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Mammalian target of rapamycin (mTOR) plays essen-
tial roles in cell proliferation, survival and metabolism
by forming at least two functional distinct multi-protein
complexes, mTORC1 and mTORC2. External growth
signals can be received and interpreted by mTORC2
and further transduced to mTORC1. On the other hand,
mTORC1 can sense inner-cellular physiological cues
such as amino acids and energy states and can indi-
rectly suppress mTORC2 activity in part through
phosphorylation of its upstream adaptors, IRS-1 or
Grb10, under insulin or IGF-1 stimulation conditions.
To date, upstream signaling pathways governing
mTORC1 activation have been studied extensively,
while the mechanisms modulating mTORC2 activity
remain largely elusive. We recently reported that Sin1,
an essential mTORC2 subunit, was phosphorylated by
either Akt or S6K in a cellular context-dependent
manner. More importantly, phosphorylation of Sin1 at
T86 and T398 led to a dissociation of Sin1 from the
functional mTORC2 holo-enzyme, resulting in reduced
Akt activity and sensitizing cells to various apoptotic
challenges. Notably, an ovarian cancer patient-derived
Sin1-R81T mutation abolished Sin1-T86 phosphoryla-
tion by disrupting the canonical S6K-phoshorylation
motif, thereby bypassing Sin1-phosphorylation-medi-
ated suppression of mTORC2 and leading to sustained
Akt signaling to promote tumorigenesis. Our work
therefore provided physiological and pathological evi-
dence to reveal the biological significance of Sin1
phosphorylation-mediated suppression of the mTOR/
Akt oncogenic signaling, and further suggested that
misregulation of this process might contribute to Akt
hyper-activation that is frequently observed in human
cancers.

mTORC1 AND mTORC2 ARE FUNCTIONALLY
DISTINCT mTOR-CONTAINING PROTEIN KINASE
COMPLEXES

Mammalian target of rapamycin (mTOR) is a highly con-
served protein kinase (van Dam et al., 2011) belonging to the
phosphatidylinositol-3-kinase-related protein kinase (PIKK)
super-family. Biologically, mTOR is a master regulator of
cellular homeostasis, cell growth and proliferation as well as
metabolism in a broad range of physiological (Wullschleger
et al., 2006; Zoncu et al., 2011b) and pathological settings,
including diabetes and cancer (Guertin and Sabatini, 2007;
Inoki et al., 2005). In doing so, mTOR serves as a central
sensor for cellular physiological cues such as growth signals
and nutrients, by functioning as an essential catalytic subunit
in two functionally distinct complexes, mTOR complex 1
(mTORC1) (Kim et al., 2002) and mTOR complex 2
(mTORC2) (See (Sabatini, 2006) and (Wullschleger et al.,
2006) for review). These two complexes are distinguished by
their accessory protein composition, localization and func-
tion. Specifically, both mTORC1 and mTORC2 share the
common components mTOR and GβL/mLST8, while the
unique subunit Raptor defines mTORC1 (Kim et al., 2002)
whereas Rictor (Sarbassov et al., 2004) and Sin1 (Frias
et al., 2006; Guertin et al., 2006; Jacinto et al., 2006;
Wullschleger et al., 2005; Yang et al., 2006) define
mTORC2. mTORC1 was reported to localize on the outer
membrane of lysosome, which is critical for its activation and
physiological function (Bar-Peled and Sabatini, 2012; Tho-
reen et al., 2012), while mTORC2 association with ribo-
somes was recently demonstrated to be critical for mTORC2
activity (Zinzalla et al., 2011).

In echoing their unique subcellular localizations,
mTORC1 and mTORC2 display distinct cellular functions
by targeting different sets of downstream effectors for
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phosphorylation and function. Notably, mTORC1 promotes
cap-dependent mRNA translation (Thoreen et al., 2012) and
protein synthesis through direct phosphorylation and acti-
vation of its bona fide substrates S6K1, 4EBP1 and TFEB1
(Ma and Blenis, 2009; Pena-Llopis et al., 2011), inhibits
autophagy through phosphorylation of Ulk1 (Chan, 2009)
and establishes Treg-cell function by facilitating cholesterol
and lipid metabolism through yet undefined phosphorylation
targets (Zeng et al., 2013). On the other hand, mTORC2 was
firstly identified to regulate cellular skeletal organization
(Jacinto et al., 2004) and later shown to be indispensible in
governing cell growth, proliferation, survival and anabolism,
which are mainly through direct phosphorylation and acti-
vation of its physiological downstream targets including Akt
(S473) (Sarbassov et al., 2005), SGK (S422) (Garcia-Mar-
tinez and Alessi, 2008) and PKCα (Ikenoue et al.,
2008). Moreover, as mTOR serves as an oncogenic pathway
to promote cellular growth and survival, deregulation of
many components of the mTOR pathway has been impli-
cated in human cancer and metabolic diseases (Weber and
Gutmann, 2012; Zoncu et al., 2011b).

mTORC1 AND mTORC2 ARE DIFFERENTIALLY
REGULATED IN CELLS

Previous work clearly established that both activation of
mTORC1 and mTORC2 are tightly, yet differentially con-
trolled (Laplante and Sabatini, 2012; Weber and Gutmann,
2012). Mechanistically, when stimulated by extra-cellular
growth signals, mTORC2 receives activation signals from the
Ras/PI3K signaling pathway through undefinedmechanisms,
and activates mTORC1 by Akt-dependent phosphorylation of
TSC2 (Inoki et al., 2002; Manning et al., 2002) or PRAS40
(Vander Haar et al., 2007), releasing their repression on
mTORC1. In addition, mTORC1 can also sense cellular
energy states and amino acid levels independent of
mTORC2. Specifically, when cellular AMP levels are high,
which indicates low energy status in cells, the LKB1/AMPK
(AMP-activated serine/threonine protein kinase) pathway
becomes activated, leading to inhibition of mTORC1 (Shaw,
2009), either by phosphorylation of TSC2(Inoki et al., 2003)
or by phosphorylation of the essential mTORC1 component
Raptor (Gwinn et al., 2008). Furthermore, mTORC1, but not
mTORC2, serves as an inner cellular amino acid sensor
(Efeyan et al., 2012) dependent on its recruitment to lyso-
some surface by Rag (Sancak et al., 2010; Sancak et al.,
2008), Ragulator (Bar-Peled et al., 2012) and the lysosome
vacuolar H+-ATPase (Zoncu et al., 2011a) through an inside-
out mechanism to control the timely activation of mTORC1.

The differential regulatory mechanisms of these two
mTOR-containing complexes extend further to their altered
responses to rapamycin. mTORC1 is sensitive to low-dose
rapamycin treatment in both cell culture and mouse models,
where rapamycin directly binds to FKBP12 and disrupts the

interaction betweenRaptor andmTOR, suppressingmTORC1
assembly and activation (Oshiro et al., 2004; Yip et al., 2010).
On the other hand, mTORC2 only responds to prolonged and
chronic rapamycin treatment, in part because rapamycin
cannot directly interfere with existing mTORC2 complex, but
rather only blocks the assembly of mTORC2 from newly syn-
thesized Rictor and mTOR (Sarbassov et al., 2006).

More importantly, mTORC1 could also be activated
independent of mTORC2. Mice with deleted S6K1 display
elevated resistance to high-fat diet and weight gain, in part
due to deficiency in adipocytes generation (Carnevalli et al.,
2010). Adipose specific Raptor knockout mice phenocopied
the S6K1 knockout mice with regard to adipocyte generation
(Polak et al., 2008), highlighting the critical role of mTORC1
in adipogenesis in vivo. However, Rictor knockout mice
showed no defects in adipogenesis (Kumar et al., 2010),
although an mTORC2 substrate, BTSA (a BSD domain-
containing protein) has been characterized to be indispen-
sible for adipogenesis (Kumar et al., 2010). Taken together,
mTORC1 and mTORC2 could function synergistically or
independently to maintain cell physiology.

mTORC1 NEGATIVELY REGULATES mTORC2
ACTIVATION THROUGH INDIRECT MECHANISMS
MEDIATED BY PHOSPHORYLATION OF IRS-1
AND GRB10

mTORC1 has also been shown to indirectly suppress
mTORC2 signaling that in TSC2-/- cells with elevated
mTORC1/S6K activity, Akt activation was significantly
reduced (Manning et al., 2005). Further studies revealed that
elevated mTORC1/S6K could suppress the activation of the
PI3K pathway through multiple negative feedback loops
(Gual et al., 2005). Specifically, mTORC1 and S6K can
phosphorylate IRS-1 to block its interaction with the p85
regulatory subunit of PI3K to negatively regulate the insulin-
signaling pathway (Gual et al., 2005). More recently, both the
Blennis (Yu et al., 2011) and Sabatini (Hsu et al., 2011)
groups independently showed that Grb10 is phosphorylated
and stabilized by mTORC1 to block the PI3K signaling.
However, in response to certain stimuli such as PDGF and
EGF, activation of mTORC2/Akt was not affected by deple-
tion of Grb10, suggesting the presence of an additional
mechanism for mTORC1 to suppress mTORC2. As genetic
disruption of either Rictor or Sin1 results in the inactivation of
mTORC2 (Guertin et al., 2006; Jacinto et al., 2006), we
reasoned that mTORC1/S6K-dependent regulation of
mTORC2 might occur through these unique mTORC2
components in a direct manner. However, we and others
previously showed that AGC kinases-mediated phosphory-
lation of Rictor at T1135 does not significantly affect
mTORC2 complex integrity and its kinase activity (Dibble
et al., 2009; Gao et al., 2010), which urged us to further
examine whether the other mTORC2 essential component,
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Sin1, is a major target to mediate mTORC1/S6K’s negative
regulation of mTORC2.

mTORC1 NEGATIVELY REGULATES mTORC2
ACTIVATION THROUGH DIRECT MECHANISMS
MEDIATED BY PHOSPHORYLATION OF SIN1

To test if modulation of Sin1 is important for mTORC2 activity,
we and others tested if Sin1 could be targeted for phosphor-
ylation by Akt or S6K at either T86 and T398, or both sites, in
adipocytes (Humphrey et al., 2013) or epithelial cells (Liu et al.,
2013), respectively. Importantly, we found that phosphoryla-
tion of Sin1 on both the T86 and T398 sites led to a disasso-
ciation of Sin1 from other mTORC2 components, revealing a
direct negative regulatory mechanism for mTORC2 governed
by mTORC1 (Liu et al., 2013). Mechanistically, we observed

that Sin1 utilized various domains to interact with mTORC2
components (Fig. 1), with its N-terminus binding to Rictor and
GβL, RBD (Ras binding domain) binding to GβL, and the PH
domain interacting with GβL and mTOR-KD (kinase domain).
Interestingly, only the N and PH domains were capable of
interacting with S6K1 (Fig. 1). Considering that the identified
T86 and T398 phosphorylation sites are located in the N- and
PH domains, respectively, it is therefore plausible that S6K
could directly phosphorylate these two sites to influence
mTORC2 integrity. In keeping with this notion, phosphoryla-
tion at T86 interfered with Sin1-N-terminus binding to Rictor,
while phosphorylation at T398 impaired Sin1-PH domain
interaction with the mTOR kinase domain. Importantly, Sin1
dissociation from the mTORC2 complex requires both
phosphorylation events (Fig. 2). In addition, we demonstrated
that Sin1 phosphorylation at both sites occurred in response to
various external cellular stimuli including insulin, IGF1, PDGF
and EGF, which significantly blocked the activation of Akt
induced by these stimuli, proposing a novel negative
feedback loop independent of IRS-1 and Grb10 to suppress
mTORC2.

Physiologically, we demonstrated that Sin1 phosphoryla-
tion-mediated mTORC2 suppression on Akt led to increased
levels of cleaved caspase 3 and subsequently sensitized
cells to apoptosis-initiating agents such as etoposide or
cisplatin. More importantly, we found that in freshly isolated
splenic B cells, rapamycin treatment significantly reduced
Sin1-T86 phosphorylation accompanied by an increase in
Akt-S473 phosphorylation. A similar inverse correlation
between phosphorylation of Sin1-T86 and Akt-S473 was
also observed in mouse liver lysates, and rapamycin
administration to whole mice led to reduced Sin1-pT86
concomitant with increased Akt-pS473 signals, further con-
firming the physiological significance of mTORC1-mediated
negative regulation on mTORC2 function.

Pathologically, we screened a panel of human ovarian
patient clinical samples by IHC and an inverse correlation
between Sin1-pT86 and Akt-pS473 was observed in a certain
number of cases. However, due to the limited number of
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Figure 1. mTORC2 components and S6K interact with different domains of Sin1.
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patient samples available, the inverse correlation did not
reach statistical significance, which warrants further larger-
scale examinations. This inverse correlation was also
observed in a panel of T-ALL cancer cell lines. Interestingly,
twoSin1mutations (R81TandS84L)were identified in ovarian
cancer patients. Using biochemical assays we demonstrated
that both of these mutations led to significantly reduced Sin1
phosphorylation at the T86 site, as these mutations impair the
canonical AGC kinase consensus recognition motif
“RxRxxpS/pT” (Alessi et al., 1996; Manning and Cantley,
2007). As phosphorylation at both T86 and T398 is necessary
to dissociate Sin1 from the functional mTORC2 complex,
substitutions at R81Tor S84L diminished the possibility of co-
occurrence of pT86 and pT398, resulting in stabilized
mTORC2 integrity and function (Fig. 3). Consistent with this
notion, compared to Sin1-WT, relatively sustained Akt phos-
phorylation was observed in Sin1-R81T expressing cells. At
the cellular levels, expressing Sin1-R81T, opposing to the
phospho-mimetic Sin1-T86E/T398E mutant, led to compara-
ble levels of cleaved caspase 3 to cells expressing Sin1-WT
upon etoposide or cisplatin challenge, subsequently confer-
ring cellular resistance to these agents. More importantly,
compared to Sin1-WT, Sin1-R81T expressing cells gained
oncogenic ability to promote ovarian cancer cell growth in soft
agar as well as in a xenograft mouse model. Together, these
data consistently support a model that Sin1 phosphorylation

plays critical roles in inhibitingmTORC2 oncogenic function in
both physiological and pathological settings.

IMPLICATIONS OF mTORC1-MEDIATED
SUPPRESSION OF mTORC2

Compared to the extensively studied regulations of the
mTORC1 complex, the upstream regulatory signaling path-
ways governing mTORC2 activity remained largely to be
determined. So far, the only defined upstream regulation of
mTORC2 is the requirement for ribosome association for its
activation, where the mechanisms remain largely uncharac-
terized (Zinzalla et al., 2011). As S6K and 4EBP-1, two
characterized mTORC1 substrates, are indispensible for
translation of capped mRNAs by ribosome, there might be
some yet-to-be identified positive regulatory events governed
by S6K or 4EBP-1, which are vital for mTORC2 activation on
ribosome. Furthermore, given that both mTORC1 and
mTOCR2 contain mTOR, it is not surprising that many layers
of crosstalks might exist between these two complexes.

Recent studies have begun to reveal a complicated cross-
communication between these two mTOR-containing com-
plexes while the exact molecular mechanism(s) remain largely
elusive. In this effort, we have defined a novel and independent
negative feedback loop through which either S6K1 or Akt
directly phosphorylates Sin1 to repress mTORC2 activation in
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to facilitate tumorigenesis.
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epithelial cells or adipocytes, respectively, providing a possible
molecular mechanism for mTORC1 to balance the extra- and
intra- cellular signals. Moreover, systematic analyses of many
signaling pathways revealed a general oscillation pattern of
activation/inactivation signaling dynamics (Purvis et al., 2012;
Purvis and Lahav, 2012, 2013). This also applied to mTORC2-
mediated growth factor signaling pathways, as suggested by
the periodic Akt activation pattern upon stimulation by insulin or
growth factors (Purvis andLahav, 2013). To this end,mTORC1-
mediated inhibition of mTORC2 through Sin1 phosphorylation
might be one of such mechanisms, in addition to de-phos-
phorylation of Akt and multiple other negative feedback
mechanism, to ensure that mTORC2 is only activated in a
“pulse” manner (Chen et al., 2012). Therefore, between these
two mTOR-containing complexes, it is plausible that mTORC1
exhibits constant basal activity whereas themTORC2 complex
is only transiently activated following external stimuli. This may
partially explain the fact that hyper-activation of the critical sig-
naling pathways including mTORC2/Akt is a hallmark for
majority of human cancers (Testa and Tsichlis, 2005).

Finally, the identification of this mTORC1/S6K feedback
suppression of mTORC2 expanded the critical role of
mTORC1 in regulating and coordinating various growth factor
signaling pathways. Compared to the previously identified
negative feedback regulatory loops via IRS-1 (Harrington
et al., 2004;ShahandHunter, 2006) orGrb10 (Hsuet al., 2011;
Yu et al., 2011), which nicely explained the IGF-1 and insulin
but not the PDGF or EGF signaling regulatory pathways, the
mTORC1/S6K1-mediated phosphorylation of Sin1 could
function to balance themTORC2/Akt activation in response to
a wider range of growth stimuli beyond insulin and IGF-1,
including but not limited to PDGF and EGF. Moreover, by tar-
geting themTORC2-specific component Sin1, instead of IRS-
1 or Grb10 that are upstream of both mTORC1 andmTORC2,
for phosphorylation and inhibition refines the suppression
effects mainly on mTORC2, suggesting that this newly iden-
tified mechanism might be a specific mTORC2-targeted
negative regulation. Taken together, our study unravels a
novel IRS-1/Grb10-independent feedback mechanism of the
tightly regulated PI3K/mTORC2/Akt pathway. More signifi-
cantly, an ovarian cancer patient-derived R81T mutation of
Sin1 was demonstrated to gain oncogenic capacity by
bypassing this negative regulation due to the lack of Sin1-T86
phosphorylation, providing a molecular mechanism for the
elevated mTORC2/Akt activation that could potently promote
tumorigenesis at least in this cancer patient. In summary, our
work points to the prospect of targeting Sin1 phosphorylation
signaling as an effective therapeutic strategy in treating
human disorders such as diabetes and cancer.
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