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ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most fre-
quent human malignancies worldwide with very poor
prognosis. It is generally accepted that the progression
of HCC is a long-term process with accumulation of
multiple genetic and epigenetic alterations, which fur-
ther lead to the activation of critical oncogenes or
inactivation of tumor suppressor genes. HCC is char-
acterized with multiple cancer hallmarks including their
ability to proliferate, anti-apoptosis, invade, metastasis,
as well as the emerging features such as stem cell
properties and energy metabolic switch. The irreversible
alterations at genetic level could be detected as early as
in the pre-neoplastic stages and accumulate during
cancer progression. Thus, they might account for the
cancer initiating steps and further malignant transfor-
mation. In addition to genetic alterations, epigenetic
alterations can affect the cancer transcriptome more
extensively. Alterations in DNA methylation, histone
modification, miRNAs, RNA editing, and lncRNAs might
result in disrupted gene regulation networks and sub-
stantially contribute to HCC progression. In this review,
the genetic and epigenetic alterations which signifi-
cantly contribute to the malignant capabilities of HCC
will be updated and summarized in detail. Further char-
acterization of those critical molecular events might
better elucidate the pathogenesis of HCC and provide
novel therapeutic targets for treatment of this deadly
disease.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most frequent
human malignancies worldwide. It is the sixth most prevalent
cancer in the world and the third leading cause of cancer-
related mortality (Parkin et al., 2005). The prevalence of
HCC varies markedly in different regions. The highest inci-
dence of HCC was found in Asia-pacific area (>20/100,000),
while low incidence was found in Northern Europe and
Northern America (<5/100,000) (Venook et al., 2010). China
is a typical high-risk region which may account for more than
50% of HCC cases in the world (Yuen et al., 2009). The
uneven distribution of HCC incidence among different geo-
graphic regions suggests that multiple genetic and environ-
mental factors may interplay in the progression of this
disease. Almost 70%–90% of HCC patients accompany with
liver cirrhosis, which is believed to be the most important risk
factor for HCC (Fattovich et al., 1997). Thus, all levels of viral
infection, liver cytotoxicity, chronic inflammation which can
lead to liver cirrhosis are important risk factors in the
development of HCC (El-Serag and Rudolph, 2007).

It is widely accepted that carcinogenesis is a multi-step
process with accumulation of genetic alterations in critical
genes which regulate cell proliferation, growth, survival,
apoptosis, adhesion, and metabolism (Vogelstein and Kin-
zler, 1993). The stepwise accumulation of genetic alterations
in oncogenes and tumor suppressor genes will transform a
normal cell and finally leads to carcinogenesis (Farber,
1984). The pathogenesis of HCC is also believed to be a
long-term process which begins from the pre-malignant
stage to the dysplastic stage and finally proceeds to the
malignant stage (Thorgeirsson and Grisham, 2002). Better
understanding of the genetic and epigenetic changes and
their interactions at all the stages during HCC progression
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will greatly facilitate to elucidate the pathogenesis of HCC. In
this review, we summarize the current knowledge of genetic
and epigenetic alterations in the progression of HCC.

HALLMARKS OF HUMAN HEPATOCELLULAR
CARCINOMA

For decades, scientists are trying to unveil the underlied
molecular mechanisms of cancer initiation and progression.
However, the diverse characteristics and heterogeneity of
cancer usually make confusion. Now, it is widely accepted
that cancer evolves progressively from normal cells to
malignant stages. During the multistep process, cancer cells
acquired several hallmark capabilities which enable them to
become tumorigenic and show all kinds of malignant phe-
notypes (Hanahan and Weinberg, 2000, 2011). Like other
solid tumors, HCC is also characterized with those cancer
hallmarks such as sustained cell proliferation, evading
growth suppressors, resistant to cell death, invasion,
metastasis, angiogenesis, and deregulated energy metabo-
lism. The diverse malignant phenotypes of cancer cells
usually associate with several genetic or epigenetic altera-
tions of critical oncogenes or tumor suppressor genes. Thus,
linking the hallmarks of HCC with genetic or epigenetic
alterations will help to identify potential molecular mecha-
nisms and find out novel targets for HCC treatment. Multiple
cancer hallmarks and the underlying molecular alterations in
the progression of HCC are summarized in Fig. 1.

Sustained proliferation and replication

The growth and proliferation of normal cells are strictly reg-
ulated to maintain a homeostasis of cell number and tissue
architecture. However, in tumors, cell growth and prolifera-
tion are usually deregulated, and sustained cell proliferation
is one of the most common traits of cancer cells. Cancer
cells have several ways to obtain the ability to proliferate and
replicate rapidly. One mechanism is that they can autocrine
or paracrine growth factors which will further activate the
mitogenic signaling pathways (Lemmon and Schlessinger,
2010). In HCC, cell growth factors such as IGF, FGF were
reported to be overexpressed in a way of autocrine or par-
acrine and further promote cell growth and proliferation (Kim
et al., 1998; Yoshiji et al., 2002). Growth factor receptors are
usually overexpressed or mutated in tumor cells, which
results in persistent activation of downstream mitogenic
signals. In HCC, the overexpression of HGF receptor c-Met
can activate the downstream Ras/Raf/MEK signaling path-
way (Ueki et al., 1997). Overexpression of the Frizzled-7
receptor leads to the activation of Wnt/beta-caternin signal-
ing pathway in HCC (Merle et al., 2004). In addition to direct
overexpressing growth factors and receptors, cancer cells
can also activate the mitogenic pathways through affecting
the upstream and downstream signal transducers or dis-
ruption of the negative feed back loop. For example, the
oncogenic signal transducer BRAF is frequently mutated and
consistently activated in HCC (Colombino et al., 2012); loss
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Figure 1. Multiple cancer hallmarks and the underlying molecular alterations in the progression of HCC. The progression of

HCC is a multi-step process, which is characterized by several cancer hallmarks including sustained cell proliferation, evading growth

suppressors, resistant to cell death, invasion, metastasis, angiogenesis, and deregulated energy metabolism. Multiple cellular and

molecular alterations such as amplification or overexpression of oncogenes, hypermethylation or mutation of tumor suppressor

genes, activation of cancer stem cells, and infiltration of immune cells, contribute to the malignant transformation of HCC.
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of function mutation of PTEN, which is the negative feed
back regulator of PI3K/AKT pathway, was also frequently
observed in HCC patients (Yao et al., 1999).

Evading growth suppressors and resistant to cell death

In contrast to the proliferation stimulating signals, cells have
also developed a growth inhibition system, which acts as a
guardian of cell growth and proliferation. The guardian sys-
tem is composed of series of growth and proliferation
inhibitors, which are usually important tumor suppressor
genes. The well-known tumor suppressor TP53 is at the
center of the guardian system. Somatic mutation of TP53 is
one of the most frequent genetic alterations in human cancer
(Olivier et al., 2010). In HCC, TP53 was also found to be
frequently mutated, and the common risk factors such as
AFB1, HBV, and HCV are reported to cause TP53 mutation
(Hussain et al., 2007; Ozturk, 1991). In addition to mutation
of TP53 itself, the regulators of TP53 are usually found to be
altered in cancer, such as MDM2. MDM2 ubiquitinates TP53
and promotes the proteasome-mediated degradation of
TP53 (Kubbutat et al., 1997). Amplification and overex-
pression of MDM2 was frequently observed in HCC, and this
might also account for the deregulated TP53 signaling
pathway in HCC (Jablkowski et al., 2005). In addition to cell
growth inhibition, cells can undergo apoptosis upon receiv-
ing extrinsic or intrinsic signals (Hengartner, 2000). The
apoptotic signal is controlled by a group of counteracting pro-
and anti-apoptotic proteins. The pro-apoptotic proteins such
as Bax and Bak can enhance the permeability of mito-
chondria membranes and promote the release of cyto-
chrome c, which further activates the caspase cascade. The
anti-apoptotic proteins such as Bcl-2, Bcl-xl will counteract
the pro-apoptotic proteins (Adams and Cory, 2007). Other
regulatory proteins which interfere with the apoptotic sig-
naling cascade, such as survivin, are also important anti-
apoptotic components (Adams and Cory, 2007). The over-
expression of anti-apoptotic proteins such as Bcl-xl and
survivin are frequently observed in HCC patients (Shiraki
et al., 2000; Takehara et al., 2001).

Invasion, metastasis, and angiogenesis

Invasion and metastasis is one of the most common hall-
marks of cancer, especially those with high grade malig-
nancy. To gain invasive abilities, cancer cells usually
undergo morphological changes termed “Epithelial-to-
Mesechymal transition” (EMT). In epithelial tissues, cells are
usually attached to each other or to the extracellular matrix
(ECM) through adhesion molecules. However, in metastatic
tumors, the adhesion molecules such as E-cadherin are
usually down-regulated or mutated, and the loosened cell
contact enables tumor cells to invade out from the primary
niche (Cavallaro and Christofori, 2004). Conversely, adhe-
sion molecules associated with cell migration such as
N-cadherin, which are usually expressed in migrating cells,

will be up-regulated in the aggressive cancer cells. The
morphology of the cell will also change from the epithelial-
like phenotype to fibroblastic mesenchymal-like phenotype
(Voulgari and Pintzas, 2009). In HCC, altered expression of
E-cadherin was frequently observed and correlated with
clinical pathological features (Wei et al., 2002). Loss of
heterozygosity (LOH) and CpG island hypermethylation
have been proved to be the major mechanisms accounting
for E-cadherin inactivation in HCC (Kanai et al., 1997). To
date, several important transcriptional factors, such as Snail,
Slug, Twist, and Zeb1/2, have been proved to be the key
regulator of the EMT process. Overexpression of Snail and
Twist has been closely correlated with HCC metastasis
through inducing EMT (Lee et al., 2006; Sugimachi et al.,
2003). In order to migrate from the original tissue, cancer
cells need to degrade the barriers which hinder their move-
ment, such as extracellular matrix. Matrix metalloproteinases
(MMP) is a kind of secreted protease family, which can help
digest the ECM (Stamenkovic, 2000). MMPs are synthe-
sized in an inactive form, which could be activated after
removing the pro-peptide domain (Pei et al., 2000). Over-
expression and activation of MMPs are frequently observed
in cancer cells, especially those with high metastatic ability
(Rundhaug, 2003). Overexpression of MMPs, such as MMP-2
and MMP-9, are frequently observed in HCC patients and
has been associated with cancer invasive potential (Arii
et al., 1996; Giannelli et al., 2002).

Angiogenesis is another important feature of cancer.
When tumor mass grows, the tumor cells need blood vesi-
cles to provide enough nutrient and oxygen. Formation of
tumor vessels can accelerate the proliferation, growth, and
metastasis of cancer cells (Carmeliet and Jain, 2000). In the
process of angiogenesis, tumor cells will secret several
critical growth factors such as FGF, VEGF, which will activate
the proliferation of endothelial cells or fibroblasts (Yancopo-
ulos et al., 2000). VEGF has been proved to play a critical
role in tumor angiogenesis including HCC. Overexpression
of VEGF was correlated with HCC angiogenesis and vas-
cular formation (Mise et al., 1996). Monoclonal antibodies
targeting VEGF or small molecules inhibiting VEGF recep-
tors have already being used in HCC treatment (Finn and
Zhu, 2009). In addition to VEGF, other proangiogenic factors
including platelet-derived growth factor (PDGF), hepatoctye
growth factor (HGF), basic fibroblast growth factor (bFGF),
and angiopoietin-2 (Ang2) are also elevated in the HCC
plasma and make a substantial contribution to HCC angio-
genesis (Semela and Dufour, 2004; Zhu et al., 2011).

Tumor-promoting microenvironment

The initiation, growth, and metastasis of tumor not only
depend on the malignant characteristics of cancer cells
themselves, but also the tumor-promoting microenvironment
(Joyce, 2005). Tumor grows in a complicated microenviron-
ment, which is composed of stromal fibroblasts, endothelial
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cells, and infiltrating immune cells. These cells in the micro-
environment can either secret growth factors to support tumor
cell growth and angiogenesis, or produce pro-inflammatory
cytokines and chemokines, which favors malignant transfor-
mation (Whiteside, 2008). For HCC, the tumor microenviron-
ment might play a critical role in tumor initiation and
progression. Etiological studies indicated that HCC mainly
developed from liver cirrhosis, which is caused by chronic
hepatitis virus infection, fatty liver disease, and alcohol abuse.
The common trait during hepatocarcinogenesis is the sus-
tained liver damage and regeneration, which leads to an
inflammatory microenvironment in the liver. The inflammatory
microenvironment supports the recruitment and activation of
hepatic stellate cells andmacrophages, which further produce
components of the ECM, growth factors, and chemokines for
angiogenesis and fibrosis (Hernandez-Gea et al., 2013).

There are several kinds of cells closely associated with
HCC tumor microenvironment. Like other solid tumors, the
most common cells observed in the tumor microenvironment
are immune cells. In response to inflammatory signal,
immune cells including T cells, B cells, macrophages, and
dendritic cells will infiltrate into the tumor mass, and produce
several kinds of cytokines, which either inhibit or promote
tumor growth (Hernandez-Gea et al., 2013). The most
common tumor-infiltrating lymphocyte is CD4+ T helper cells.
The cytokines secreted by Th cells could further be divided
into two groups including Th1-like cytokines and Th2-like
cytokines. A unique signature of increased Th1 cytokines
(IL-1, IL-2, TNFα, etc.) but decreased Th2 cytokines (IL-4,
IL-8, IL-10, etc.) was frequently observed in HCC tumor
microenvironment and associated with poor prognosis of
HCC patients (Ye et al., 2003). Tumor associated macro-
phage (TAM) is another important subset of infiltrated
immune cells in the tumor microenvironment. High density of
infiltrated TAMs usually associated with poor prognosis of
HCC patients (Ding et al., 2009). TAMs can either secret
tumor-promoting growth factor, cytokines, chemokines, etc.
to facilitate tumor growth, or suppress the anti-tumor immu-
nity in HCC tissues. The macrophages can also be divided
into two subgroups like T helper cells. TAMs resemble the
M2 macrophages, which provide the formation of Th2 tumor
microenvironment (Bingle et al., 2002).

Cancer stem cell properties

According to the cancer stem cell (CSC) model, cancer
originates from a subset of stem like cells that have self-
renewal properties. Malignant cancer cells usually have
similar properties as embryonic cells characterized with
elevated stemness markers and maintained in a dediffer-
entiated status (Reya et al., 2001). Assessing the differen-
tiation level of tumor is often conducted in the clinic, and the
poorly-differentiated tumors are closely associated with
patient prognosis. The histologically poorly-differentiated
tumors usually show an embryonic-like gene expression

signature (Ben-Porath et al., 2008). In HCC, certain cell
populations have been identified as potential cancer stem
cells. The “Oval cells” which give rise to hepatoblast cells
and primitive bile duct cells during liver development are
considered to be origins of liver cancer stem cells. Oval cells
express cellular markers of both hepatocytes and bile duct,
and have the potential to differentiate into both lineages.
Therefore, oval cells are considered to be liver progenitor
cells, which might be initiating cells in hepatocarcinogenesis
(Mishra et al., 2009). A small group of cells known as “side
population” (SP), which are able to pump out nucleus dye via
ABCG2-transporters, are also considered to be potential
liver cancer stem cells. SP cells have enhanced self-renewal
ability in vitro and tumorigenic ability in vivo. Molecular
characterization of SP cells indicated that several oncogenic
signaling pathways associated with cancer self-renewal and
differentiation, are activated in SP cells (Marquardt et al.,
2011). In addition to oval cells and SP cells, several cell
surface markers have been identified as cancer stem cell
markers, including CD133, EpCam, CD90, CD24, etc. The
isolated cancer cells using those markers all shown strong
self-renewal properties and tumorigenic ability with only few
cells injected in xenograph mouse model (Lee et al., 2011;
Ma et al. 2007; Yamashita et al., 2009; Yang et al., 2008)

Several oncogenic signaling pathways have been proved
to play important roles in regulating cancer stemness and
differentiation. The well-known oncogene c-myc was repor-
ted to account for the embryonic stem cell like phenotype of
cancer cells (Kim et al., 2010). Inactivation of the myc net-
work can induce the differentiation of HCC cells (Shachaf
et al., 2004). Wnt/β-caternin is another important signaling
pathway in regulating cancer stemness and differentiation.
The secreted wnt will inhibit the cytoplasmic degradation of
β-caternin, which further activates the β-caternin/TCF tran-
scriptional machinery and promotes the transcription of
several stemness markers such as Epcam, Ck19, and
CD44, etc. (Fodde and Brabletz, 2007; Yamashita et al.,
2007). In addition, other critical signaling pathways involved
in regulating stem cell self-renewal and differentiation, such
as Oct4, Nanog, Sox2, and Notch/Hedgehog have been
reported to be important in maintaining the pluripotency of
liver cancer progenitor cells and are frequently activated in
HCC (Patil et al., 2006; Yuan et al., 2010).

Energy metabolism switch

Altered energy metabolism switch from oxidative phosphor-
ylation to glycolysis, known as Warburg effect, has been
widely accepted as an emerging hallmark of cancer. Early in
the 1930s, oncologists and scientists have noticed the
alteration of energy metabolism in malignant tumors. Gly-
colysis was preferentially used as the main program for
energy metabolism in tumor cells even in the presence of
oxygen (Cairns et al., 2011). In normal cells, ATP is mainly
generated from the tricarboxylic acid (TCA) cycle, followed
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by oxidative phosphorylation in the mitochondria. Oxidative
phosphorylation generates 36 molecules of ATP from one
molecule of glucose. In contrast, the glycolysis only gener-
ates two molecules of ATP from one molecule of glucose
(Kroemer and Pouyssegur, 2008). Although glycolysis is not
efficient in generating energy, it can provide a large amount
of nucleotides, fatty acids, membrane lipids to support the
synthesis of macromolecules, which are required for rapid
tumor growth. In compensation, cancer cells increased the
glucose intake by up-regulating glucose transporters and
enhancing the usage of glutamine. The Warburg-like meta-
bolic switch found to be present in many rapidly dividing
embryonic tissues further supported the hypothesis that
glycolysis could generate diverse intermediates for biosyn-
thetic programs that are important for active cell proliferation
(Hsu and Sabatini, 2008).

The reduced dependence of cancer cells on oxidative
phosphorylation is not only due to defects in the cellular
components of TCA cycle, but also strictly regulated by
series of oncogenes and tumor suppressor genes. Onco-
genic activation of c-myc, Ras, Akt, and HIF, or inactivation
of tumor suppressors such as TP53 can drive metabolism
changes in cancer cells (Levine and Puzio-Kuter, 2010). Like
other solid tumors, metabolic remodeling from mitochondrial
oxidation to aerobic glycolysis is common in human HCC
(Beyoglu et al., 2013). c-Myc was reported to induce mouse
liver tumors with elevated glucose and glutamine catabolism
(Yuneva et al., 2012). Hepatic mTORC2 can activate gly-
colysis and lipogenesis through phosphorylating AKT (Hag-
iwara et al., 2012). Multi-kinase inhibitor such as sorafenib,
which targets those oncogenic signaling pathways, was
reported to be able to reverse the metabolic reprogramming
in HCC (Fiume et al., 2011).

GENETIC ALTERATIONS IN HCC

Genetic alteration is one of the most important mechanisms
associated with HCC initiation and progression. Genetic
changes could be observed as early as in the pre-neoplastic
lesions of cirrhotic liver, and it is thought to be the initiating
events in hepatocarcinogenesis. The irreversible genetic
abnormalities accumulate in hepatocytes, which further
cause disrupted gene expression, and finally lead to malig-
nant transformation. Genetic alterations could be divided into
several types, including large chromosomal amplification,
translocation, deletion, small fraction loss, and single
nucleotide variation. The genetic changes at all levels usu-
ally result in the activation or loss-of-function of certain
important oncogenes or tumor suppressor genes, which
govern cell growth and proliferation.

Chromosomal instability

Chromosomal instability is the most common genetic chan-
ges in HCC. It could be induced by either error during mitosis

or disruption in DNA replication and repair. The chromosome
abnormalities could be observed as the gain and loss of
whole chromosome arms, or just amplification and deletion
of small chromosomal fragments. According to the compar-
ative genomic hybridization (CGH) data, chromosome 1q
and 8q are frequently amplified, while chromosome 1p, 4q,
6q, 9p, 16p, 16q, and 17p are frequently lost in HCC (Guan
et al., 2000). The observation of chromosomal alterations in
preneoplastic liver tissues indicated that chromosome
instability may occur in the early stage of HCC, and accu-
mulates during tumor progression (Kondo et al., 2000). Thus
chromosome instability may activate certain cancer driver
genes during hepatocarcinogenesis.

Amplification of chromosome 1q is one of the most fre-
quently observed chromosome abnormalities in HCC. The
minimal region of 1q21 was found to be amplified in more
than 50% of HCC patients. A well characterized oncogene
CHD1L is localized in that region (Ma et al., 2008). CHD1L
was found to have several oncogenic roles such as inhibiting
cell apoptosis, regulating cell mitosis, and promoting cell
epithelial-to-mesenchymal (EMT) transition during hepato-
carcinogenesis (Chan et al., 2012; Chen et al., 2010; Chen
et al., 2009a). In a transgenic mice model, CHD1L could
induce spontaneous liver tumors formation (Chen et al.,
2009b). In addition, CHD1L could regulate p53 stability,
potentially via interacting with SCYLIBP1, which modulates
the pirh2-mediated ubiquitin degradation of p53 (Hu et al.,
2012). Adenovirus-mediated silencing of CHD1L could inhi-
bit HCC tumorigenesis in xenograft mouse model further
suggested CHD1L as a potential therapeutic target in HCC
treatment (Chen et al., 2011). In addition to chromosome
1q21, a recent study indicated that a novel potential onco-
gene Maelstrom (MAEL) at 1q24, could induce EMT and
enhance stemness properties of HCC cells (Liu et al., 2013).
Chromosome 8q is another highly amplified chromosome
arm in HCC, especially at the 8q24 region (Wang et al.,
2002). Well-known oncogenes including c-Myc and PTK2
are located at this region, and have been characterized for
their oncogenic effects on HCC development (Okamoto
et al., 2003; Santoni-Rugiu et al., 1998). In addition to 8q24,
the chromosomal region proximal to the centromere is also
frequently amplified in HCC (Parada et al., 1998). A serine/
threonine kinase SGK3, which shares great similarity with
AKT, was found to be frequently amplified and confer AKT-
independent oncogenic roles in HCC (Liu et al., 2012).

Chromosomesegmental loss is also frequently observed in
HCC. The minimal region of 1p35-36 was found to be deleted
in more than 50% HCC patients. Several tumor suppressors
such as 14-3-3 σ and Rb-interacting zinc finger 1 (RIZ1) were
located in this region (Iwata et al., 2000). Loss of the short arm
of chromosome 8 has been recurrently observed in HCC. A
minimal region of 8p21-22was found to be frequently deleted in
HCC. Deleted in liver cancer 1 (DLC-1), which is a homolog of
the rat RhoGAP gene, is located in that region (Yuan et al.,
1998). DLC-1 is frequently deleted inHCC tissuesdue to allele

Genetic and epigenetic alterations in HCC REVIEW

© The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn 677

P
ro
te
in

&
C
e
ll



loss and promoter hypermethylation (Wong et al., 2003).
RestoreDLC-1 expression in hepatoma cells could induce cell
apoptosis, and inhibit tumor growth (Zhou et al., 2004).
Chromosome 16q is another region with frequent deletion in
HCC. Cell adhesion molecule E-cadeherin (CDH1), which
inhibits cell proliferation and metastasis, is located on 16q22
(Kanai et al., 1997). Another tumor suppressor gene Tyrosine
aminotransferase (TAT), which might contribute to the patho-
genesis of HCC, is also located on 16q22 (Fu et al., 2010).
Recently, a significant allele-specific imbalance was identified
in the 16q23 region in a cohort of HCCpatient due to LOH. The
affected gene Oxidative Stress-Induced Growth Inhibitor 1
(OSGIN1) can directly induce cell apoptosis in HCC cells and
contributes significantly to the progression of HCC (Liu et al.,
2014). The well-known tumor suppressor TP53 is mapped to
17p13.1, which is also a recurrently lost region in HCC. The
17p13 region was characterized with DNA hypermethylation,
and loss of 17p13.1 was closely associated with TP53 muta-
tion (Nishida et al., 1993). Summary of chromosome altera-
tions and candidate target genes reported inHCCwas listed in
Table 1.

Genomic mutations

In addition to large chromosomal alterations, genomic
mutation is another important genetic alteration which con-
tributes to tumor initiation and progression. Genomic muta-
tions could be divided into germline mutations and somatic
mutations. A germline mutation is usually inherited, and
exists in all cell types of a body. Germline mutations are rare,
and usually account for cancer risk in certain families. In
contrast, somatic mutations usually exist in tumor tissues or
preneuplastic tissues, and accumulate during cancer pro-
gression. Somatic mutations are more common, and might
account for malignant transformation of sporadic tumors.
Missense genomic mutations at the open reading frame can
either lead to loss-of-function of tumor suppressors or gain-
of-function of oncogenes. In addition, mutations at the non-
coding region of the genome can also affect cancer risk and
progression, for they may change the transcription, transla-
tion, or stability of the gene product.

With the development of the next-generation high
throughput deep sequencing technology, scientists now are

Table 1. Aberration of chromosome and candidate target genes reported in HCC.

Chromosome Type of aberration Frequent aberration region and candidate target
genes (Location)

References

1q Gain CKS1B (1q21.2), CHD1L (1q21.1), JTB (1q21),
MDM4 (1q32.1)

Chen et al., 2010; Kim et al., 2008

1p Loss p18 (1p32), 14-3-3σ (1p35), p73 (1p36.3), RIZ
(1p36.13-p36.23)

Nishimura et al., 2005; Iwata et al.,
2000; Fang et al., 2000

3q Gain Gankyrin (3q28) Higashitsuji et al., 2000

3p LOH, CpG
methylation

RASSF1A (3p21.3), CTNNB1 (3p21), TGF-1βR11
(3q22)

Zhang et al., 2002; Miyoshi et al.,
1998

4q LOH Zondervan et al., 2000

6p Gain Chochi et al., 2009

6q LOH M6P/IGF2R (6q26-q27) Oka et al., 2002

8q Gain c-Myc (8q24.21), PTK2 (8q24.3), EIF3S3 (8q23.3),
SGK3 (8q13.1)

Santoni-Rugiu et al., 1998; Okamoto
et al., 2003; Liu et al., 2012

8p LOH, CpG
methylation

DLC-1 (8p21.3-22), LPTS (8p23), CSMD1 (8p23.2) Yuan et al., 1998

9p LOH, CpG
methylation

CDKN2A (9p21), CDKN2B (9q21), Wang et al., 2000

10q LOH PTEN/MMAC1 (10q23.3) Fujiwara et al., 2000

11q Gain cyclinD1 (11q13) Nishida et al., 1994

11p LOH, CpG
methylation

KAI1 (11p11.2), IGF-2 (11p15), TSLC1 (11q23.2) Tsujiuchi et al., 2007

13q LOH Rb1 (13q14.2), BRCA2 (13q12.3), Tg737 (13q12.1),
TFDP1 (13q34), CUL4A (13q34), CDC1 (13q34)

Kuroki et al., 1995; Yasui et al., 2002

16q LOH, CpG
methylation

CDH1 (16q22.1) Wang et al., 2000

16p CpG methylation Axin1 (16p13.3), SOCS-1 (16p13.3) Li et al., 2013c; Ko et al., 2008

17p LOH p53 (17p13.1), HIC-1 (17p13.3), HCCS1 (17p13.3) Nishida et al., 1993; Kanai et al.,
1999; Zhao et al., 2001
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able to identify somatic mutation patterns in a certain tumor
tissue, like HCC. Recently, two groups have sequenced the
whole genome of several HCC tumor tissues and their paired
non-tumor tissues (Fujimoto et al., 2012; Guichard et al.,
2012). Recurrent somatic mutations were enriched in sev-
eral signaling pathways including wnt/β-catenin, p53/cell
cycle control, chromatin remodeling, PI3K/Ras signaling,
and oxidative and endoplasmic reticulum stress. The wnt
signaling pathway was found to be the most frequently
altered in HCC. Activating mutation in CTNNB1 was found in
32.8% of HCC patients. While the inactivating mutations of
AXIN1 and APC was found in 15.2% and 1.6% of HCC
patients, respectively. The second most altered pathway in
HCC is the p53 signaling pathway. Inactivation mutation of
p53 was present in 20.8% of HCC patients and mutation in
CDKN2A was identified in 8% of HCC patients. In addition to
other traditional signaling pathways, which are frequently
mutated in cancer, several recent studies reported that the
components of the chromosome remodeling complex are
frequently mutated in many cancer types including HCC. The
mutation of the SWI/SNF chromatin remodeling complex
component ARID1A was detected in more than 20% of HCC
patients. These indicated that the chromatin remodeling
complex might play important roles in cancer initiation and
progression.

Cancer susceptibility genes

It is widely accepted that genetic polymorphisms at cancer
susceptibility genes can affect the cancer risk of certain
population. Unlike genetic mutations, which directly cause
loss-of-function or gain-of-function of gene products, and
usually affect important oncogenes or tumor suppressor
genes involved in critical signaling pathways, nucleotide
changes in cancer susceptibility alleles might not directly
cause dramatic functional changes of a protein. Instead,
cancer susceptible genetic variations might slightly affect the
function of a protein, for example the efficiency of an
enzyme, thus confer an increased cancer risk for certain
population. A wide range of genes are associated with
cancer risk, including carcinogen metabolism genes, anti-
tumor immune response genes, and genes associated with
cellular response to stress (Antoniou et al., 2010).

Genome-wide association study (GWAS) is emerging as
a powerful tool to identify cancer susceptibility alleles in
tumorigenesis. GWAS examines common genetic variants in
different individuals and identifies variants associated with
certain disease. In contrast to mendelian linkage analysis,
which aims to identify highly penetrant tumorigenic muta-
tions, GWAS is powerful in identifying less penetrant tumor
susceptibility alleles, which are more common and might be
important in cancer initiation and progression. Several
GWASs have been performed to identify susceptibility
alleles associated with HCC. Intronic SNP (rs17401966) in
KIF1B on chromosome 1p36.22 has been linked to HBV-

associated HCC (Zhang et al., 2010). Chromosome loci
6p21.32 and 21q21.3 have also been associated with HCC
in chronic HBV carriers (Li et al., 2012). A recent study
indicated that genetic variations in STAT4 and HLA-DQ
genes may confer risk of HBV-related HCC (Jiang et al.,
2013). SNP (rs2596542) in the 5′ flanking region of MICA on
6p21.33 has been linked to HCV-associated HCC (Kumar
et al., 2011).

MicroRNAs (miRNAs)

MicroRNA,aclassof non-codingRNAs, hasbeen identifiedas
important regulators of gene expression at post transcriptional
levels. Emerging evidences indicated that miRNAs are asso-
ciated with the development and progression of HCC. In
recent years, intensive investigations have been conducted to
find out the abnormally expressed miRNAs and their roles in
HCC development and progression. Some miRNAs can reg-
ulate the proliferation pathways via modulating cyclins or
cyclin-dependent kinases, such as miR-122a and miR-221
(Gramantieri et al., 2007). Some miRNAs can help HCC cells
to escape from apoptosis by targeting pro-apoptotic protein.
For example, Bmf, a proapoptotic protein, is a target of miR-
221 (Gramantieri et al., 2009). On the contrary, other miRNAs
can promote HCC apoptosis. For example, the anti-apoptotic
proteins Bcl-2 and Mcl-1 are two direct targets of miR-29
(Xiong et al., 2010). As two of the most critical hallmarks of
HCC, invasion andmetastasis are also regulated bymiRNAs.
On the one hand, the pro-metastaticmiRNAs can promote cell
migration and spreading in HCC. For example, miR-106b can
promote HCC cell migration and invasion by activating epi-
thelial-mesenchymal transition (EMT) process (Yau et al.,
2013). On the other hand, several miRNAs such as let-7g,
miR-139, and miR-195 can suppress metastasis and pro-
gression of HCC (Ji et al., 2010; Wang et al., 2013b). Addi-
tionally, some miRNAs have been reported to enhance the
ability of self-renewal and tumorigenicity of HCC. MiR-130b
can regulate CD133(+) liver cancer stem cells via silencing
TP53INP1 (Ma et al., 2010). Inhibition of miR-181 can result in
a reduction in EpCAM(+) HCC cell quantity. Exogenous miR-
181 expression in HCC cells led to an enrichment of EpCAM
(+) HCC cells and promote tumor initiating ability (Ji et al.,
2009). Summary of the abnormally expressed miRNAs and
their functions are listed in Table 2.

RNA editing

The RNA transcripts are usually faithfully transcribed from
the genome without sequential changes after RNA pro-
cessing. However RNA editing is a molecular process which
could result in nucleotide changes at specific sites of the
RNA transcripts. Thus, RNA editing could add great diversity
to the posttranscriptional regulation of gene expression (Gott
and Emeson, 2000). RNA editing can modify the transcribed
RNA sequences via nucleotide insertion, deletion, and sub-
stitution. The most common type of RNA editing in human is
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Table 2. MiRNAs aberrantly expressed and validated target genes in hepatocellular carcinoma.

miRNA Expression Gene targets Function References

miR-
17-5p

Up p38, MAPK pathway, E2F-1, c-MYC Promote tumor growth and
metastasis.

Yang et al., 2010; El Tayebi
et al., 2013

miR-
18a

Up ERα Promote proliferation. Liu et al., 2009

miR-
18b

Up TNRC6B Promote cell proliferation and
loss of cell adhesion.

Murakami et al., 2013

miR-21 Up PTEN, RECK, PDCD4 Inhibit apoptosis, promote cell
migration and invasion.

Meng et al., 2007; Zhou
et al., 2013

miR-
106b

Up E2F1, RhoGTPases, RhoA, RhoC Promote cell migration and
stress fiber formation.

Yau et al., 2013

miR-
130b

Up TP53INP1 Promote CD133(+) liver
cancer stem cell growth and
self-renewal.

Ma et al., 2010

miR-
143

Up FNDC3B Promote tumor metastasis. Zhang et al., 2009

miR-
151

Up RhoGDIA, FAK, Stimulate tumor invasion and
metastasis.

Ding et al., 2010; Luedde,
2010

miR-
181b

Up TIMP3 Promote tumor metastasis. Wang et al., 2010a

miR-
181

Up CDX2, GATA6,NLK Promote EpCAM(+) liver
cancer stem cell growth
and self-renewal.

Ji et al., 2009

miR-
185

Up KCNN3 Association with HCC venous
metastasis.

Budhu et al., 2008

miR-
210

Up VMP1 Promote hypoxia-induced
HCC cell metastasis.

Ying et al., 2011

miR-
221/
222

Up CDKN1B/p27,CDKN1C/p57, DDIT4,
PTEN, Bmf, TIMP3, PPP2R2A

Inhibit apoptosis, promote
tumor growth and
metastasis.

Fornari et al., 2008;
Gramantieri et al., 2009

miR-
224

Up API-5, CDC42, CDH1, PAK2, BCL-2,
MAPK1, PPP2R1B.

Promote cell proliferation,
migration, invasion, and
inhibit cell apoptosis.

Wang et al., 2008; Zhang
et al., 2013

miR-1 Down FoxP1, MET, HDAC4. Inhibition of cell growth and
reduced replication potential.

Datta et al., 2008

let-7 Down c-Myc, p16, Bcl-xl, COLIA2. Inhibition of cell growth and
proliferation.

Wang et al., 2010b; Ji et al.,
2010

miR-
26a

Down Cyclin D2, Cyclin E2,Cyclin E1,
CDK6, IL-6

Inhibit tumor growth,
metastasis, and invasion.

Yang et al., 2013

miR-29 Down MEG3, Bcl-2, Mcl-1 Promotion of apoptosis and
inhibition of tumor growth

Xiong et al., 2010

miR-
34a

Down c-Met Inhibition of cell growth,
migration, and invasion.

Li et al., 2009

miR-
122

Down CyclinG1, ADAM10, SRF, IGF1R,
PTTG1, PBF,CUTL1, NDRG3,
MDR-1

Inhibit viral replication and cell
proliferation.

Song et al., 2012; Li et al.,
2013a; Xu et al., 2010;
Gramantieri et al., 2007

miR-
124

Down ROCK2, EZH2, PIK3CA Inhibit tumor growth, invasion,
and metastatic potential of
HCC.

Zheng et al., 2012; Lang and
Ling, 2012

miR-
126

Down ROCK2, c-Fos Inhibit cell invasion and
migration.

Wong et al., 2011
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the adenosine to inosine (A-to-I editing), which is mediated
by theadenosine deaminase acting on dsRNA (ADAR)
family of enzymes. The A-to-I editing can affect various types
of RNA molecules including mRNAs, microRNAs, viral
RNAs, etc. (Athanasiadis et al., 2004). RNA editing at the
coding regions of the transcripts may lead to non-synony-
mous amino acid changes in the gene products, which might
affect the biological functions of the proteins. Recent studies
have linked A-to-I RNA editing to hepatocarcinogenesis.
Through next-generation RNA sequencing technology, an
A-to-I editing event within the AZIN1 transcript was identified
in the tumor tissues from HCC patients. Hyper-editing of
AZIN1 transcripts in the tumor cells resulted in a recording of
AZIN1 protein from Serine to Glysine at coden 367. The
edited AZIN1 showed strong oncogenic phenotypes on HCC
cell lines and mouse models, compared with the wild type
form. The frequency of RNA editing in the tumor tissues also
significantly associated with the prognosis of HCC patients
(Chen et al., 2013). The disrupted RNA editing was found to
be mediated by differential expression of ADARs in HCC
(Chan et al., 2013). Further characterization of the RNA
editing events in HCC might help elucidate the pathogenesis
of this disease (Li et al., 2013b).

EPIGENETIC ALTERATIONS IN HCC

Genetic alterations are irreversible changes that affect the
DNA sequence of the genome. In contrast, epigenetic
regulations do not change the sequence of the genome
but affect the chromatin structure and gene transcription.
Epigenetic regulations affect gene products at multiple

levels, including both transcriptional level and post-tran-
scriptional regulation, which added great diversity to the
gene regulation network. DNA methylation, histone modi-
fication, and recently emerging lncRNA, are major forms of
epigenetic regulations. Alterations at cellular machineries
governing those processes are frequently observed in
cancer cells including HCC. The epigenetic alterations
usually result in the activation of oncogenes or inactivation
of tumor suppressor genes, which further contribute to
malignant cancer hallmarks. Increasing evidences sug-
gested that epigenetic alterations are evolving as an
important mechanism in cancer initiation and progression
(Momparler, 2003).

DNA methylation

In a normal cell, DNA methylation and demethylation is an
important mechanism in regulating gene expression and
chromatin structure. DNA methylase (DNMT) catalyze the
methylation of cytosine at CpG islands at the promoter
region of a gene. However, in tumor cells, the promoter
methylation pattern is usually changed. Aberrant DNA
methylation at the promoter region is an important mecha-
nism of tumor suppressor gene inactivation. The hyperme-
thylated CpG islands at the promoter region will prevent the
binding of RNA polymerase and transcriptional factors, thus
inhibit the transcription of the target genes. In addition, the
hypermethylated protein will recruit m5CpG-binding domain
(MBD) containing proteins, which will be an obstacle for the
binding of transcriptional factors to the promoters, thus inhibit
gene transcription (Hendrich and Bird, 1998).

Table 2 continued

miRNA Expression Gene targets Function References

miR-
145

Down OCT4, IRS1, IRS2, IGF signaling,
HDAC2.

Inhibit cell proliferation,
migration, and invasion.

Wang et al., 2013a; Law
et al., 2012; Noh et al.,
2013

miR-
148a

Down HPIP, AKT/ERK/FOXO4/ATF5
pathway

Inhibit tumorigenesis. Xu et al., 2013

miR-
195

Down cyclin D1, CDK6, E2F3, LATS2,
VEGF, VAV2, CDC42, IKKα and
TAB3, TNF-α/NF-κB pathway

Inhibit G1/S transition,
angiogenesis, and
metastasis, promote
apoptosis.

Xu et al., 2009; Wang et al.,
2013b; Ding et al., 2013

miR-
199a-
3p

Down mTOR, c-Met, CD44 Inhibit cell growth and
metastasis

Fornari et al., 2010; Henry
et al., 2010

miR-
214

Down XBP-1, HDGF, EZH2, CTNNB1,
β-catenin signaling pathway

Inhibit cell proliferation,
promote cell apoptosis, and
suppress tumor vascularity.

Shih et al., 2012; Xia et al.,
2012

miR-
223

Down stathmin1 Inhibit cell proliferation Wong et al., 2008

miR-
375

Down YAP, AEG-1, ATG7 Inhibit tumorigenesis Liu et al., 2010; He et al.,
2012; Chang et al., 2012
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In HCC, CpG island hypermethylation is frequently
observed at the promoter region of important tumor sup-
pressor genes. Suppressor of cytokine signaling (SOCS-1),
which regulates the JAK/STAT signaling pathway, was found
to be silenced in more than 60% of HCC patients due to
promoter hypermethylation (Yoshikawa et al., 2001). The
well-known tumor suppressor APC and E-cadeherin were
also hypermethylated in 53% and 49% of HCC patients,
respectively (Yang et al., 2003). Methylation profiling of multi-
step HCC tumors revealed that the number of genes meth-
ylated showed stepwise increase with the progression of
cancer stage. The observation of tumor suppressor gene
hypermethylation in the para-tumor liver tissues and cirrhotic
livers indicated that aberrant promoter methylation occurs in
the early stage of hepatocarcinogenesis and increased
progressively during cancer progression (Lee et al., 2003). In
addition, genome-wide DNA methylation analysis revealed
that epigenetic silencing of multiple tumor suppresors in
HCC could result in the activation of several oncogenic
signaling pathways including Ras, JAK/STAT, and Wnt/β-
catenin (Calvisi et al., 2007).

There are several proposed hypotheses for the aberrant
DNA methylation in cancer. One possible mechanism is the
aberrant expression of DNMT1. As part of the DNA replica-
tion complex, DNMT1 transfer the methyl to the DNA
immediately after DNA replication. In cancer cells, DNMT1 is
usually abnormally expressed, and this will commit methyl-
ation errors during DNA replication (Vertino et al., 2002).
Significant increase of DNMT1 was observed in HCC
patients (Saito et al., 2003). In addition to DNMT1, which
mainly accounts for the maintenance of methylation pattern
of the genome, other DNMT family members such as
DNMT3A and DNMT3B can directly add methyl groups to
unmethylated DNA. DNMT3A and DNMT3B are responsible
for novel methylation pattern formation in the genome (Ok-
ano et al., 1999). DNMT3A and DNMT3B were reported to
be associated with hypermethylation of several important
tumor suppressor genes, such as CDKN2A, CDKN2B,
CDH1, and Rb1 (Mizuno et al., 2001). The expression of
DNMT3A and DNMT3B are both significantly overexpressed
in HCC compared with the non-cancerous liver tissues (Oh
et al., 2007).

Histone modification and chromatin remodeling

Chromatin is the fundamental structure of the genome,
which is constituted by nucleosome particles. The chromatin
structure is important to gene transcription. In active tran-
scription sites, the chromatin will be loosened, so that the
DNA can be exposed to transcriptional factors for tran-
scription initiation. This open chromatin structure is termed
“euchromatin”. In contrary, some of the chromatin structure is
heavily condensed and the transcriptions of those genes
within those regions are inhibited. The condensed chromatin
structure is termed “heterochromatin”. Thus, chromatin

structure is of critical importance in regulating gene expres-
sion in a temporal and spatial dependent manner (Wang
et al., 2007a).

Histone modification is playing a central role in chromatin
structure regulation. Covalent modification of histones with
methylation or acetylation will result in the chromatin struc-
tural change and could be used as markers for chromatin
structure. There are two histone modification markers which
represent an active transcription. Trimethylation of H3 lysine
4 (H3K4Me3) is often observed at the promoter region of
actively transcribed genes. Trimethylation of H3 lysine 36
(H3K36Me3) is also closely associated with active tran-
scription. In contrary, trimethylation of H3 lysine 27
(H3K27Me3) and trimethylation of H3 lysine 9 (H3K9Me3)
are associated with repressed transcription (Kouzarides,
2007). It is recognized that histone modification is catalyzed
by several enzymes which modulate the histone markers.
The histone modifiers include histone methyltransferases
(HMT), histone acetylatransferase (HAT), and histone dea-
certylase (HDAC), etc. Abnormal expression of those his-
tone modifiers which further drives epigenetic alterations are
frequently observed in cancer cells. In HCC, overexpression
of EZH2, which is the histone methyltransferase for
H3K27Me3, has been proven to contribute to the malignant
transformation and poor prognosis of HCC (Chen et al.,
2007; Sudo et al., 2005). The P300/CBP-associated factor
(PCAF), which is a well-known HAT, was expressed at low
level in HCC, and has been proven to inhibit HCC tumori-
genesis both in vitro and in vivo (Zheng et al., 2013). HDAC
inhibitors have been suggested to specifically induce apop-
tosis in hepatoma cells but not in primary hepatocytes. And
these results greatly supported the potential application of
HDAC inhibitors in clinical treatment of HCC patients (Ar-
meanu et al., 2005; Pathil et al., 2006).

In addition to histone modifiers, the ATP-dependent
chromatin remodeling complex, which utilize ATP to mobilize
nucleosomes along DNA, are also closely involved in
tumorigenesis. The ATP-dependent chromatin remodeling
family could be further divided into four subfamilies including:
the SWI/SNF (Switching defective/, sucrose non-fermenting)
family, the ISWI family (imitation SWI), the NuRD/CHD
(Nucleosome remodeling and deacetylation/Chromodomain
helicase, DNA binding) family, and the INO80 (inositol
requiring 80) family (Wang et al., 2007). Whole-genome
sequencing has identified recurrent somatic mutations in
genes associated chromatin remodeling complex, including
ARID1A, ARID2, and SMARCA4 (Guichard et al., 2012; Li
et al., 2011). The frequently observed inactivating mutations
indicated the important roles of chromatin remodeling com-
plex in HCC development. The ATPase and putative DNA
helicase RuvB-like 2 (RUVBL2) was found to be overex-
pressed in HCC and has contributed to the malignant
transformation (Rousseau et al., 2007). Copy number loss or
down-regulation of SWI/SNF chromatin remodelling subunit-
BRG1 and BRM were also frequently observed in HCC
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patients (Endo et al., 2013). In addition, the CHD family
member Chromodomain helicase DNA binding 1 like
(CHD1L) has been proven to have diverse oncogenic roles
in hepatocarcinogenesis (Chen et al., 2010).

Long non-coding RNAs (lncRNAs)

A large number of non-protein coding transcripts exist in the
genome. In the past, those long non-coding RNAs were
considered as “rubbish” of the genome for their unknown
functions. Recently, emerging evidences suggested that
lncRNAs might play important roles in regulating gene
expression at post-transcriptional level. LncRNAs can reg-
ulate gene transcription either through directly binding to the
RNA polymerase II, or modifying the activity of the

transcriptional co-regulators (Mercer et al., 2009). In addition
to transcriptional regulation, lncRNAs can also control the
post-transcriptional mRNA processing such as mRNA
splicing and translation. Furthermore, lncRNAs were also
reported to be involved in regulating histone methylation and
chromatin remodeling, which are the most important epige-
netic regulatory machinery in regulating gene expression
(Guttman and Rinn 2012). Altered expression of lncRNAs
has been observed in tumors including HCC and they are
suggested to play critical roles during tumorigenesis. High
expression of lncRNA-HEIH is significantly associated with
HCC recurrence and poor prognosis. In vitro and in vivo
functional studies revealed that the overexpression of
lncRNA-HEIH can promote HCC tumorigenesis and might
function through EZH2 (Yang et al., 2011a). In addition,
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Figure 2. Genetic and epigenetic alterations in HCC. Genetic and epigenetic alterations interplay during cancer initiation and

progression. The alterations exist at multiple levels including large chromosomal gain or loss, single nucleotide variations or

mutations, overexpression or down-regulation of miRNAs and lncRNAs, disrupted RNA editing events, hyperactivation or inactivation

of chromatin remodeling components, and aberrant DNA methylation at the promoter region of critical tumor suppressor genes et al.
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overexpression of Long Non-coding RNA HOTAIR and
MALAT-1 could help predict tumor recurrence and prognosis
of HCC patients (Lai et al., 2012; Yang et al., 2011b). All
these evidences indicated that lncRNAs might be important
in HCC initiation and progression.

SUMMARY AND PERSPECTIVES

Like other solid tumors, HCC is characterized with multiple
hallmarks including sustained proliferation, evading growth
suppressive signals, metastasis to other organs, promoting
angiogenesis, tumor-promoting microenvironment, cancer
stem cell properties, and energy metabolism switch, etc.
Genetic and epigenetic alterations interplay during cancer
initiation and progression. The genomic changes vary from
large chromosomal gain or loss to single nucleotide varia-
tions or mutations. Genetic alterations are irreversible alter-
ations, which could be observed as early as in the pre-
neoplastic stages. The early onset of genetic alterations
indicated that they might be the tumor initiating steps in the
development of cancer. Chromosome instability is the most
common type of genetic alteration. Chromosome 1q and 8q
are frequently amplified, while chromosome 1p, 4q, 6q, 9p,
16p, 16q, and 17p are frequently lost in HCC. Those hot
regions usually harbor important oncogenes or tumor sup-
pressor genes, which might significantly contribute to he-
patocarcinogenesis. In addition to large chromosomal
segmental changes, single nucleotide changes in the gen-
ome also make a substantial contribution to cancer pro-
gression. Nucleotide changes known as mutations or
variations can lead to either gain-of-function or loss-of-
function of oncogenes and tumor suppressor genes. Non-
coding nucleotide changes can also affect gene transcrip-
tion, and post-transcriptional regulations of critical tumor
related genes, which may directly trigger oncogenesis or
enhance cancer risk. Epigenetic alteration is another
important mechanism for oncogenesis. Epigenetic regulation
includes a wide range of regulations at transcriptional or
post-transcriptional levels, such as DNA methylation, histone
modification, chromatin remodeling, and lncRNAs. Altera-
tions at the epigenetic regulation machinery may lead to
disrupted gene expression, which can also cause the acti-
vation of oncogenes or inactivation of tumor suppressor
genes. The genetic and epigenetic alterations in HCC are
summarized in Fig. 2. Small molecules or monoclonal anti-
bodies, which specifically target the altered onco-proteins,
have already been proven to be efficient in treating several
types of cancer. For example, imatinib, which specifically
target the BCR-ABL fusion kinase, is used in treating chronic
myeloid leukemia; transtuzumab, a monoclonal antibody
targeting the amplified tyrosine kinase receptor HER2, is
used to treat advanced-stage breast cancer. However, the
targeted therapies which are effective in treating HCC are
still limited. Better understanding and characterization of
novel genetic and epigenetic alterations, which are important

to hepatocarcinogenesis, may help understand the molecu-
lar pathogenesis of HCC, as well as providing novel thera-
peutic targets for HCC treatment.
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