although the hydrolysis of
dATP by Apaf-1 was initially thought to be essential for ap-
optosome function (Zou et al., 1997; Zou et al., 1999), more
precise analysis demonstrate that dATP-binding but not
hydrolysis is required for apoptosome function (Jiang and
Wang, 2000). C-terminal WD40 repeats of Apaf-1 have auto-
inhibitory activity, and either cytochrome c binding or deletion
of these repeats can activate Apaf-1 (Hu et al., 1998; Riedl
et al., 2005). Also it is important to have exogenous dATP/ATP
present when cytochrome c binds to Apaf-1 to avoid the for-
mation of non-functional aggregates (Kim et al., 2005). When
activated Apaf-1 forms apoptosome, it binds and cleaves ini-
tiator procaspase-9, and converts it to an active form (Fig. 2).

Although the proteolytic processing of a caspase is usually
necessary and sufficient for its activation (Thornberry and
Lazebnik, 1998), cleaved caspase-9 needs to be associated

with the apoptosome complex to be active (Jiang and Wang,
2000; Rodriguez and Lazebnik, 1999). In addition, even when
all the possible cleavage sites of caspase-9 are mutated, the
uncleaved caspase-9 can still be activated if it is associated
with the functional apoptosome (Acehan et al., 2002; Jiang
and Wang, 2000), indicating that proteolytic cleavage of
caspase-9 is not required for its activation. Therefore, the
holoenzyme formed by the apoptosome complex and cas-
pase-9 is critical to activate downstream effector caspases,
such as caspase-3, and caspase-7. On the other hand,
although caspase-9 cleavage is not required for its activity,
the cleavage significantly enhances the enzymatic activity of
apoptosome-associated caspase-9 (Zou et al., 2003). Fur-
ther, caspase-9 can undergo an autocatalysis process which
does not change its own enzymatic activity, but is important
for its regulation by inhibitors of apoptosis proteins (IAPs)
(Twiddy and Cain, 2007), as we will discuss later.

The importance of these key components in mitochon-
drial apoptotic pathway has been validated by mouse model
studies. Cytochrome c with a K72A mutation is defective in
interaction with Apaf-1, but retains its respiration-associated
function (Yu et al., 2001). A knock-in mouse with cyto-
chrome c K72A mutation shows strong resistance to DNA
damage-induced apoptosis (Hao et al., 2005). Apaf-1 or
caspase-9 knockout mice have the similar developmental
defects as caspase-3 null mice with central nervous system
and lymphocyte homeostasis defects caused by apoptotic
deficiency (Cecconi et al., 1998; Hakem et al., 1998; Kuida
et al., 1998; Kuida et al., 1996; Woo et al., 1998; Yoshida
et al., 1998). Thus, the essential roles of cytochrome c, Apaf-1,
caspases in this apoptotic pathway have been confirmed
in vivo.

THE INHIBITORS OF APOPTOSIS (IAPS)

Whereas cytochrome c release from mitochondria leads to
caspase activation and triggers apoptosis, the process is
also tightly controlled by other endogenous regulators. The
inhibitors of apoptosis (IAPs) family of proteins have BIR
(baculovirus IAP repeats) domains. The BIR domain was
originally discovered in baculovirus proteins (Crook et al.,
1993) that can bind to caspases to inhibit their activity
(Deveraux et al., 1997; Roy et al., 1997; LaCasse et al.,
1998). IAP family proteins in mammals include X-chromo-
some linked IAP (XIAP), cellular IAP1 and 2 (cIAP1 and
cIAP2), neuronal apoptosis inhibitory protein (NAIP),
BRUCE (also called Apollon), Survivin, and ML-IAP
(Deveraux and Reed, 1999; Dubrez et al., 2013; Harlin
et al., 2001; LaCasse et al., 1998; Vucic et al., 2000).
Similar to insect IAPs, mammalian IAPs can bind to cas-
pase-3, 7, and 9 to inhibit apoptosis (Chai et al., 2001;
Huang et al., 2001) (Fig. 3). Intriguingly, different IAP pro-
teins may interact with a variety of pro-apoptotic proteins in
tissue specific manner to inhibit apoptosis induced by
diverse signals.
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The relevance of IAP family proteins in vivo has been
demonstrated by many mouse model studies. Survivin is
essential in suppressing apoptosis during mouse develop-
ment, Survivin null mice are lethal at early embryonic stage
(Uren et al., 2000). Tissue specific deletion of Survivin in
thymocytes causes mitotic defects and cell death (Okada
et al., 2004), clearly indicating that the pro-survival role of
Survivin in vivo. Similarly, Bruce/Apollon deletion in mouse
causes activation of caspases and apoptosis in the placenta
and yolk sac, leading to embryonic lethality. Bruce/Apollon-
deficient MEFs are also sensitive to apoptosis (Hao et al.,
2004; Ren et al., 2005). However, some IAP family proteins
show functional redundancy with other IAP family members
in vivo. Mice with XIAP deletion are normal and have no
detectable defect in apoptosis with a compensating up-reg-
ulation of c-IAP1 and c-IAP2 (Harlin et al., 2001), while mice
with deletion of cIAP1 in combination with cIAP2 or XIAP
show embryonic lethality due to cardiovascular defects
(Moulin et al., 2012). Although these in vivo studies have
demonstrated important roles of IAP proteins in develop-
ment, whether they exert these functions by directly inhibit-
ing caspase activity, particularly, mitochondria-mediated
caspase activation, is not defined.

IAP ANTAGONISTS AND THE INTERACTION WITH
IAPS

Intriguingly, there is another family of proteins that functions
to antagonize the anti-apoptotic activity of IAP proteins. This
group of proteins was originally discovered in Drosophila by
genetic screens. Pro-apoptotic genes Reaper, Hid, and Grim
(RHG genes) were identified as suppressors of Drosophila
IAP1 (dIAP1) (Chen et al., 1996; Goyal et al., 2000; Grether
et al., 1995; Vucic et al., 1997; Vucic et al., 1998; Wang et al.,

1999; White et al., 1996). The RHG proteins can compete
with caspases to interact with the BIR domain of dIAP1
(Goyal et al., 2000). There are no obvious RHG homologous
sequences in mammals. The mammalian RHG counterpart
proteins were independently purified based on the apoptotic
activity from two groups. Smac (second mitochondrial acti-
vator of caspases) was identified as a mitochondria-derived
caspase activator in addition to cytochrome c (Du et al.,
2000), and DIABLO was found by XIAP affinity purification
(Verhagen et al., 2000). Interestingly, Smac and DIABLO
turned out to be the same mitochondrial protein. The N-ter-
minal AVPI motif of Smac/DIABLO specifically interacts with
a groove region of the BIR3 domain of XIAP (Liu et al., 2000;
Wu et al., 2000), which is sufficient to antagonize the inhib-
itory activity of BIR3 domain towards caspase-9 (Chai et al.,
2000). Subsequently, other IAP antagonists were also
identified from mitochondria in mammalian cells. For exam-
ple, Omi/HtrA2 binds to XIAP, thereby antagonizing cas-
pase-XIAP interaction. Interestingly, Omi/HtrA2 also
degrades IAPs through its serine protease activity (Hegde
et al., 2002; Martins et al., 2002; Suzuki et al., 2001; van
Loo et al., 2002; Verhagen et al., 2002; Yang et al., 2003).
ARTS/Sept4 is a septin-like IAP antagonist,which has a
unique mechanism to regulate IAPs (Gottfried et al., 2004;
Larisch et al., 2000). Unlike Smac and Omi localizing in
mitochondria, ARTS is localized on the surface of the mito-
chondrial outer membrane, allowing it to interact with IAPs
independent of MOMP (Edison et al., 2012).

Smac also suppresses the inhibitory activity of XIAP
toward caspase-3 by cooperatively interacting with the BIR3
and BIR2 domains of XIAP. Thus, although the multiple BIR-
domains of XIAP confer its concurrent inhibitory function to
caspase-9 and caspase-3, it also makes the protein highly
susceptible to inhibition by Smac (Gao et al., 2007). In
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Figure 3. The structure of IAP family proteins. The IAP family protein has at least one baculovirus inhibitor of apoptosis protein

repeat (BIR) domain. Several IAPs also contain a RING-zinc finger domain at the carboxy terminus with autoubiquitination and
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addition to the BIR domains, most IAP proteins also have a
RING domain with E3 ubiquitin ligase activity, which can
cause ubiquitin-mediated degradation of active caspases
and SMAC/Diablo (MacFarlane et al., 2002), indicating the
RING domain of IAPs is also important for their anti-apop-
totic function. Conversely, the serine protease activity of
Omi/HtrA2 can also inactivate cIAPs and XIAP by proteolytic
cleavage (Yang et al., 2003). Smac/Diablo can promote
auto-ubiquination and degradation of cIAPs (Yang and Du,
2004). Thus IAPs and their antagonists have multiple ways
in vivo to tightly regulate the mitochondrial apoptosis path-
way (Figs. 2 and 3).

The function of these IAP antagonists may be redundant
or tissue-specific in vivo as indicated by mouse models.
Smac-deficient mice were viable and normal. Cultured
Smac-null cells show normal response to all apoptotic sig-
nals, suggesting other IAP antagonist molecules can com-
pensate the loss of Smac (Okada et al., 2002). HtrA2/Omi
may work in a tissue specific manner or possess apoptosis-
independent functions, since mice lacking HtrA2/Omi only
show a neurodegenerative disorder similar to a Parkinson
phenotype due to the loss of neurons in the striatum (Martins
et al., 2004). Arts/Sept4-null mice show increased numbers
of hematopoietic stem and progenitor cells, elevated XIAP
protein, increased resistance to cell death, and accelerated
tumor development in an Eμ-Myc background. These phe-
notypes are partially rescued by the inactivation of XIAP
(Garcia-Fernandez et al., 2010). Thus, the apoptotic role of
ARTS/Sept4 is specific to certain cell lineages and involved
in cancer development.

CROSSTALK OF THE MITOCHONDRIAL PATHWAY
WITH THE DEATH RECEPTOR-MEDIATED
APOPTOSIS AND NECROSIS

In addition to the mitochondrial pathway, mammalian cells
possess the death receptor-mediated apoptotic pathway that
is triggered by the tumor necrosis factors (TNF family). The
TNF family factors include Fas ligand, TNF-alpha, Apo3L,
Apo2L, and TRAIL (TNF-related apoptosis inducing ligand)
that can activate their corresponding receptors FasR, TNFR1,
DR3, and DR4/DR5 (Ashkenazi et al., 2008; Tait and Green,
2010a). Upon receptor activation, the adaptor molecules such
asFAS-associateddeathdomainprotein (FADD)are recruited
to associate and activate caspase-8 or caspase-10, which
leads to the cleavage and activation of caspase-3 and cas-
pase-7. There is crosstalk between mitochondrial and death
receptor pathways. Caspase-8/10 can activate mitochondrial
apoptosis initiator protein BID, thus forming an amplification
loop to enhance themitochondrial pathway (Li et al., 1998; Luo
et al., 1998). Conversely, Bcl-2 overexpression can com-
pletely block apoptosis induced by TNF ligands in various cell
types known as Type-II cells (Jiang and Wang, 2004; Scaffidi
et al., 1998), suggesting themitochondrial amplification loop is
required for sufficient activation of effector caspases by the

death receptor pathway. This is further supported by the
observation that Smac and Omi are released to antagonize
IAPs by caspase-8-activated BID (Jost et al., 2009; Sun et al.,
2002). Additionally, Smac/DIABLO overexpression can sen-
sitize cells to TRAIL and overcome TRAIL resistance in
malignant glioma xenografts model (Fulda et al., 2002). Small
molecules mimicking Smac can sensitize various cell types to
both TRAIL- and TNFα-induced apoptosis (Li et al., 2004).
Further, in some Type-II cells, cellular apoptosis susceptibility
protein (CAS) can be upregulated by death receptor ligands to
stimulate of Apaf-1 (Kim et al., 2008). Therefore, the death
receptor pathway can enhance the mitochondria-mediated
pathway through multiple mechanisms.

While the functional interplay between the mitochondrial
pathway and death receptor-mediated apoptosis is well
established, recent evidence suggests that the mitochondrial
pathway also communicates with death receptor-induced
programmed necrosis (also called necroptosis). The typical
morphologies of necrosis are the formation of intracellular
vacuoles, organelle swelling, and plasma membrane rupture
(Chan, 2012). Although necrosis is originally thought to be
passive, it has been unambiguously demonstrated that at
least at certain contexts, necrosis can be programmed. For
example, death receptor-mediated necrosis requires a
kinase cascade, including receptor interacting protein (RIP)
kinases RIP1 and RIP3, and the effector protein MLKL (Cho
et al., 2009; He et al., 2009; Sun et al., 2012; Zhang et al.,
2009). Death receptor-mediated necrosis plays an important
role during development and maintenance of adaptive
immune response (Han et al., 2011; Li et al., 2012; Linker-
mann and Green, 2014), and there is intimate crosstalk
between this pathway and death receptor-mediated apop-
tosis, an alternative outcome of the death receptor signaling.
For example, caspase-8 activity inhibits RIP3-dependent
necrosis (Oberst et al., 2011) and RIP3 in turn suppresses
death receptor-mediated apoptosis (Newton et al., 2014).
Intriguingly, the mitochondrial apoptotic pathway also shares
some regulatory components with necrosis. For example,
necrosis caused by hepatic and cerebral ischemia/reperfu-
sion is reduced by inhibition of Bax, and the effect is even
stronger than that caused by inhibition of initial apoptotic
signal, suggesting Bax plays an important role to promote
necrotic cell death under this context (Ben-Ari et al., 2007;
Hetz et al., 2005). In addition, Bmf, a pro-apoptotic Bcl-2
protein, is another example of mitochondrial pathway regu-
lator that has been implicated in TNFα-induced necrosis
(Hitomi et al., 2008).

CELL FATE DETERMINATION AND NON-
CANONICAL FUNCTIONS OF THE MITOCHONDRIAL
PATHWAY

It was originally believed that once MOMP is triggered, cells
are doomed to die even when downstream caspase activa-
tion is completely inhibited (Cheng et al., 2001; Goldstein
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et al., 2005; Goldstein et al., 2000). However, new evidence
shows that cells can survive with partial MOMP and induc-
tion of modest cytochrome c release. As mentioned previ-
ously, cells have developed multiple mechanisms to regulate
caspase activation downstream of cytochrome c release,
which strongly suggests that apoptosis can still be avoided
even after cytochrome c release. For example, Apaf-1 or
caspase-9 knockout mice show the resistance to cell death
in the developing neuronal cells (Cecconi et al., 1998; Ha-
kem et al., 1998; Kuida et al., 1998; Yoshida et al., 1998). As
both caspase-9 and Apaf-1 function downstream of cyto-
chrome c release, these studies demonstrate that deficien-
cies downstream cytochrome c release can also block cell
death, and thus cytochrome c release is not always the
“point of no-return” of mitochondrial apoptosis. Also, when
cleaved BID induces modest cytochrome c release, if
downstream caspase activation is inhibited, the same cells
can fully recover and proliferate (Tait et al. 2010b).

Additionally, cytochrome c release may have non-apop-
totic functions. For example, cytochrome c-mediated cas-
pase activation in hippocampal neurons does not lead to
apoptosis, yet it is required for brain development and
function (Li et al., 2010), indicating that cytochrome c release
has non canonical functions at least in neurons. Further-
more, caspase activation is also involved in many biological
processes, including sperm and red blood cell differentiation
(Kuranaga and Miura, 2007; Lamkanfi et al., 2007; Zermati
et al., 2001), and axonal pruning (Nikolaev et al., 2009).
Interestingly, caspase-3 deficient mice have increased B
cells with enhanced proliferation and hyperproliferation
under mitogen treatment (Woo et al., 2003), indicating that
caspase-3 can also be involved in cell cycle arrest. In these
caspase-dependent events, caspase activity does not result
in cell death, but is involved in cellular component clearance
and loss of cell mass. The mechanisms underlying how cells
determine if cytochrome c-mediated caspase activation
should lead to apoptotic cell death or a specific non-death
biological function remain unclear.

Besides non-canonical function of caspases, other
members of the mitochondrial pathway are also involved in
non-death processes in cells. Some of the Bcl-2 family
proteins regulate calcium homeostasis, glucose metabolism,
and mitochondrial dynamics (Chen et al., 2004; Danial et al.,
2010; Danial et al., 2003; Popgeorgiev et al., 2011; Rolland
and Conradt, 2010). Apaf-1 is involved in DNA damage
induced cell cycle arrest independent of caspase activation
(Zermati et al., 2007). The members of the IAP family, Sur-
vivin, is involved in kinetochore function (Skoufias et al.,
2000; Speliotes et al., 2000), while cIAP1 and cIAP2 are
critical regulators of the NF-κB signaling (Beug et al., 2012).
Human NAIP regulates the host response to L. pneumophila
infection and inhibits apoptosis or promotes pyroptosis in
response to specific cellular signals (Katagiri et al., 2012). As
proteins of mitochondrial pathway are important for many
developmental and cellular events independent of cell death,
it is important to determine whether the phenotypes caused

by alteration of these proteins are related to mitochondria-
mediated apoptosis or their non-canonical functions.

THE ROLE OF MITOCHONDRIAL APOPTOSIS
PATHWAY IN CANCER AND CANCER TREATMENT

As we discussed in previous sections, apoptosis is essential
for multiple physiological processes. Because aberrant
apoptotic cell death is one of the hallmarks of tumorigenesis
and tumor progression, cancer cells develop various mech-
anisms to deregulate the mitochondrial pathway, which leads
to apoptotic resistance and survival advantage.

Many components of the mitochondrial apoptosis pathway
are deregulated in cancer cells. The elevated expression of
pro-survival Bcl-2 gene has been identified in many different
cancers, including melanoma, breast, prostate, chronic lym-
phocytic leukemia, and lung cancer. The high expression of
Bcl-2 imparts therapeutic resistance of these cancer cells.
Tremendous effort has been spent on developing drugs to
target the Bcl-2 pro-survival family members. The first clinical
trial agent that targets Bcl-2 is oblimersen sodium (a Bcl-2
antisense oligonucleotide compound). This oligonucleotide
specifically binds to human bcl-2 mRNA, resulting in its
degradation (Herbst and Frankel, 2004) (Fig. 4).

Another strategy to target the Bcl-2 family proteins (Bcl-2,
Bcl-w, Bcl-xL, MCL-1) is to develop potent BH3 mimetic
compounds. These BH3 mimetic compounds bind the
hydrophobic groove of anti-apoptotic Bcl-2 proteins in place
of BH3-only proteins, allowing Bax and other pro-apoptotic
proteins to induce MOMP and apoptotic death. ABT-737 and
the orally form ABT-263 developed by Abbott are successful
examples. ABT-263 induces tumor regression in the xeno-
graft models of small cell lung cancer and acute lympho-
blastic leukemia (Ackler et al., 2008; Tse et al., 2008). More
recently, another BH3 mimetic compound JY-1-106 is dem-
onstrated to induce apoptosis in lung cancer, colon cancer,
and mesothelioma (Cao et al., 2013).

On the other hand, the pro-apoptotic Bax and BH3-only
proteins Puma, Noxa are the transcriptional targets of p53
tumor suppressor. Since it is well known that one of the
mechanisms for p53 to suppress tumorigenesis is mediated
by its apoptosis function, activation of p53 pathway can be
an appealing therapeutic strategy to treat cancer. The most
common mechanism to inactivate p53 function in human
tumors is missense mutations; several compounds have
been developed to restore activity of mutant p53. A synthetic
22-mer peptide corresponding to the carboxy-terminal amino
acid residues 361–382 of p53 was the first compound
identified to restore mutant p53 activity in tumor cells thereby
inducing apoptosis (Selivanova et al., 1997). PRIMA-1 has
been shown to have a similar function (Bykov et al., 2002).
More recently, a compound (NSC319726) from the thio-
semicarbazone family was shown to specifically restore the
activity of p53R175H mutation (Yu et al., 2012). However, all
these compounds still need to be tested in patients for
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efficacy. Additionally, other mechanisms, such as overex-
pression of p53 negative regulators Mdm2 and Mdm4, have
been proven to be alternative ways to inactivate wild type
p53 function in human tumors (Oliner et al., 1992; Toledo
and Wahl, 2007; Wade et al., 2010). In tumors with wild type
p53, activation of p53 to induce apoptosis can be achieved
by blocking Mdm2 or Mdm4 binding to p53 (Martins et al.,
2006; Shchors et al., 2013; Ventura et al., 2007; Wang et al.,
2011; Xue et al., 2007). Several chemicals, such as Nutlin
and MI-219, have been developed to block the interaction
between Mdm2 and p53 (Shangary et al., 2008; Vassilev
et al., 2004). Chemicals targeting Mdm4 are still under
development.

Increased expression of pro-apoptotic proteins, such as
Apaf-1 andSmacare associatedwith longer survival in cancer
patients (Endo et al., 2009; Huang et al., 2010; McIlwain et al.,
2013; Provencio et al., 2010; Strater et al., 2010; Zlobec et al.,
2007). Conversely, over-expression of IAP proteins are fre-
quently detected in various human cancers and associated
with poor prognosis (Barrett et al., 2011; Fulda and Vucic,
2012; Mizutani et al., 2007; Tammet al., 2000). Thus, blocking
IAP proteins in human tumors may improve patient survival.
Smac mimetics induce apoptosis through their ability to sup-
press IAPs by direct inhibition and/or proteasomal degrada-
tion of some members of the IAP family. These compounds
can target cancer cells with IAPs overexpression, and someof
these compounds are currently in clinical trials (Chen and
Huerta, 2009; Fulda and Vucic, 2012; Lu et al., 2008). Also an
antisense oligonucleotide against XIAP (AEG35156) has
been developed to treat patients with pancreatic, breast, non-
small cell lung cancer, AML, and lymphoma (Mahadevan
et al., 2013; Schimmer et al., 2009).

Additionally, decreased expression of caspase-3 is fre-
quently observed in cancer cells and is associated with
chemoresistance. Conversely, activation of caspase-3 often
increases cancer cell sensitivity to apoptosis (Devarajan
et al., 2002; Guicciardi and Gores, 2013). 4-pyridineethanol
(PETCM), gambonic acid, and the gambonic acid derivative
MX-206 were identified by high-throughput screens for
caspases 3 activation in vitro. Some of these molecules
have been reported to induce apoptosis in cancer cell lines
(Jiang et al. 2003; Zhang et al. 2004; Fischer and Schulze-
Osthoff 2005).

More recently, many studies showed that combination
therapies can achieve better therapeutic effect. When
ABT-737 is administrated together with paclitaxel, it can
enhance the cytotoxic effect of paclitaxel (Lieber et al.,
2011). Although the alkylating agent temozolomide (TMZ) is
commonly used in treating melanoma, it has low response
rate by itself. Combining ABT-737 with TMZ can induce
strong apoptosis in multiple human melanoma cell lines and
in a mouse xenograft model at much lower concentrations
(Reuland et al., 2011). To activate apoptosis in tumors,
SMAC mimetic compounds (SMCs) have disappointing
effects as single agents in tumors with low expression of
death-inducing proteins. However, Smac mimetic BV6,
which antagonizes XIAP, cIAP1, and cIAP2, together with
the demethylating agent 5-azacytidine or 5-aza-2’-deoxy-
cytidine can induce cell death more efficiently in otherwise
resistant AML cells (Steinhart et al., 2013). In conclusion,
many drugs are under development to target different com-
ponents of the mitochondrial apoptotic pathway to treat
cancer patients (Fig. 4). Further investigation is needed to
improve the efficacy of these leading compounds in humans.

Oblimersen

Smac mimetics 
BCL-2/BCL-xL Smac

Smac  Smac

Caspase 3 Caspase 3

AEG35156

Cytochrome c Apoptosome

PETCM, GA, 
MX-206 

BH3 mimetics (ABT737, ABT263 , JY-1-106)

p53 activation
(Nutlin, MI219)

Puma

BAX
BAK

IAPs

IAPs
IAPs

Procaspase 9

Caspase 9

Figure 4. The therapeutic agents developed to target the mitochondrial apoptotic pathway. Oblimersen sodium is a Bcl-2

antisense oligonucleotide compound. BH3 mimetic compounds include ABT- 737, ABT-263, and JY-1-106. Nutlin and MI-219 block

Mdm2 and p53 interaction to activate p53 transcription activity to induce the expression of Puma and Bax. Smac mimetics and the

antisense oligonucleotide AEG35156 are inhibitors of XIAP. 4-Pyridineethanol (PETCM), gambonic acid, and the gambonic acid

derivative MX-206 can activate caspases-3.
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PERSPECTIVE

Tremendous progresses have been made for our under-
standing of the molecular mechanisms and biological func-
tion of mitochondrial apoptotic pathway, leading to potential
therapeutic development to target the components of the
pathway. Recent work also led to the discovery of novel
functional interactions between the mitochondrial pathway
and other death pathways, including programmed necrosis.
In addition, it becomes clear that the function of the mito-
chondrial pathway is context-dependent and cell death is not
necessarily always its “intended” biological outcome.
Therefore, it is important to decode the context-specific
regulatory mechanisms of the pathway, and to dissect the
function of the pathway in a spatial and temporal specific
manner in vivo. Further investigation is needed in order to
achieve a more complete understanding of the mechanisms
and biology of the mitochondria-mediated caspase activation
pathway, and for eventual therapeutic application targeting
this important pathway.

ABBREVIATIONS

Apaf-1, apoptotic protease activating factor-1; BIR, baculovirus IAP

repeats; CAS, cellular apoptosis susceptibility protein; FADD, FAS-

associated death domain protein; IAPs, inhibitors of apoptosis

proteins; MOMP, mitochondrial outer membrane permeabilization;

NAIP, neuronal apoptosis inhibitory protein; OMM, outer

mitochondrial membrane; RIP, receptor interacting protein; XIAP,

X-chromosome linked IAP.
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