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ABSTRACT

The insulin receptor (IR) is an important hub in insulin
signaling and its activation is tightly regulated. Upon
insulin stimulation, IR is activated through autophos-
phorylation, and consequently phosphorylates several
insulin receptor substrate (IRS) proteins, including IRS1-
6, Shc and Gab1. Certain adipokines have also been
found to activate IR. On the contrary, PTP, Grb and SOCS
proteins, which are responsible for the negative regu-
lation of IR, are characterized as IR inhibitors. Addi-
tionally, many other proteins have been identified as IR
substrates and participate in the insulin signaling path-
way. To provide a more comprehensive understanding
of the signals mediated through IR, we reviewed the
upstream and downstream signal molecules of IR,
summarized the positive and negative modulators of IR,
and discussed the IR substrates and interacting adaptor
proteins. We propose that the molecular events associ-
ated with IR should be integrated to obtain a better
understanding of the insulin signaling pathway and
diabetes.
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INTRODUCTION

Input and output are two basic concepts in the field of cellular
signal transduction (Waltermann and Klipp, 2011). In gen-
eral, the inputs of a signal transduction pathway are the
upstream stimulation and inhibition signals, whereas the
outputs are the downstream effects, such as the activation of
substrates and interactions with other proteins. The classical
insulin signaling pathway is initiated by the binding of insulin
to the insulin receptor (IR) and the subsequent activation of
insulin receptor substrate (IRS) proteins (Taniguchi et al.,
2006). For the hub protein IR, the input is insulin, and the

output is the phosphorylation of IRS proteins. However, the
scenario is not as simple as this one-way signal transduction
model. Recent progress in IR signaling indicated that insulin
is not the only ligand for IR, and the phosphorylation of IRS
proteins represents just one component of IR output. To
provide a more complete understanding of the signals
mediated through IR, we reviewed the inputs and outputs of
IR in this study. We will first provide a brief description of the
classical stimulus and substrates of IR and then mainly focus
on the factors that positively and negatively regulate IR and
the various IR substrates and interacting proteins.

CLASSICAL INPUTS AND OUTPUTS OF IR

The binding of insulin to the α subunits of IR heterotetramer is
the main input into the insulin signaling pathway. The IR then
undergoes a conformational change in its intracellular β
subunits that exposes its ATP-binding domain, which enables
ATP binding and autophosphorylation. The output of IR
activation is the phosphorylation of a group of IRS proteins
(White and Kahn, 1994). IRS1 is the principal IRS protein and
is phosphorylated at multiple tyrosine sites upon insulin
stimulation (Sun et al., 1993). The tyrosine-phosphorylated
IRS1 sites function by docking with SH2 domain-containing
proteins and mediating signal transduction to various down-
stream factors. IRS2 is an alternative IR substrate that was
discovered in IRS1-deficient mice (Patti et al., 1995). IRS1
and IRS2 are not functionally redundant, although they both
activate many similar downstream pathways (Waters and
Pessin, 1996; Hanke and Mann, 2009). IRS3 was first cloned
in rat adipocytes and then in mouse. However, this homolog
does not appear to exist in human cells (Lavan et al., 1997b;
Sciacchitano and Taylor, 1997). IRS4 is the dominant IRS in
HEK293 cells (Lavan et al., 1997a). Although IRS1 and IRS2
are present in the HEK293 cell line, they are not activated
upon insulin stimulation (Fantin et al., 1998). These results
indicate that the output of IR is tissue-specific. IRS5 and
IRS6, also known as DOK4 and DOK5, are readily phos-
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phorylated in CHO-IR cells (Cai et al., 2003). IR-phosphory-
lated IRS5 binds to a number of SH2 domain-containing
proteins, that are distinct from those associated with IRS1.
However, IR-phosphorylated IRS6 does not bind to any SH2
domain-containing proteins, which indicates that it may
mediate a different branch of the insulin signaling pathway
(Cai et al., 2003). Shc interacts with and is phosphorylated by
IR. Phosphorylated Shc can dock with Grb2 and mediate
signal transduction through the Ras-MAPK signaling path-
way (Sasaoka and Kobayashi, 2000). Gab1 is another IRS
protein that is mainly involved in the PI3K-Akt pathway (Lehr
et al., 2000). The p85α subunit of PI3K can be directly
phosphorylated by IR after its docking to IRS1/2 (Hayashi
et al., 1993; Van Horn et al., 1994). Although the classical IR
inputs and outputs are simple and clear, they are only part of
the story (Fig. 1A).

In addition to the classical IRS proteins, many other pro-
teins have been shown to associate with IR and to play a
role in the insulin signaling pathway (Fig. 1B), which could be
classified into four different types: (1) Positive modulators of
IR (e.g., glypican-4 stimulates insulin function by binding to
IR); (2) Negative modulators of IR [e.g., protein tyrosine
phosphatases (PTPs), protein kinase C (PKC) isoforms,
growth factor receptor-bound (Grb) and suppressors of
cytokine signaling (SOCS) proteins]; (3) Alternative IR sub-
strates involved in various biological processes; and (4)
proteins that interact with IR, but are not its substrates. The
following section will focus on these four types of proteins in
an attempt to provide a complete description of the inputs
and outputs of IR. The related proteins and references are
summarized in Table 1.

POSITIVE MODULATORS OF IR

Insulin, IGF1 and IGF2 are traditional IR ligands. Some
adipokines have also been found to interact with the IR α
subunits and to enhance insulin sensitivity. Glypican-4,
which is released from adipose tissue into the circulation, is
a potential IR ligand. It binds to IR at regions different from
that of insulin (Ussar et al., 2012). The depletion of glypican-
4 reduces insulin signaling, whereas the overexpression of
wild-type glypican-4 enhances the insulin-mediated phos-
phorylation of ERK and AKT (Ussar et al., 2012), indicating
its potential role as a target for the treatment of insulin
resistance (Mitchell, 2012). Visfatin is related to the insulin
signaling pathway, but its role in the stimulation of IR remains
controversial (Adeghate, 2008).

NEGATIVE MODULATORS OF IR

The activity of IR is negatively regulated by several mecha-
nisms. PTPs can dephosphorylate IR at autophosphorylated
tyrosines and thus inactivate IR. Members of the PKC family
phosphorylate serinesnear autophosphorylated tyrosine sites
to disrupt the docking of SH2 domain-containing proteins.
Proteins in the Grb and SCOS families bind directly to IR and
block its interactionwith downstream factors. In addition, other
proteins, such as NEPP1 and AHSG, inhibit IR by interacting
with its extracellular domain. This indicates that a variety of
negative modulators of IR cooperate to inactivate IR. We here
summarized the important negative modulators of IR.

PTPs (PTP1B, PTP1C, TCPTP and PTPRF)

PTPs are encoded by approximately 100 genes in humans
(Alonso et al., 2004; Tonks, 2006). Classical PTPs dephos-
phorylate tyrosine phosphorylation to attenuate the function
of many receptor tyrosine kinases (Andersen et al., 2001;
Andersen et al., 2004). At least three PTPs proteins have
been found to be involved in the negative regulation of IR by
dephosphorylation. PTP1B is the best-known and most-
studied PTP and regulates IR activity via dephosphorylation.
It can be recruited to multiply tyrosine phosphorylation sites
on the IR through its SH2 domain upon insulin stimulation
and IR autophosphorylation (Seely et al., 1996). The tyro-
sines of PTP1B are then phosphorylated by IR, and this step
greatly increases its dephosphorylation activity (Dadke et al.,
2001). Phosphorylated PTP1B can dephosphorylate IR and
inhibit its kinase activity (Salmeen et al., 2000). This typical
negative feedback is widely present in biological processes.
In addition, phosphorylated PTP1B can dephosphorylate
itself to balance its catalytic activity. PTP1B has been rec-
ognized as a potential target for the enhancement of insulin
sensitization through a series of functional studies (Delibe-
govic et al., 2007; Picardi et al., 2008; Delibegovic et al.,
2009; Ma et al., 2011). Similar to PTP1B, TCPTP uses
autophosphorylated IR as a direct substrate both in vivo and

Figure 1. The diagram illustrating the inputs and outputs of

insulin receptor. (A) Classical IR inputs and outputs. (B) Sum-

mary of proteins associating with IR which include positive

modulator (purple), negative modulator (red), alternative sub-

strates (green) and interactors (blue). Arrow: stimulation; Line:

interaction; Arrow with flathead: inhibition.

REVIEW Yipeng Du and Taotao Wei

204 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



in vitro (Lammers et al., 1993; Galic et al., 2003). Although
both PTP1B and TCPTP inhibit the activity of IR by
dephosphorylation, the catalytic tyrosine sites might be

different. PTP1B prefers to tandem phosphorylate tyrosine,
whereas TCPTP mainly catalyzes a single phosphorylated
tyrosine (Galic et al., 2005). PTPRF, which is a

Table 1. Proteins associated with the inputs and outputs of insulin receptor

Protein Function References

Positive modulators

Glypican-4 Binds IR α subunits. Facilitates insulin-induced formational change of IR Ussar et al. 2012

Negative modulators

PTP1B Major PTP involved in insulin signaling. Dephosphorylates IR tyrosine Salmeen et al. 2000

TCPTP Cooperates with PTP1B. Dephosphorylate IR tyrosine Galic et al. 2003

PTPRF Dephosphorylates IR tyrosine Hashimoto et al. 1992

PKCδ Predominant in muscle. Phosphorylates IR serine Braiman et al. 2001

PKCε Predominant in liver. Phosphorylates IR serine Samuel et al. 2007

Grb7 Binds IR in vitro and in vivo Kasus-Jacobi et al. 2000

Grb10 Binds IR. Blocks IRS1/2 Wick et al. 2003

Grb14 Binds IR. Blocks PTP1B Nouaille et al. 2006

SOCS1 Binds IR. Interrupts IRS2 Ueki et al. 2004

SOCS3 Binds IR. Interrupts IRS1/2, STAT5B Emanuelli et al. 2000

SOCS6 Binds IR. Interrupts IRS1 Mooney et al. 2001

ENPP1 Binds IR α subunits. Inhibits insulin-induced conformational change of IR Maddux and Goldfine, 2000

AHSG Binds IR β subunits extracellular region Mathews et al. 2000

Alternative substrates

ADRB2 Transmembrane protein. Phosphorylated by IR in vitro and in vivo Baltensperger et al. 1996

Calmodulin Calcium-dependent protein. Phosphorylated by IR in vitro and in vivo Sacks et al. 1992

CEACAM1 Transmembrane protein. Phosphorylated by IR in vitro and in vivo Poy et al. 2002a

Dok1 GAP-associated protein. Phosphorylated by IR in vitro and in vivo Wick et al. 2001

FABP4 Fatty acid-binding protein. Phosphorylated by IR in vitro Buelt et al. 1991

FAK1 Integrin signaling pathway. Phosphorylated by IR in vitro Baron et al. 1998

FRS2 FGFR substrate. Phosphorylated by IR in vitro Delahaye et al. 2000

PTP1C Protein tyrosine phosphatase. Phosphorylated by IR in vitro and in vivo Uchida et al. 1994

SH2B1 Interacts with IR and phosphorylated upon insulin stimulation in vivo Kotani et al. 1998

SH2B2 Interacts with IR and phosphorylated upon insulin stimulation in vivo Moodie et al. 1999

STAT5B Transcriptional factor. Phosphorylated by IR in vitro and in vivo Chen et al. 1997

SYNCRIP RNA-binding protein. Phosphorylated by IR in vitro Hresko and Mueckler, 2002

Sam68 RNA-binding protein. Phosphorylated by IR in vitro and in vivo Sanchez-Margalet and Najib, 1999

Vav3 Interacts with and phosphorylated by IR activation in vivo Zeng et al. 2000

Proteins interacting with IR, but are not its substrates (Interactors)

ARF Interacts with activated IR. PLD regulation Shome et al. 1997

hMAD2 Interacts with inactivated IR O’Neill et al. 1997

JAK1 Interacts with activated IR. Enhances IRS1 activation Gual et al. 1998

PLCγ1 Interacts with activated IR. Enhances MAPK activation Kwon et al. 2003

PTP1D Interacts with activated IR. Enhances IRS1 activation Kharitonenkov et al. 1995

RACK1 Interacts with activated IR. Facilitates STAT3 activation Zhang et al. 2006

SORBS1 Interacts with inactivated IR Lin et al. 2001
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transmembrane PTP, also interacts with and dephosphoryl-
ates IR in vitro and in vivo (Hashimoto et al., 1992; Ahmad
and Goldstein, 1997). It can be deduced that PTP1B,
TCPTP and PTPRF crosstalk with each other to negatively
regulate IR. In summary, three PTPs can act as negative
inputs to IR via tyrosine dephosphorylation under conditions
of insulin stimulation.

PKCs (PKCδ and PKCε)

The PKC family consists of three distinct groups, namely, the
classical, novel and atypical groups. In contrast to PTPs,
which dephosphorylate proteins, PKCs function by phos-
phorylating serines or threonines. Several members in the
PKC family have been shown to be involved in negatively
regulating IR activity. In vitro-purified PKC can also phos-
phorylate IR and lower its tyrosine kinase activity (Bollag
et al., 1986). In vivo studies using insulin-resistant human
skeletal muscle suggest that PKCδ is recruited to IR and
reduces its activity via serine phosphorylation (Itani et al.,
2000; Braiman et al., 2001; Rosenzweig et al., 2004). In
insulin-resistant liver, PKCε is the predominant activated
PKC. PKCε inhibits insulin signaling by binding to IR and
reducing its tyrosine kinase activity in hepatic steatosis
(Samuel et al., 2007; Jornayvaz et al., 2011; Jornayvaz and
Shulman, 2012). These studies indicate that PKC isoforms
regulate IR activity in a tissue-specific manner. In addition,
PKC can inhibit the insulin signaling pathway by phosphor-
ylating other proteins in the insulin signaling pathway. For
example, PKCθ prefers IRS1 for phosphorylation (Griffin
et al., 1999; Yu et al., 2002; Li et al., 2004). In summary, at
least two PKCs act as negative inputs to IR via serine
phosphorylation.

Grb proteins (Grb10, Grb14 and Grb7)

Unlike PTPs and PKC, which inhibit IR by covalently mod-
ification, Grb proteins reduce the activity of IR through direct
interaction. The autophosphorylated tyrosine sites on IR not
only dock IRS but also SH2 domain-containing proteins,
which are not phosphorylated or activated by IR. These
types of proteins compete with IRS for IR binding and then
serve to inhibit IR activity. Grb10 was first found to be a high
affinity interacting protein with IR in vitro (Liu and Roth,
1995). Further studies demonstrated that the Grb10 SH-2
domain and IR carboxyl catalytic active loop are required for
this interaction (Hansen et al., 1996). Grb10 binds to the
same domain as IRS1 on IR. This binding blocks the IR-
mediated phosphorylation of IRS1 and disrupts the IRS1-
PI3K signaling pathway (Wick et al., 2003). The biological
role of Grb10 in promoting insulin signaling has been proven
using a mouse model (Smith et al., 2007; Wang et al., 2007).
Similar to Grb10, Grb14 binds to IR and blocks its auto-
phosphorylation in a site-specific manner (Nouaille et al.,
2006). The phenotypes of mice deficient in Grb14 and Grb10
differ, which indicates the non-redundant functions of these

two proteins (Holt and Siddle, 2005). Grb7 is an additional
Grb protein that participates in IR regulation. It binds to
activated IR both in vitro and in vivo and may function in the
same manner as Grb14 and Grb10 (Kasus-Jacobi et al.,
2000). In summary, three Grb proteins can inhibit IR activity
by directly blocking downstream signaling.

SOCS proteins (SOCS1, SOCS3 and SOCS6)

Initially identified as cytokine signaling inhibitors, SOCS pro-
teins participate in various signal transduction pathways,
including the insulin signaling pathway. Similar to Grb proteins,
SOCS proteins directly interact with IR and block downstream
signal transduction. For example, SOCS3 attenuates the IR-
STAT5Bsignal branchbycompetingwithSTAT5B for binding to
IR at phosphorylated tyrosine 960 (Emanuelli et al., 2000).
SOCS3 also interrupts the IRS1 and IRS2 signal branch with
the same mechanism (Ueki et al., 2004). Moreover, SOCS3
overexpression in cultured cells inhibits IR autophosphoryla-
tion. This mechanism is most likely mediated by crosstalk
between IRregulators (Sennetal., 2003). Inaddition,SOCS3 is
induced by STAT5B upon insulin stimulation (Emanuelli et al.,
2000; Sadowski et al., 2001). This constitutes another negative
feedback loop in the insulin signaling pathway. SOCS1binds to
IR on sites different from that of SOCS3, although they are both
IR inhibitors (Mooney et al., 2001; Le et al., 2002; Ueki et al.,
2004). SOCS6binds toboth IRand IRS4,which indicates that it
inhibits the insulin signaling pathway by targeting multiple
proteins (Mooney et al., 2001; Krebs et al., 2002). SOCS pro-
teins can be induced by inflammation, which partially explains
the role of inflammation in insulin resistance (Tanti et al., 2012;
Suchy et al., 2013). We concluded that at least three SOCS
proteins provide negative inputs to IR.

ENPP1

ENPP1 (ectonucleotide pyrophosphatase/phosphodiester-
ase family member 1) is a transmembrane protein with
alkaline phosphodiesterase and nucleotide pyrophospha-
tase activity. However, its inhibition of IR autophosphoryla-
tion is independent of its enzymatic activity (Grupe et al.,
1995). In contrast to Grb and SOCS proteins, which inhibit IR
activity by interacting with its β subunits, ENPP1 directly
binds to the IR α subunits (Maddux and Goldfine, 2000).
ENPP1 does not appear to affect insulin binding, but inhibits
the insulin-induced conformational change of the IR α sub-
units (Maddux and Goldfine, 2000). The ENPP1 K173Q
polymorphism (previously described as K121Q) has been
associated with insulin resistance (Costanzo et al., 2001;
McAteer et al., 2008; Moore et al., 2009) because the K173Q
polymorphism tightly binds to IR and effectively inhibits IR.
There are seven members in the ENPP family (Masse et al.,
2010). Given the similarity between ENPP1 and the other
ENPPs, particularly ENPP2 (Kato et al., 2012), it is possible
that these other ENPPs may participate in the insulin sig-
naling pathway. Furthermore, the up-regulation of ENPP2
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has been associated with insulin resistance in a diabetic
mouse model (Boucher et al., 2005). Thus, it can be con-
cluded that ENPP1 inhibits IR by blocking the conformational
change of IR upon insulin binding.

AHSG

AHSG (alpha-2-Heremans-Schmid glycoprotein) inhibits the
autophosphorylation of IR by interacting with the extracellular
region of its β subunits (Auberger et al., 1989; Srinivas et al.,
1993; Mathews et al., 2000). The mechanism of this inhibition
may be similar to that of ENPP1. AHSG is secreted by the liver
and is released into the circulation. The blood levels of AHSG
have been correlated with insulin resistance (Kalabay et al.,
2002; Goustin and Abou-Samra, 2011). Thus, it is becoming
clear that AHSG is another negative input of IR.

ALTERNATIVE SUBSTRATES OF IR

IR substrates are not restricted to the classical ones men-
tioned above. A variety of proteins have been found to be
phosphorylated by activated IR. We categorized these pro-
teins into different IR outputs and review their roles in the
insulin signaling pathway in this section.

ADRB2

ADRB2 (beta-2-adrenergic receptor) is a member of the
G-protein coupled receptor superfamily and can be phos-
phorylated by IR both in vivo and in vitro (Baltensperger
et al., 1996). The phosphorylated tyrosine site on ADRB2
can recruit Grb2 and other proteins to promote the internal-
ization of ADRB2 (Karoor et al., 1998). This indicates that the
insulin signaling pathway may crosstalk with the GPCR
(G-protein coupled receptor) signaling pathway.

Calmodulin

Calmodulin is a multifunctional calcium-dependent messen-
ger protein that can be phosphorylated by different types of
kinases, including IR (Laurino et al., 1988; Sacks and
McDonald, 1988;Wong et al., 1988; Sacks et al., 1989; Sacks
and McDonald, 1989; Sacks et al., 1992). The phosphoryla-
tion of calmodulin hasaneffect on its intrinsic enzymeproperty
and on its downstream interacting proteins (Benaim and Vil-
lalobo, 2002). IR phosphorylates calmodulin at two major
tyrosine sites, which attenuates its biological activity (Saville
and Houslay, 1994; Williams et al., 1994; Sacks et al., 1995;
Joyal et al., 1996). However, the precise role of this phos-
phorylation related to insulin signaling is unclear. Calmodulin
may serve as a node for the crosstalk between the insulin
signaling pathway and other signaling pathways.

CEACAM1

CEACAM1 (carcinoembryonic antigen-related cell adhesion
molecule 1) is another transmembrane substrate of IR. IR

phosphorylates CEACAM1 on its intracellular domain to
initiate IR internalization (Formisano et al., 1995). CEA-
CAM1-mediated IR internalization and degradation is
important for insulin clearance in the liver (Poy et al., 2002b).
The tyrosine-phosphorylated sites on CEACAM1 also com-
pete with IR for Shc binding, thus attenuating IR signaling
transduction to the MARK pathway (Poy et al., 2002a).

Dok1

Dok1 (docking protein 1) is phosphorylated by IR at specific
tyrosine sites. Phosphorylated Dok1 enhances its binding to
GAP, which is an inhibitor of RAS (Wick et al., 2001). Thus,
RAS is dually regulated by the insulin signaling pathway: it is
activated by Grb2-SOS and inactivated by Dok1-GAP. Dok2
and Dok3 do not appear to be related to the insulin signaling
pathway, but these proteins interact with GAP and may play
an important role in other pathways (Di Cristofano et al.,
1998; Lemay et al., 2000).

FABP4

FABP4 (fatty acid-binding protein 4) is mainly expressed in
adipocytes, which can be phosphorylated by the purified IR β
subunits in vitro (Buelt et al., 1991). In addition, results
obtained from FABP4-deficient mice indicate that this protein
may serve as a bridge linking obesity to insulin resistance
(Hotamisligil et al., 1996). However, it remains unclear
whether FABP4 is a substrate of IR in vivo and whether it
participates in the insulin signaling pathway.

FAK1

FAK1 (focal adhesion kinase 1) is a cytosolic tyrosine kinase
involved in integrin signaling. IR promotes FAK1 phosphor-
ylation in suspended cells (Baron et al., 1998). In contrast, IR
stimulates the dephosphorylation of FAK1 in attached cells
(Pillay et al., 1995). The biological role of IR-phosphorylated
FAK1 remains to be elucidated. The dual role of IR in FAK1
regulation may be related to the integrin-mediated signaling
pathway.

FRS2

FRS2 (fibroblast growth factor receptor substrate 2) was
originally found to be an adapter protein that links activated
FGR receptors to the downstream signaling pathway (Xu
et al., 1998). It has also been revealed to be a direct sub-
strate of IR in vitro and becomes tyrosine phosphorylated
upon insulin stimulation in vivo (Delahaye et al., 2000).

PTP1C

PTP1C is able to bind to autophosphorylated IR and is
phosphorylated by activated IR on its tyrosine residues
(Uchida et al., 1994). In addition, the phosphatase activity of
phosphorylated PTP1C increases. However, there is no
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evidence demonstrating that it can directly dephosphorylate
IR, although PTP1C-deficient mice exhibit increased glucose
tolerance and insulin sensitivity (Dubois et al., 2006).

SH2B1/2

SH2B1 and 2 are SH2 domain-containing proteins that can
be tyrosine phosphorylated upon insulin stimulation
(Yokouchi et al., 1997; Kotani et al., 1998; Wang and Riedel,
1998; Moodie et al., 1999). The insulin-induced phosphory-
lation of SH2B1/2 is potentially mediated by IR. Similar to
Grb2 and Shc, phosphorylated SH2B1 and 2 may serve as a
docking site for downstream factors. For example, phos-
phorylated SH2B2 can dock c-Cbl to IR and promote IR
ubiquitination and internalization (Ahmed et al., 2000). In
addition, SH2B 1 and 2 serve as an adaptor and substrates
for other tyrosine kinase receptors, such as receptors of
PDGF (platelet-derived growth factor), NGF (nerve growth
factor), and FGF (fibroblast growth factor) (Rui and Carter-
Su, 1998; Kong et al., 2002; Wang et al., 2004).

STAT5B

STAT5B (signal transducer and activator of transcription 5B)
has been demonstrated to be a direct substrate for IR both
in vitro and in vivo (Chen et al., 1997; Sawka-Verhelle et al.,
1997; Storz et al., 1999; Sawka-Verhelle et al., 2000).
Phosphorylated STAT5B acts as a transcription factor and
activates a series of target genes, including glucokinase and
SOCS proteins (Sawka-Verhelle et al., 2000; Sadowski
et al., 2001). Insulin-induced gene expression events may be
partially mediated by STAT5B.

SYNCRIP and Sam68

IR substrates are not restricted to cytoplasmic enzymes and
transcriptional factors. IR also phosphorylates RNA-binding
proteins. For instance, the RNA-binding protein SYNCRIP
(synaptotagmin-binding cytoplasmic RNA-interacting protein)
is phosphorylated by IR in vitro (Hresko and Mueckler, 2000,
2002). Moreover, this phosphorylation can be disrupted by
RNA binding. The RNA-binding protein Sam68, which can be
induced by insulin, is phosphorylated by IR both in vitro and
in vivo (Sanchez-Margalet and Najib, 1999; Sanchez-Marga-
let et al., 2003). Tyrosine-phosphorylated Sam68 (the 68 kDa
Src substrate associated during mitosis) can dock with p85
PI3K and GAP proteins (Sanchez-Margalet and Najib, 2001).
TheRNA-binding activity of Sam68 is also affected by tyrosine
phosphorylation (Wang et al., 1995), indicating a role of the
insulin signaling pathway in RNA metabolism.

Vav3

Vav3 is a member of the guanine nucleotide exchange factor
family, which activates multiple pathways. Vav3 interacts
with and is phosphorylated by IR when overexpressed in
293T cells (Zeng et al., 2000). IR-phosphorylated Vav3

promotes Rac-1 activation and actin cytoskeletal rear-
rangement and modulates the formation of cell membrane
ruffles (Zeng et al., 2000).

PROTEINS INTERACT WITH IR BUT ARE NOT ITS
SUBSTRATES

IR does not always provide an output signal via catalysis.
Under certain conditions, signals from IR are transmitted by
changes in its interaction status with its binding partners. For
example, inactivated IR interacts with hMAD2 (human
homolog of yeast MAD2) with high affinity. This interaction
decreases upon IR activation (O’Neill et al., 1997). Similarly,
SORBS1 (sorbin and SH3 domain-containing 1) dissociates
from IR and binds to c-Abl upon insulin stimulation (Lin et al.,
2001). Although the biological function of these types of
proteins in the insulin signaling pathway remains unclear,
they enable signal transduction through IR.

In cells overexpressing IR, JAK1 (Janus kinase1) has been
observed to interact with IR (Gual et al., 1998). In addition, the
phosphorylation of both proteins is necessary for their inter-
action. The binding of JAK1 to IR may facilitate its catalytic
activity to IRS1. RACK1 (receptor for activated C kinase 1)
interacts with both IR and STAT3 in vitro. In addition, RACK1
mediates IR-induced STAT3 activation in vivo (Zhang et al.,
2006). These results indicate that IR transmits signals to
STAT3 via RACK1. ARF (ADP-ribosylation factor) has been
coimmunoprecipitated with activated IR and serves as an
adaptor to IR-mediated PLD regulation (Shome et al., 1997).
In addition, PTP1D (protein tyrosine phosphatase 1D), which
is a member of the PTP family, can bind to both IR and IRS1
and enhance the docking of IRS1 to IR (Kharitonenkov et al.,
1995). PLCγ1 (phospholipase C gamma 1) can interact with
activated IR in a SH2 domain-independent manner, which
may be mediated by conformational changes of IR (Kwon
et al., 2003). The binding to PLCγ1 leads to phosphorylation,
which plays a role in signal transduction to MAPK. Thus, the
IR-mediated signals can be transmitted by interacting proteins
independent of its catalytic activity.

CONCLUSIONS

After four decades of extensive investigation, a growing body
of knowledge on IR has been accumulated. In this review,
we summarized the signals input to or output from IR (Fig. 1).
Although each signal branch through IR is clear and
understandable, the integration of all of the signal branches
to obtain a full understanding of insulin signaling remains
challenging. To fully understand the IR signaling cascades, it
is not sufficient to study IR-interacting proteins or signal
branches one-by-one; all related proteins and pathways
must be integrated. The typical cellular response to insulin
stimulation is the phosphorylation of classical IRS and IRS-
mediated macromolecular complex docking. However, we
should consider other independently reported docking
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proteins, such as Dok1, SH2B1 and SH2B2 to the macro-
molecular docking process. In parallel with the docking event
is the direct activation of a group of proteins, including cal-
modulin, STAT5B and SYNCRIP. We should also integrate
the negative regulation mechanisms with the activation
event triggered by IR. The represented members of negative
regulators are PTPs, PKCs, Grb and SOCS proteins. In
addition, insulin may be dissociated or internalized and
degraded via a CEACAM-mediated mechanism. And there
should be other IR related proteins and events which remain
to be elucidated. Only if the input and output signals are
integrated into one story, we may eventually obtain a full
understanding of IR signaling.
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