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ABSTRACT

The somatic epigenome can be reprogrammed to a pluri-
potent state by a combination of transcription factors. 
Altering cell fate involves transcription factors coopera-
tion, epigenetic reconfi guration, such as DNA methylation 
and histone modification, posttranscriptional regulation 
by microRNAs, and so on. Nevertheless, such reprogram-
ming is inefficient. Evidence suggests that during the 
early stage of reprogramming, the process is stochastic, 
but by the late stage, it is deterministic. In addition to con-
ventional reprogramming methods, dozens of small mol-
ecules have been identifi ed that can functionally replace 
reprogramming factors and signifi cantly improve induced 
pluripotent stem cell (iPSC) reprogramming. Indeed, iPS 
cells have been created recently using chemical com-
pounds only. iPSCs are thought to display subtle genetic 
and epigenetic variability; this variability is not random, 
but occurs at hotspots across the genome. Here we dis-
cuss the progress and current perspectives in the fi eld. 
Research into the reprogramming process today will pave 
the way for great advances in regenerative medicine in the 
future.

KEYWORDS     epigenetic reprogramming, induced pluripo-
tent stem cells, embryonic stem cells, disease modeling

INTRODUCTION
In the development of multicellular organisms, a single fer-
tilized cell gives rise to different types of cells with distinct 
functions. The classic view of cell fate specifi cation is that the 
undifferentiated, totipotent or pluripotent state is at the top of 
the multiple types of differentiated somatic states. Conrad Hal 
Waddington was the fi rst to describe lineage specifi cation in 

terms of an epigenetic landscape (Waddington, 1957; Gold-
berg et al., 2007). Metaphorically, a progenitor cell undergoing 
terminal differentiation is like a marble rolling down a land-
scape: the marbles will slide downhill, compete for grooves, 
and eventually come to rest at the lowest points. These lowest 
points represent the different cell fates. Since marbles tend not 
to roll back, when cells become more committed during normal 
development, the cell differentiation potential becomes more 
restricted. Because Waddington’s model fi ts well in almost all 
cases, lineage commitment and differentiation has long been 
considered unidirectional and irreversible. 

However, Gurdon showed that the somatic epigenome can 
be reprogrammed to pluripotency via nuclear reprogramming 
(Gurdon et al., 1958). Nuclear reprogramming in mammalian 
cells was fi rst achieved by somatic cell nuclear transfer (SCNT), 
which established that a nucleus from an adult somatic cell 
can be reprogrammed by an unfertilized enucleated oocyte 
(Wilmut et al., 1997). The SCNT experiment was the fi rst evi-
dence that pluripotency can be restored from terminally differ-
entiated cells, and showed that the developmental process is 
reversible.  Subsequently, another form of reprogramming, cell 
fusion, in which adult somatic cells are fused with embryonic 
stem (ES) cells or embryonic germ (EG) cells, was used to 
reset the somatic epigenome to a pluripotent state (Tada et al., 
1997, 2001; Cowan et al., 2005). These experiments raise an 
unanswered and interesting question: which gene product(s) in 
an enucleated oocyte, ES cells or EG cells are the critical fac-
tors in reprogramming.

By screening 24 pluripotency factors, in 2006, Takahashi and 
Yamanaka showed that only four factors, Oct4(O), Sox2(S), 
Klf4(K), and c-Myc(M), when used in combination via retrovirus 
delivery, can convert somatic fi broblasts to embryonic-like stem 
cells, or induced pluripotent stem cells (iPSCs) (Fig. 1) (Taka-
hashi and Yamanaka, 2006). Thereafter, forced expression of 
different combinations of genes was shown to successfully re-
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sites, alter the corresponding gene expression, and change 
cell fate. Direct evidence for this is that partially reprogrammed 
cells, which represent an intermediate reprogramming stage, 
have failed to activate some pluripotency regulators. In these 
cells, OCT4, SOX2, and KLF4 primarily targeting is impaired, 
and genes that are specifi cally co-bound by O, S, K lack bind-
ing and are transcriptionally silenced (Sridharan et al., 2009).  
Nevertheless, the mechanism would seem to be more com-
plicated, as reprogramming efficiency increases significantly 
when cells are infected with highly expressed OSKM (Polo et 
al., 2012). Higher expression of transcription factor is known 
to increase the strength of nonspecifi c or low-affi nity binding. 
This phenotype suggests the possibility that low-affinity or 
random binding sites by OSKM may also play an important 
role. In tumor cells, elevated c-Myc is found to bind low-affi nity 
E-box-like sequences, which in turn leads to increased levels 
of transcription (Lin et al., 2012). Similarly, one could predict 
that OSKM may also have low-affi nity binding sites in ES cells, 
and the binding may have biological consequences. Yet wheth-
er it is stochastic binding or low-affi nity binding that is crucial or 
rate limiting for reprogramming is still unknown.

Among the reprogramming factors OCT4, SOX2, and KLF4, 
most binding events happen primarily in closed chromatin, which 
consists of condensed heterochromatin (Soufi et al., 2012). 
OCT4 is a transcription factor of the POU family, and plays a 
critical role in maintaining self-renewal and undifferentiated 
state. OCT4 mainly inhibits the expression of differentiation-
related genes in ESCs (Kim et al., 2008; Pardo et al., 2010). 
When OCT4 is combined with certain chemical compounds, 
it is suffi cient to convert somatic cells into iPSCs. The binding 
of O, S, K to closed chromatin and the subsequent alteration 
of it early in reprogramming may therefore be a critical step, 
because the binding affi nity for condensed chromatin for most 
transcription factors is low, thus they are unable to access the 
specifi c sequence.  Unlike O, S, K, c-Myc is not essential for 
reprogramming, but it does increase the effi ciency of iPS col-
ony formation. For c-Myc, the binding is biased towards active 

program fi broblasts, peripheral blood, keratinocytes, and many 
other types of somatic cells into iPS cells in many species 
including humans (Takahashi et al., 2007; Aasen et al., 2008; 
Giorgetti et al., 2009; Haase et al., 2009; Loh et al., 2009; Sun 
et al., 2009; Seki et al., 2010; Staerk et al., 2010). The delivery 
methods of these transgenes have expanded as well; among 
them now are lentivirus, sendai virus, mRNA, episome vec-
tors, and synthetic self-replicative RNA, to name a few (Wernig 
et al., 2008; Fusaki et al., 2009; Yu et al., 2009; Warren et 
al., 2010; Yoshioka et al., 2013). Compared with SCNT, the 
transcription factor-mediated cellular reprogramming process 
is long, inefficient, and the epigenome variation of iPSCs is 
large. Many studies have focused extensively on these and il-
luminated many expected and unexpected mechanisms in this 
simple scheme, but complicated process. In this review we will 
summarize the molecular mechanisms of cellular reprogram-
ming, the different methods for effi cient reprogramming, and 
compare iPSC and ESC equivalence.  

REPROGRAMMING FACTORS
Reprogramming is a dedifferentiation process, which is the 
reverse of cell differentiation. In normal development, pluripo-
tent cells appear transiently; however, ES cells can self-renew 
and maintain pluripotency in vitro. This suggests ES cells are 
blocked by particular epigenetic roadblocks. Therefore, during 
the dedifferentiation process, reprogramming factors push the 
cells up into the pluripotent state bypassing the epigenetic road 
blocks. The four factors O, S, K, and M must be expressed in 
correct stoichiometry that provides a suffi cient push, as well 
as in the right direction. Once they reach the pluripotent state, 
cells must be blocked by an epigenetic barrier so they can 
remain. In rare situations as represented by ineffi cient repro-
gramming, some cells after reprogramming could be blocked 
by epigenetic barriers and thus acquire self-renew-ability and 
become capable of differentiating into multiple lineages. 

It is thought that OSKM primarily bind their putative binding 
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Figure 1. Multiple ways of achieving human pluripotent stages. (1) Transcription factors, such as OCT4, SOX2, KLF4, and c-Myc 
mediated reprogramming; (2) Reprogramming to chemically induced mouse iPS cells by the small-molecule combination VC6TFZ, and 
compounds required for human cells remain to be determined.; (3) Reprogramming human somatic cells into pluripotent embryonic stem 
cells by SCNT. These reprogrammed stem cells have opened new possibilities for human genetic disease modeling, hold tremendous 
potential for regenerative medicine, and enable patient-specifi c cellular therapy, by which gene defects in patient-specifi c iPSCs would be 
corrected by methods like ZFN, TALEN, or CRISPR.  
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and open chromatin, which is marked by H3K4 methylation 
(Soufi  et al., 2012). c-Myc is also found to bind to closed chro-
matin, but this requires O, S, K binding. These data suggest 
that c-Myc is not a main initiating factor, but rather a positive 
modulating factor for the other three reprogramming factors.   

Activation of endogenous Oct4 and Nanog are crucial for 
establishing iPSCs. In addition to local regulation such as the 
alteration of chromatin states by OSKM, DNA looping or non-
local interaction also determines the pluripotency of the stem 
cells. There are two potential mechanisms. One is that looping 
affects the expression of key pluripotent genes by promoting 
enhancer and promoter interaction. For example, there is a 
cohesin-complex-mediated intrachromosomal loop that links 
a downstream enhancer to Oct4’s promoter, enabling activa-
tion of Oct4 transcription (Zhang et al., 2013). Also, in another 
study, KLF4 was found to organize long-range chromosomal 
interactions with the Oct4 locus, suggesting the reprogramming 
factors like KLF4 can directly regulate long-range interaction 
(Wei et al., 2013). The second mechanism is represented by 
Nanog promoter cis regulation. Nanog promoter regions inter-
act with many loci genome-wide and are important for regulat-
ing reprogramming via this interaction. A large number of these 
loci are bound by mediator or cohesin. The establishment of 
Nanog interactions during reprogramming often precedes the 
transcriptional up-regulation of associated genes, suggesting 
the interaction is important for reprogramming. Depletion of 
these mediators or cohesin results in a disruption of contacts 
and the acquisition of a differentiation stage interaction pattern 
(Apostolou et al., 2013).

In addition to OSKM, pluripotency can also be induced by 
many combinations of transcriptional factors, such as pluripo-
tency associated factors and maternal factors, including Na-
nog, Lin28, Glis1, Esrrb, Tbx3, and Utf1 (Yu et al., 2007; Zhao 
et al., 2008; Feng et al., 2009; Han et al., 2010; Maekawa et 
al., 2011). In the case of Glis1, it can effi ciently generate iPS 
cells together with OSK. Glis1 is highly expressed in unferti-
lized oocytes and one-cell stage embryos. When in combina-
tion with OSK, Glis1 promotes the expression of multiple pro-
reprogramming factors, including Myc, Nanog, Lin28, Wnt, 
Essrb, and factors involved in the mesenchymal to epithelial 
transition (Maekawa et al., 2011). Furthermore, the basal tran-
scription machinery, including the transcription factor IID (TFIID) 
complex, affects reprogramming effi ciency of fi broblasts and is 
involved in maintaining the pluripotent state. Overexpression 
of TFIID subunits greatly enhances reprogramming (Pijnappel 
et al., 2013). All these findings suggest that reprogramming 
factors need to inhibit lineage specifi ers, which are considered 
to be pluripotency rivals and involved in linear commitment, 
to convert to pluripotent state. Unexpectedly, a recent study 
identified eight mesendodermal lineage specifiers as Oct4 
substitutes: Cebpa, Hnf4a, Gata3, Gata4, Gata6, Grb2, Pax1, 
and Sox7 (Shu et al., 2013). Their fi ndings present the fi rst evi-
dence that lineage specifi ers can replace reprogramming fac-
tors as well as facilitate reprogramming. In mouse blastocyst, 
Oct4 promotes primitive endoderm development and repress-

es trophectoderm fates. Oct4 is required to maintain expres-
sion of Gata6, which is involved in mesendodermal lineage 
specifi cation (Frum et al., 2013). Sox2 represses mesendoder-
mal differentiation and promotes neural ectodermal differentia-
tion (Thomson et al., 2011; Wang et al., 2012). The underlying 
model is that lineage specifi ers, such as Oct4 replacements, 
act to balance with other mutually exclusive lineage specifi ers 
such as Sox2. Oct4 and its substitutes attenuated the elevated 
expression of ectodermal genes, such as Dlx3, which were 
triggered by Sox2, Klf4, and c-Myc (Shu et al., 2013). As a re-
sult, lineage specifi ers synergistically infl uence the induction of 
pluripotency.

ELITE, STOCHASTIC, AND DETERMINISTIC 
MODELS
Because iPSC reprogramming efficiency is very low, only a 
small fraction of cells will transform into iPSCs. After Yamana-
ka’s report, some researchers suspected that only a few 
somatic cells are competent for reprogramming. In this “elite” 
model, these rare somatic stem cells were contaminated in do-
nor cells and generated the iPSCs, while the differentiated cells 
would be resistant to reprogramming. However, several lines of 
evidence show this is not true. First, subsequent improvements 
in the methods of reprogramming resulted in efficiencies as 
high as 10%–20%. It is unlikely that tissue stem cells comprise 
this high a percentage of somatic cells. Secondly, iPSC colo-
nies have been derived from terminally differentiated B and T 
cells (Hochedlinger and Jaenisch, 2002; Seki et al., 2010). In T 
cells, specifi c genomic rearrangement of the immunoglobulin 
locus or the T cell receptor in iPSC cells proved that the cells 
were derived from mature B or T cells, but not the mesenchymal 
stem cells. Lastly, one study indicated that over 90% of terminal 
differentiated B cells have the potential to generate daughter 
cells that eventually become iPSCs (Hanna et al., 2009). 

Ruling out the elite model, left the question of whether the 
reprogramming process is stochastic or deterministic. The sto-
chastic model states that somatic cells have to go through the 
various epigenetic blocks to become iPSCs. In the stochastic 
model, most differentiated cells have the potential to become 
iPS cells; however, whether or when a given cell would be-
come an iPSC cell cannot be predicted. In the deterministic 
model, reprogrammed cells would be generated with a fi xed 
timescale; SCNT is generally considered to fi t the deterministic 
model. More evidence now supports both models for iPSC 
reprogramming. At early stage, the reprogramming is stochas-
tic as supported by clonal cell analysis (Hanna et al., 2009). 
Moreover, single-cell gene expression profi ling at various stag-
es demonstrates cells from an early stage become iPSCs with 
variable latency (Buganim et al., 2012). Although reprogram-
ming is stochastic, early activation of some pluripotent genes, 
such as Esrrb, Utf1, Lin28, and Dppa2, may determine cells to 
become iPSCs. In somatic cells, many essential pluripotency 
loci are marked with H3K9me3, such as Nanog, Dppa4, Sox2, 
Gdf3, and Prdm14 (Samavarchi-Tehrani et al., 2010; Polo et 
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DNA METHYLATION AND DEMETHYLATION
The iPSC methylome is different from the somatic methylome 
(Deng et al., 2009; Lister et al., 2009). In mammals, DNA 
methylation predominantly occurs at cytosine on CpG sites. In 
embryonic stem cells, up to 25% of methylation can also occur 
on non-CpG sites (Lister et al., 2009; Laurent et al., 2010). This 
is particularly interesting, as it predisposes to the function of 
non-CpG methylation. Non-CpG methylation tends to occur at 
exonic regions of actively transcribed regions. The exact func-
tion of non-CpG methylation in mammals remained unknown. 
DNA methylation is catalyzed by DNMT3a/b and maintained 
by DNMT1 (Leonhardt et al., 1992; Smith and Meissner, 2013). 
DNMT3a/b is believed to be de novo DNA methyltransferase.  
DNMT3a/b defi cient MEFs can generate iPS cells, and their 
depletion moderately decreases effi ciency compared to wild-
type MEFs, suggesting de novo methylation during reprogram-
ming is not essential and plays only a minor role (Pawlak and 
Jaenisch, 2011). Interestingly, de novo methylation by DNM-
T3a and DNMT3b is critical during the developmental process 
and the reprogramming of germ cells (Okano et al., 1999; Kato 
et al., 2007). 

In contrast, DNA demethylation plays a major role in deter-
mining iPS cells transformation processes (Fig. 2). During re-
programming, the activation of endogenous Oct4, Nanog, and 
many other pluripotent genes is accompanied by demethyla-
tion of cytosines at their promoter or enhancer regions. Insuffi -
cient demethylation of these promoter/enhancer regions leads 
to partially reprogrammed cells. Furthermore, the inhibition 
of DNA methylation by DNMT1 inhibitors can increase repro-
gramming effi ciency (Mikkelsen et al., 2008). All this evidence 
suggests DNA methylation acts as a major barrier to cellular 
reprogramming, and DNA demethylation plays an important 
role in successful reprogramming.  

There are two proposed mechanisms of DNA demethylation 
in cells: a DNA replication-independent active DNA demethyla-
tion, and a DNA replication-dependent passive DNA demeth-
ylation. In the scenario of DNA replication-dependent demeth-
ylation, reprogramming factors or some of their targets might 
antagonize the activity of  Dnmt1 or its binding partner, Uhrf1, 
which in turn leads to the progressive loss of DNA methylation 
with cell division (Bostick et al., 2007; Sharif et al., 2007). The 
putative DNA active demthylation pathway was found during 
last several years. In this pathway, Ten-eleven translocation 
(TET) proteins sequentially catalyze cytosine to 5-hydroxycy-
tosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine 
(5caC) (Iyer et al., 2009; Tahiliani et al., 2009; He et al., 2011; 
Ito et al., 2011). The 5fC and 5caC may in turn be removed by 
TDG and replaced by cytosine via base excision repair (BER) 
pathway enzymes (He et al., 2011; Maiti and Drohat, 2011; 
Schiesser et al., 2012). This leads to the proposal that TET 
proteins may function as DNA demethylases. This cycle was 
found to be feasible at least biochemically in vitro. TET pro-
teins have been intensively studied in ES cells. TET1 is highly 
expressed in human ES cells, and Tet1 and Tet2 are highly 
expressed in mouse ES cells. It has been shown that TET1/2 

al., 2012; Soufi et al., 2012). These genes are refractory to 
OSKM binding at early stage and are activated later in repro-
gramming process. Acquisition of the final pluripotent state 
requires a later stabilization stage marked by the expression of 
those pluripotency markers (Golipour et al., 2012). Activation of 
these H3K9me3 marked loci is crucial for reprogramming to full 
iPSCs, suggesting that, once activated, the cell transits from a 
stochastic to a deterministic stage (Soufi  et al., 2012; Chen et 
al., 2013). In summary, evidence suggests that during the early 
stage, the reprogramming is a stochastic process, and when it 
reaches the late stage, it is deterministic. 

EFFECT OF STOICHIOMETRY
Interestingly, the four factors stoichiometry—the relative ex-
pression level of the four factors—can signifi cantly infl uence 
both reprogramming effi ciency and the quality of the resulting 
iPS cells. Higher expression of Oct4 than the other three fac-
tors will generate more iPSC colonies; the reverse ratio will 
decrease the effi ciency (Papapetrou et al., 2009; Tiemann et 
al., 2011). Moreover, differences in the order of OSKM polycis-
tronic vector can cause a signifi cant quality difference in iPSCs. 
When expressed polycistronically in the order of OKSM, the 
expression of c-Myc and Sox2 are found to be higher, and the 
Dlk1-Dio3 imprinting locus on mouse chromosome 12qF1 is 
aberrantly silenced in most of the iPSC clones (Stadtfeld et 
al., 2010a). Loss of imprinting at the Dlk1-Dio3 locus has been 
associated with lower pluripotency including poor chimera 
formation and failure to generate all-iPSC mice by tetraploid 
complementation. Furthermore, the incidence of tumors in 
mice created by iPSCs in the order of OKSM is higher (Stadtfeld 
et al., 2010b). While in the order of OSKM, there is higher ex-
pression of Oct4 and Klf4 and lower expression of c-Myc and 
Sox2, and the reprogrammed iPSCs harbor an active Dlk1-
Dio3 locus, which is similar to ESCs. The order of OSKM also 
produces iPS cells that effi ciently generate all-iPSC mice by 
tetraploid complementation, and do not create mice with tu-
mors (Carey et al., 2011). These studies demonstrate that the 
stoichiometry of reprogramming factors is critical for epigenetic 
transformation: a skewed combination will lead to poor-quality 
iPS cells. Importantly, the sequential introduction of reprogram-
ming factors, such as Oct4-Klf4 first, then c-Myc and finally 
Sox2 at the fi rst several days of reprogramming outperforms 
simultaneous induction (Liu et al., 2013). This suggests that 
Oct4 and Klf4 may have higher expression than Sox2 and c-
Myc at the beginning of the reprogramming process, meaning 
the stoichiometry may primarily have effects in the early stage 
of reprogramming.  

Once pluripotency is established, on the contrary, a reduced 
Oct4 expression level seems to enhance pluripotency. Oct4+/-

ESCs show increased genome-wide binding of OCT4, particu-
larly at pluripotency-associated enhancers, and increase homo-
geneous expression of pluripotency transcription factors such as 
Nanog by reducing Nanog-low and Nanog-negative cells. Thus 
reduced Oct4 expression enhances ES or iPS cells self-renew-
al, and delays differentiation (Karwacki-Neisius et al., 2013).  
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tel, 2009). Changing somatic cell fate to a pluripotent state 
requires a complete chromatin reorganization to allow the ac-
tivation of an endogenous program that sustains self-renewal 
while preventing differentiation. The reprogramming is accom-
panied by miRNA expression changes. miRNAs have been 
implicated in the regulation of the self-renewal and differentia-
tion potential of pluripotent stem cells. For example, Dgcr8-
null mESCs, in which miRNA biogenesis is impaired, have 
a reduced proliferation rate, and fail to induce differentiation 
(Wang et al., 2007). Thus, it is not surprising that a subset of 
miRNAs is required for effi cient and essential reprogramming, 
while others act as reprogramming “roadblocks”.  MiRNAs re-
quired for effi cient and essential reprogramming have similar 
targeting sequences, and may therefore regulate downstream 
targets cooperatively. Examples include miR-291-3p, miR-294, 
miR-295, and miR-302d, which increase reprogramming ef-
fi ciency with Oct4, Klf4, and Sox2 (Judson et al., 2009). These 
miRNAs are the ES cell-specific cell cycle regulating micor-
RNAs, which increase reprogramming by accelerating the G1 
to S phase transition during cell cycle (Wang et al., 2008). In 
contrast, overexpressing “roadblock miRNAs”, like miR-21 and 
miR-29a, impede reprogramming (Yang et al., 2011). The p53 
and ERK1/2 pathways are regulated by miR-21 and miR-29, 
which in turn modulate reprogramming.

Interestingly, studies have shown that miRNAs alone, with-
out any exogenous factors, can generate iPS cells, possibly 
even more effectively than transcription factors (Anokye-Danso 
et al., 2011; Miyoshi et al., 2011). The fi rst study employed a 
lentivirus delivery system producing miRNA cluster 302/367. 

depletion will compromise reprogramming efficiency (Doege 
et al., 2012; Costa et al., 2013; Gao et al., 2013; Wang et al., 
2013), although TET1 and TET2 proteins are not required for 
essential pluripotency, and are dispensable for maintaining ES 
cells. One possible mechanism is that TET1 and TET2 interact 
with NANOG, enhancing the demethylation of Oct4 and other 
pluripotent gene promoters and enhancers. Specifi cally, one 
study showed that Tet1 could replace Oct4, to induce iPSCs 
(Gao et al., 2013). Interestingly, in human iPSCs, TET2 is not 
expressed. Whether TET2 has a unique role during repro-
gramming in mouse ES cells remains unknown. In another 
model, the deaminase Aid (or Aicda) was proposed recently to 
play a role in demethylation. It can demethylate the NANOG 
and OCT4 promoters after cell fusion of mouse ESCs and hu-
man fi broblasts (Bhutani et al., 2010; Popp et al., 2010). Fur-
thermore, Aid, through the regulation of Mbd4 and Gadd45, is 
involved in DNA demethylation in zebrafi sh (Rai et al., 2008). 
However, because Aid expression is low in ESCs and iPSCs, 
whether it has major role in iPS cell reprogramming is unclear. 
Recently, Aid was reported to act to remove epigenetic memo-
ry, and Aid-null somatic cells fail to stabilize pluripotency in the 
later stage of the reprogramming process (Kumar et al., 2013). 
Further research should reveal to what extent active demeth-
ylation contributes to overall DNA demethylation. 

MicroRNA IN SOMATIC REPROGRAMMING
MicroRNAs are a family of small non-coding RNAs that bind 
to partially complementary sequences in messenger RNAs, 
inducing mRNA degradation or translational silencing (Bar-

Figure 2. DNA methylation and demethylation during reprogramming. De novo DNA methylation during reprogramming is not es-
sential and plays only a minor role. Depletion of DNMT3a and 3b moderately decreases reprogramming effi ciency compared to wild-type 
cells. In contrast, DNA demethylation plays a major role and determines iPS transformation processes. TET1/2 depletion compromises 
reprogramming effi ciency. A second possible pathway for demethylation involves the deaminase Aid (or Aicda). Aid-null somatic cells fail 
to stabilize the pluripotency in the later stage during the reprogramming process.
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  with effi ciency comparable to those from standard iPS produc-
tion techniques. Moreover, the chemical factors were able to 
induce iPSCs from both mouse embryonic fibroblasts and 
adult fi broblasts. These small molecules include: CHIR, a gly-
cogen synthase kinase 3 inhibitor; 616452, a TGF-beta inhibi-
tor; FSK, a cAMP agonist; DZNep, an S-adenosylhomocysteine 
hydrolase inhibitor; TTNPB, a synthetic retinoic acid receptor li-
gand; valproic acid, a histone deacetylase inhibitor; and tranyl-
cypromine (or Parnate), an inhibitor of lysine-specifi c demethy-
lase 1. Some of these inhibitors target unexpected pathways, 
which will reveal other unknown aspects of the reprogramming 
process. Nevertheless, a detailed comparison of the CiPS 
and ES cells is needed to determine whether there are subtle 
differences between them and whether these differences are 
functionally important for downstream applications. 

iPSC AND ESC DIFFERENCES
iPSCs are functionally equivalent to ESCs. ESCs and iPSCs 
share key features of pluripotency, including the expression 
of pluripotency markers, the ability to differentiate into germ 
layers, teratoma formation in immunodefi cient mice, and tetra-
ploid complementation for mouse iPS cells. The key question 
is whether there are subtle differences between iPSCs and 
ESCs, and if so, does this lead to biological consequences. 
The transcriptomes, proteomes, and epigenomes of ESCs and 
iPSCs have been compared, and results suggest iPSCs may 
be different from ESCs, leading to concerns about the differen-
tiation potentials of each individual line and the safety of iPSCs 
for therapeutic applications (Chin et al., 2009; Bock et al., 2011; 
Lister et al., 2011; Nazor et al., 2012; Ruiz et al., 2012; Liang 
and Zhang, 2013; Wang et al., 2013). Here we will explore 
the issue from an epigenetic perspective. The study results 
above have led to three models of the equivalence between 
iPSCs and ESCs. The fi rst model states that there are small 
but consistent differences between ESCs and iPSCs (Chin et 
al., 2009; Stadtfeld et al., 2010a); in this model, the differences 
are unique to iPSCs or to ESCs, and thus could be used as a 
marker to distinguish iPSCs from ESCs. As discussed earlier, 
the Dlk3-Dio locus was believed to be inactive in mouse iPSCs 
and was proposed as a marker of iPSCs; however, it turned 
out the phenotype was caused by a skewed expression level 
of reprogramming factors. The second model states that iPSCs 
and ESCs should be treated as two largely overlapping groups 
that share unique genetic and epigenetic features. In this 
model, iPSCs show more epigenetic variance, and each iPSC 
may represent a unique epigenetic status with variable differ-
entiation potential; however, each individual iPSC line cannot 
be distinguished from ESC lines (Bock et al., 2011; Kim et al., 
2011; Lister et al., 2011). Therefore, based on these observa-
tions,   many people believe there are no differences between 
the iPSC and ESC populations. A third model, and perhaps 
the more likely one, given new evidence, is that iPSCs display 
subtle genetic and epigenetic variability. Most importantly, this 
variability is not random, but only occurs at certain genes or 

MiR367 expression activates Oct4 gene expression and sup-
presses Hdac2. Moreover, miR-302-targeted co-suppression 
of four epigenetic regulators, AOF2 (KDM1/LSD1), AOF1, 
MECP1-p66, and MECP2, could cause global DNA demeth-
ylation (Lin et al., 2011). The second study directly transfected 
mature miRNAs with a combination of miR-200c, miR-302s, 
and miR-369s family miRNAs. Both approaches successfully 
produced mouse and human iPS cells from fi broblasts. Nev-
ertheless, there is a discrepancy for miRNA cluster 302/367 in 
reprogramming. In MEFs by piggybac transfer, microRNA clus-
ter 302/367 could not generate iPSCs (Lu et al., 2012), while 
another study using human adipose stem cells failed to pro-
duce iPSCs by delivering miRNA-302s alone (Hu et al., 2013). 
These discrepancies could be caused by different delivering 
systems. For example, it was found that miR-302-induced 
reprogramming is dosage dependent (Lin et al., 2011), so the 
microRNA concentration must be within a specifi c range.

SMALL MOLECULE-MEDIATED REPROGRAMMING
Conventional reprogramming methods use viruses or transgenes, 
which not only pose the risk of future reactivation,   but also can 
cause insertion mutagenesis. As a result, conventional repro-
gramming methods result in iPS cells that are potentially tumo-
rigenic. This risk of cancer may limit iPSC clinical applications. 
Furthermore, iPSCs may trigger immune rejections (Zhao et 
al., 2011). However, two recent reports contradict the fi nding 
that autologous iPSCs are immunogenic, suggesting some 
iPSC lines may have negligible or no immunogenicity (Araki 
et al., 2013; Guha et al., 2013). Nevertheless, a chemical ap-
proach that uses small molecules to generate iPS cells may 
reduce these safety concerns about them. First, chemical ap-
proaches are presumably non-immunogenic. In addition, small 
molecules can easily pass through cell membranes, so they 
can be removed after they have initiated the reprogramming. 
Using proper compounds like those are FDA approved should 
minimize the risk of mutation. To date, dozens of small mol-
ecules have been identifi ed that can functionally replace repro-
gramming factors and signifi cantly improve iPSC reprogram-
ming (Huangfu et al., 2008a, 2008b; Shi et al., 2008a, 2008b; 
Li et al., 2009). They primarily target cell signaling pathways, 
such as the   TGFβ pathway, and nuclear epigenetic factors. 
One example is BIX-01294, a methyltransferase G9a inhibitor, 
which can replace Sox2 and c-Myc for reprogramming (Shi et 
al., 2008a, 2008b). A-83-01, a TGFβ receptor inhibitor, enhanc-
es MEF reprogramming; in combination with AMI-5, a protein 
arginine methyltransferase inhibitor, it enables reprogramming 
of MEFs transduced with Oct4 only (Yuan et al., 2011). 

Many studies have managed to reduce the number of 
genes needed to reprogram cells by using small-molecule 
chemical compounds, but those cases always required Oct4. 
Recently, iPS cells were created using chemical compounds 
only; these were called chemically induced iPS cells (CiPSC) 
(Fig. 1) (Hou et al., 2013). Using a cocktail of seven com-
pounds, this group was able to get 0.2% of cells to convert, 
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loci, forming aberrant reprogramming hotspots. Not all iPSCs 
have aberrant events in all these hotspots, but experience 
events in different combinations of hotspots. For example, hot-
spot regions with incomplete 5hmC/non-CG methylation tend 
to cluster in telomere-proximal regions (Wang et al., 2013). 
Also, in a separate study, gene expression in some iPSCs with 
aberrant 5hmC in these genes is different than in ESCs (Ruiz 
et al., 2012). An intriguing fi nding is that megabase domains of 
H3K9me3, which impairs OSKM binding and reprogramming, 
largely overlap with 20 reprogramming hotspots (Soufi  et al., 
2012). These H3K9me3 domains are refractory to OSKM bind-
ing at the initial 24 hours after reprogramming. This suggests 
a possible mechanism: these reprogramming hotspots are 
resistant to OSKM binding, fail to recruit histone demethylase, 
and are subsequently incapable of initiating TET and DN-
MT3a/b recruitment. There are fewer aberrant hotspots than 
megabase domains of H3K9me3, suggesting that malfunction 
of those aberrant hotspots is less critical for iPS cell survival.

DISEASE MODELING AND DIFFERENTIATION
Disease modeling

iPS technology has opened new possibilities for human ge-
netic disease modeling. Before the iPSC era, obtaining human 
pluripotent stem cells carrying a particular genetic mutation 
was mired in ethnical issues, because it required isolating ES 
cells from and the destruction of blastocysts (Revazova et al., 
2007). Now, by reprogramming cells from a simple skin biopsy 
or blood, researchers can generate iPS cells from patients with 
any disease. iPS technology is not merely a replacement for 
hESC study, because it overcomes two obstacles associated 
with hESCs: ethical concerns about the use of human embryos 
and potential immune rejection after non-autologous therapeu-
tic transplantation.

The possibility of generating pluripotent cells from patient 
somatic cells and subsequently differentiating them into the 
desired cell types will give us new insights into the patho-
genesis of a broad spectrum of diseases (Park et al., 2008; 
Chambers et al., 2009; Merkle and Eggan, 2013). iPS cell lines 
from patients with different syndromes have been successfully 
established and differentiated into defective cell types related 
to disease (Park et al., 2008; Onder and Daley, 2012; Cherry 
and Daley, 2013). By comparing disease specifi c iPS cell lines 
to their healthy or normal counterparts, we can study the bio-
logical mechanisms for genetic variants that affect the risk and 
progression of the disease. Using this approach has yielded 
novel insights into various diseases with either Mendelian or 
complex inheritance, among them Alzheimer’s disease (Yagi 
et al., 2011; Israel et al., 2012; Kondo et al., 2013), Parkinson’s 
disease (Park et al., 2008; Soldner et al., 2009; Hargus et al., 
2010; Liu et al., 2012), amyotrophic lateral sclerosis (ALS) 
(Dimos et al., 2008; Mitne-Neto et al., 2011), Down syndrome 
(Li et al., 2012), and schizophrenia (Brennand et al., 2011). 
The most rigorous way to study the effects of genetic variants 
in human disease would be the generation of isogenic iPSCs, 

which differs only in the mutation and has the same genetic 
background. These disease-specific iPS cells and isogenic 
control cells would also enable screening for novel drugs (En-
gle and Puppala, 2013). In addition, human disease cell types 
derived from iPSCs would be more relevant for toxicological 
testing during the drug development process, compared with the 
established cancer origin cell types or animal models used now.  

Reprogramming of somatic cells into iPS cells also holds 
tremendous promise for regenerative medicine, the process of 
replacing damaged tissue. iPSCs can potentially differentiate 
into any type of cell, and since they are genetically identical to 
the patients, presumably will not be immunogenic. This holds 
out the hope of treating patients who need regenerative thera-
pies, including disorders characterized by the loss or destruc-
tion of cells or tissues, such as the loss of dopaminergic neu-
rons in Parkinson’s disease, autoimmune destruction of beta 
cells in type 1 diabetes, and spinal cord injury, to name a few (Yu 
et al., 2013). In the case of Parkinson’s disease, a degenera-
tive disorder of the central nervous system, patients progres-
sively lose nerve cells that produce dopamine, causing a loss 
of motor function. In this new avenue of treatment, the aim is 
to create iPS cells from a patient, differentiate these cells into 
the dopamine-producing neurons that have been destroyed by 
disease, and transplant the cells created in the dish back into 
the patient’s brain.

iPSCs will also be valuable for providing patient-specific 
cellular therapy by generating autologous iPS cells through re-
programming. In this method, gene defects in patient-specifi c 
iPSCs would be corrected by methods like ZFN, TALEN, or 
CRISPR (Meng et al., 2008; Perez et al., 2008; Cermak et al., 
2011; Miller et al., 2011; Cong et al., 2013; Gaj et al., 2013; 
Jinek et al., 2013; Mali et al., 2013), the iPSCs differentiated 
into the disease-relevant cells, and the cells returned back to 
the patient. This avenue of therapy will offer the prospect of 
treatments for a broad range of disorders. For example, using 
a ZFN technology, researchers reported a sequence of events 
for successfully correcting a mutation in human iPSCs derived 
from individuals with α1-antitrypsin deficiency (A1ATD) due 
to a point mutation (Glu342Lys) in α1-antitrypsin (Yusa et al., 
2011). A1ATD is an autosomal recessive disorder that results 
in liver cirrhosis and represents the most common inherited 
metabolic disease of the liver. Researchers fi rst took adult skin 
cells, reprogrammed the adult cells to iPSCs, corrected the 
gene mutation in both alleles with ZFN, and differentiated the 
cells in vitro into hepatocyte-like cells. They demonstrated that 
these corrected hepatocyte-like cells were able to colonize 
the liver in mouse and had functional activities. In addition to 
ZFN, TALEN or CRISPR genome engineering methods, gene 
correction can also be achieved by helper-dependent adeno-
viral vectors (HDAdVs) (Suzuki et al., 2008). In the HDAdV 
based approach, gene correction is achieved through targeted 
integration via homologous recombination by normal copy of 
genes delivered by HDAdv virus. For example, laminopathy-
associated LMNA mutations, hemoglobinopathy-causing mu-
tations, and LRRK2 mutation of Parkinson’s disease in Patient-
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(Shi et al., 2012; Espuny-Camacho et al., 2013; Maroof et al., 
2013), such as pyramidal neurons and cortical interneurons, 
which are critical for modeling schizophrenia, autism.  

In addition to neuronal lineage differentiation, significant 
progresses have also been made in the differentiation of iP-
SCs towards many other cell types including cardiovascular 
fate, especially into cardiomyocytes, smooth muscle cells, and 
endothelial cells (Kattman et al., 2011; Cheung et al., 2012; 
Lian et al., 2012; Minami et al., 2012; Cao et al., 2013). These 
cells will be valuable applications in vascular diseases such as 
congenital vascular malformation, with abnormal blood vessels 
occur at birth. In this scenario, stem cell-based transplantation 
therapy aims to repair injured cardiovascular tissue with dif-
ferentiated cells. Together, with our improved understanding of 
the developmental mechanisms, better and effi cient methods 
will be developed to generate target cell types.

CONCLUDING REMARKS
Taken together, reprogramming by transcriptional factors not 
only supports the idea that cell fate changes can be bidirec-
tional and reversible, but also opens new opportunities for the 
study of cell transdifferentiation. Importantly, studying iPSCs 
has broadened our understanding of cellular differentiation/
dedifferentiation mechanisms, also yielding valuable informa-
tion for disease modeling and clinical applications. The recently 
created all-chemically induced iPS cells will facilitate this appli-
cation process. We know iPS cells are not exactly equal to ES 
cells, and whether the subtle differences are consequential for 
iPSC clinical applications remains unclear. Recently, research-
ers achieved the reprogramming of human somatic cells into 
pluripotent embryonic stem cells by SCNT (Tachibana et al., 
2013), making an important step for iPSC study (Fig. 1). It will 
be interesting to see whether stem cells derived from SCNT 
are more like embryonic stem cells. 
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