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ABSTRACT

It has been well established that most of the age-related
diseases such as insulin resistance, type 2 diabetes,
hypertension, cardiovascular disease, osteoporosis, and
atherosclerosis are all closely related to metabolic dys-
function. On the other hand, interventions on metabolism
such as calorie restriction or genetic manipulations of key
metabolic signaling pathways such as the insulin and
mTOR signaling pathways slow down the aging process
and improve healthy aging. These findings raise an
important question as to whether improving energy
homeostasis by targeting certain metabolic signaling
pathways in specific tissues could be an effective anti-
agingstrategy.Withamorecomprehensiveunderstanding
of the tissue-specific roles of distinct metabolic signaling
pathways controlling energy homeostasis and the cross-
talksbetween thesepathwaysduringagingmay lead to the
development of more effective therapeutic interventions
not only for metabolic dysfunction but also for aging.

KEYWORDS aging, metabolic disease, insulin, mTOR,
caloric restriction

INTRODUCTION

The normal process of aging is associated with progressive
deterioration in both structure and function of various
molecular, cellular, and tissue components that can be
influenced by both genetic and environmental factors. A
number of theories have been proposed to explain the aging
progress, such as shortening and/or loss of telomere,
accumulation of damaged DNA in cells, and dysfunction of
important cellular organelles such as the endoplasmic
reticulum (ER) and mitochondria. While it is well established
that aging is a major risk factor for the progression of various

metabolic diseases such as central obesity, insulin resis-
tance, hypertension and type 2 diabetes, much less is known
on the links between aging and these metabolic disorders at
the molecular and cellular levels.

A great progress has been made in the past decade on
the association between aging and various metabolic dis-
eases. Pharmacological or genetic manipulations of key
signaling pathways involved in the regulation of glucose and
energy metabolism, such as the insulin and the mammalian
target of rapamycin (mTOR) signaling pathways, have been
shown to improve health-span and longevity in diverse
model organisms such as yeast, worms, flies, and mammals
(Kennedy and Kaeberlein, 2009; McCormick et al., 2011;
Laplante and Sabatini, 2012). An interesting question
remains to be answered is what are the underlying mecha-
nisms by which altering the insulin/insulin-like growth factor 1
(IGF-1) or the mTOR signaling pathway suppresses or
delays aging-associated diseases and extends lifespan.
There is some evidence suggesting that the maintenance of
normal ER and mitochondrial function could be a primary
longevity determinant. Consistent with this view, caloric
restriction (CR), which is the best known intervention that
prolongs lifespan in various organisms (Guarente, 2008;
Kenyon, 2010), reduces mTOR and insulin/IGF-1 signaling
(Bonawitz et al., 2007; Katic et al., 2007), increases mito-
chondrial biogenesis and/or respiratory activity (Nisoli et al.,
2005; Bishop and Guarente, 2007; Zid et al., 2009), and
alleviates ER stress (Tsutsumi et al., 2011). In addition to
improved ER and mitochondrial function, autophagy related
genes have also been found to be involved in cell survival
and longevity in various long-lived mutant nematodes and
promote survival in worms and flies exposed to prolonged
starvation (Gomez and Clarke, 2007; Juhász et al., 2007).
Current evidence shows that autophagy is required for ER
stress-associated apoptosis and mitochondrial turnover, thus
may mediate the integration of the insulin/IGF-1 and mTOR
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signaling pathways with other cellular machineries in regu-
lating longevity (Meijer and Codogno, 2009; Vellai, 2009). In
addition, CR facilitates the degradation of damaged organ-
elles, DNAs and protein aggregates in cells by induction of
autophagy (Bergamini et al., 2003; Kim et al., 2007).

In this review, we have summarized recent progresses on
the links between aging and metabolic diseases, focusing on
key signaling pathways such as the insulin/IGF-1 and their
tissue specific function in aging. We have also discussed
several potential cellular mechanisms underlying aging and
aging-associated metabolic diseases.

METABOLIC SIGNALING PATHWAYS

Insulin/IGF signaling in metabolic regulation and aging

The insulin/IGF-I signaling pathway plays an essential role in
the regulation of various cellular activities such as lipid and
carbohydrate metabolism, gene expression, and cell differ-
entiation, growth, and survival. It is the first discovered and
evolutionarily conserved signaling pathway involved in the
determination of lifespan and is probably the best charac-
terized regulator of longevity across species (Kenyon, 2010,
2011).

Insulin/IGF1 stimulates tyrosine phosphorylation of the
insulin receptor (IR) and its substrate (IRS) proteins, IRS1
and IRS2, which, in turn, activate the phosphoinositide
3-kinase (PI3K)/AKT signaling pathway (Fig. 1). Numerous
AKT substrates have been identified, including the forkhead

box O (FOXO) protein, tuberous sclerosis 2 (TSC2), and
many others. Members of the FOXO transcription factor
family (FOXO1, FOXO3a, FOXO4, and FOXO6 in mamma-
lians; DAF-16 and DFOXO in C. elegans and Drosophila,
respectively) control the expression of genes involved in the
regulation of cell cycle, apoptosis, DNA repair, metabolism,
oxidative stress resistance, and aging. The insulin/IGF-1
signaling pathways are highly conserved across species
throughout evolution, ranging from worms, flies, rodents to
humans, demonstrating the importance of this signaling
pathway in the maintenance of normal physiological activi-
ties and longevity in these species (van der Horst and Bur-
gering, 2007; Narasimhan et al., 2009).

Suppressing the insulin/IGF-I signaling pathway has been
shown to increase lifespan and delay aging process in
species ranging from C. elegans (Wolkow et al., 2000; Wolff
and Dillin, 2006), yeast (Fabrizio et al., 2001), Drosophila
(Clancy et al., 2001; Tatar et al., 2001; Zhang et al., 2009) to
rodents (Holzenberger et al., 2003). In C. elegans, loss-of-
function mutations of the DAF-1/FOXO upstream kinases
such as DAF-2 and aging alteration-1 (age-1) promoted
DAF-16/FOXO protein translocation into the nucleus to
activate or repress its target genes (Kenyon, 2005; Calnan
and Brunet, 2008). Extended longevity is also observed in
C. elegans with mutations in age-1 and daf-2, which encode
the catalytic subunit of the worm PI3K and the insulin/IGF-1
receptor, respectively (Garsin et al., 2003; Murakami et al.,
2005). In Drosophila, disrupting the expression levels of
chico, a mammalian IRS homology, resulted in enhanced

Insulin/IGF-1

Insulin/IGF-1
receptor

IRS1/2 PI3-kinase

TSC1 TSC2 AKT FOXORheb

mTORC1

Nucleus

Stress 
resistance

Cell cycle 
arrest

Metabolism 
Longevity

Differentiation 
Apoptosis

S6K, 4E-BP1,
ULK1, PRAS40, 
Grb10…

mRNA translation, protein synthesis, 
cell growth, metabolism, aging

Gene expression

Figure 1. Insulin/IGF-1 signaling and regulation. The binding of insulin or IGF-1 to the membrane receptors leads to the activation

of the PI 3-kinase/Akt signaling pathway and subsequent downstream events such as phosphorylation of FOXO1 and activation of

the mTORC1 signaling pathway, which regulate many important cellular events such as mRNA translation, protein synthesis, cell

cycle progression, metabolism, and aging.
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immune function, improved behavior, and extended lifespan
(Martin and Grotewiel, 2006; Libert et al., 2008). Mice lacking
IRS-1, although showed mild insulin resistance when young,
not only lived longer but also maintained better glucose
homoeostasis compared to wild-type controls at older ages
(Selman et al., 2009). Consistent with improved metabolic
functions, these mice also displayed improved immune
profile and motor performance, as well as lowered incidence
of osteoporosis, cataract, and ulcerative dermatitis (Selman
et al., 2009). Interestingly, mice with a fat-specific insulin
receptor knockout show reduced fat mass, alleviated age-
related obesity and metabolic abnormalities, and extended
lifespan (Bluher et al., 2003; Katic et al., 2007), suggesting a
tissue-specific role of the insulin signaling pathway in regu-
lating health span. A correlation relationship between low
plasma insulin concentration and reduced mortality risk and
lower insulin resistance is also observed in humans (Rich-
ardson et al., 2004).

How reducing insulin/IGF-I levels or signaling delays
aging-associated diseases and promotes healthy aging?
One possible mechanism is through alterations in cell prolif-
eration and apoptosis, which would decrease the incidence
of cancer in animals (Hursting et al., 2003). Additionally,
reducing insulin/IGF-1 signaling may alter the sensitivity of
the animals to oxidative stress and reducing the accumula-
tion of oxidative damage (Richardson et al., 2004; van der
Horst and Burgering, 2007). Furthermore, reducing insulin/
IGF-1 levels and/or signaling may protect neurons from
aging-associated degeneration in the central nervous system
(Broughton and Partridge, 2009). Aberrant protein aggrega-
tion is a common feature of late-onset neurodegenerative
diseases such as Alzheimer’s disease and inhibition of the
insulin/IGF signaling pathway has been shown to reduce the
toxic aggregate prone proteins in a worm model of Alzhei-
mer’s disease (Cohen et al., 2006; Pinkston-Gosse and
Kenyon, 2007). Finally, low insulin/IGF-1 signaling may have
anti-aggregation effects that help to maintain cellular protein
homeostasis (Morley et al., 2002; Cohen et al., 2006).

A question remains to be answered is how reducing
insulin signaling, which is associated with various aging-
associated metabolic and cardiovascular diseases such as
obesity, type 2 diabetes, and hypertension (Rowe et al.,
1983; Kohrt et al., 1993; Finkel and Holbrook, 2000), extends
lifespan. Even more puzzling, insulin sensitivity has been
shown to be improved by CR and exercise, two types of
manipulation that extend longevity (Barger et al., 2003;
Teramoto and Bungum, 2010). However, it is interesting to
notice that knockout of the insulin receptor in fat tissues
increased insulin sensitivity and extend lifespan in mice
(Bluher et al., 2003; Katic et al., 2007), suggesting that tis-
sue-specific alteration of the insulin signaling pathway could
be the key to promote longevity. Another possible mecha-
nism may be that reducing insulin/IGF-1 signaling leads to
down-regulation of certain downstream aging-promoting
signaling pathways. Consistent with this, reducing the mTOR

signaling pathway, which is known to be activated by insulin
and IGF-1 (Astrinidis and Henske, 2005; Taguchi and White,
2008) (Fig. 1), has been shown to improve healthy aging and
extend lifespan (Zoncu et al., 2011).

mTOR signaling: linking energy homeostasis to aging

mTOR is a Ser/Thr protein kinase that integrates signals
originating from changes in growth factors, nutrient avail-
ability, energy status, and various physiological stresses
(Wullschleger et al., 2006; Liu et al., 2009). Convergence of
these internal and external signals to the mTOR complex, in
turn, triggers various downstream outputs such as mRNA
translation, protein synthesis, autophagy, cell proliferation,
growth, and survival, which are critical for the lifespan of
organisms (Kennedy and Kaeberlein, 2009; McCormick
et al., 2011; Zoncu et al., 2011).

mTOR functions in cells by formation of two distinct
complexes, mTOR complex 1 (mTORC1) and mTOR com-
plex 2 (mTORC2). These complexes contain unique and
shared components and have distinct biological functions in
response to nutrients and growth factors (Liu et al., 2009).
Both mTORC1 and mTORC2 contain mTOR, mammalian
lethal with SEC13 protein 8 (mLST8; also known as GβL),
and DEP domain-containing mTOR-interacting protein
(DEPTOR). However, mTORC1 contains unique accessory
proteins including regulatory-associated protein of mTOR
(RAPTOR) and 40 kDa Pro-rich AKT substrate (PRAS40;
also known as AKT1S1) whereas mTORC2 contains rapa-
mycin-insensitive companion of mTOR (RICTOR) and other
proteins, which distinguish this complex from the mTORC1
(Zoncu et al., 2011).

mTORC1 is rapamycin sensitive and plays a critical role
in regulating mRNA translation and protein synthesis in
response to nutrients, growth factors, energy, and stress
(Zoncu et al., 2011). mTORC1 activity is negatively regulated
by the TSC1/2 complex, which inhibits Ras homologue
enriched in brain (Rheb), a small guanosine triphosphatase
(GTPase) that activates mTOR, via its GTPase-activating
protein (GAP) activity (Fig. 1). Growth factors such as insulin
and IGF-1 promote AKT-mediated phosphorylation of TSC2,
which inhibits the GAP activity of the protein and thus
accumulation of Rheb•GTP complex in cells, leading to
subsequent activation of mTOR. Phosphorylation of TSC2
by AKT thus provides a direct link between insulin signaling
and the nutrient sensor mTOR signaling cascade (Astrinidis
and Henske, 2005; Taguchi and White, 2008).

In addition to growth factors, the mTORC1 signaling
pathway is also regulated by nutrients such as glucose and
amino acids, involving the interaction of mTORC1 with Rag
proteins, a different set of small GTPases (Sancak et al.,
2008). Very recently, a protein complex named GAP activity
toward Rags (GATOR) was identified as a key negative
regulator of amino acid-mediated mTORC1 signaling (Bar-
Peled et al., 2013; Panchaud et al., 2013). Based on the
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affinity of protein-protein interactions and their effects on
mTORC1, the GATOR proteins can be divided into two sub-
complexes, GATOR1 and GATOR2. Inhibition of GATOR1
leads to mTORC1 activation while inhibition of GATOR2
results in mTORC1 inactivation (Bar-Peled et al., 2013).
Despite extensive studies on the functional roles of the
mTORC1 signaling pathway, only a few direct substrates of
mTORC1, including 4E-binding proteins (4E-BPs), 40S
ribosomal protein S6 kinases (S6Ks) (Martin and Blenis,
2002; Hay and Sonenberg, 2004), the autophagy inducer
ULK1 (Hosokawa et al., 2009; Kim et al., 2011), and
PRAS40 (Oshiro et al., 2007; Wang et al., 2008), have been
found. Very recently, the growth factor receptor binding
protein 10 (Grb10) has been identified as a direct substrate
of mTORC1 and phosphorylation of Grb10 by mTORC1 has
been suggested to enhance the feedback inhibition of the
insulin/IGF-1 signaling pathways (Hsu et al., 2011; Yu et al.,
2011) (Fig. 1). However, it is currently unknown whether
Grb10 regulates mTORC1 signaling and action in vivo.

Studies during the past several years have demonstrated
that the mTORC1 signaling pathway contributes to aging
and metabolism. Inhibition of the mTORC1 signaling path-
way extends lifespan in various model animals, ranging from
yeast (Kaeberlein et al., 2005a; Bonawitz et al., 2007; Pan
and Shadel, 2009), C. elegans (Vellai et al., 2003), fly (Ka-
pahi et al., 2004), to rodents (Harrison et al., 2009; Selman
et al., 2009), thus establishing a close relationship between
metabolism and aging. Studies from invertebrate models first
demonstrated that inhibition of the mTOR signaling pathway
is sufficient to reduce protein synthesis and increase lifespan
(Vellai et al., 2003; Kapahi et al., 2004; Kaeberlein and
Kennedy, 2008; Stanfel et al., 2009). Consistent with these
findings, pharmacological inhibition of the mTORC1 signal-
ing pathway with rapamycin confers a robust lifespan
extension in genetically heterogeneous mice (Harrison et al.,
2009), yeast (Bonawitz et al., 2007), and fruit flies (Kapahi
et al., 2004). Inhibition of the mTOC1 signaling pathway has
also been shown to inhibit age-related weight gain, decrease
aging rate, and delay spontaneous cancer in normal inbred
female mice (Anisimov et al., 2011). Taken together, these
results support the view that altering metabolism by inhibition
of the mTORC1 signaling pathway may be an effective
approach for improving health-span and extending lifespan
(Kennedy and Kaeberlein, 2009). Consistent with this,
mutation of daf-15, the homolog of the mTOR positive reg-
ulator RAPTOR in nematodes, led to extended lifespan (Jia
et al., 2004). However, the effects of RAPTOR knockout
seem to be tissue specific in mice (Polak and Hall, 2009).
Adipose-specific RAPTOR knockout mice show similar
properties with those long-lived mice, including increased
leanness and resistance to diet-induced obesity accompa-
nied by improved glucose tolerance and insulin sensitivity
(Polak and Hall, 2009). However, knockout of RAPTOR in
skeletal muscle led to muscular dystrophy associated with
reduced mitochondrial biogenesis and muscle oxidative

capacity but enhanced glycogen storage (Bentzinger et al.,
2008). These findings suggest that reduced mTORC1
activity may be beneficial in some tissues while harmful in
others. In addition to altering the expression levels of these
mTOR regulators, disruption of the expression/activity of
mTORC1 substrate S6K has also been shown to extend
lifespan in worms (Jia et al., 2004; Hansen et al., 2007), flies
(Kapahi et al., 2004), and female mice (Selman et al., 2009).
However, whether tissue-specific suppression of S6K has a
promoting effect on longevity in higher organisms remains to
be established.

The mTORC2 may also be involved in regulation of
metabolism and lifespan. On normal diet, mutations of the
C. elegans homolog of RICTOR, an mTORC2 component,
have been shown to increase body fat, slow development,
reduce body size, and increase aging rate. However, on
nutrient-rich diet, RICTOR mutants showed a profoundly
extended life span, which is consistent with decreased
consumption of nutrient-rich food by mutants (Soukas et al.,
2009). These results indicate that RICTOR plays a critical
role in appropriately partitioning calories between long-term
energy stores and vital organism processes (Soukas et al.,
2009).

Unlike adipose-specific RAPTOR knockout mice, which
are resistant to diet-induced obesity (Polak and Hall, 2009),
adipose-specific knockout of RICTOR resulted in increased
body and organ sizes, independent of dietary fat content
(Cybulski et al., 2009). Fat-specific knockout of RICTOR has
also been shown to impair insulin-regulated whole body
glucose and lipid metabolism (Kumar et al., 2010). However,
the effect of fat-specific RICTOR knockout on longevity is
currently unclear.

MECHANISMS UNDERLYING THE BENEFICIAL
EFFECTS OF SUPPRESSING INSULIN/IGF-1
AND MTOR SIGNALING ON LONGEVITY

Although considerable data have demonstrated that sup-
pression of the insulin/IGF-1 and mTOR signaling pathways
are linked to lifespan extension, the underlying mechanisms
remain elusive. During the past several years, new evidence
begins to emerge on a functional link between these sig-
naling pathways and several key cellular events such as
autophagy and the function of ER and/or mitochondria,
shedding light on the mechanisms by which suppressing
insulin/IGF-1 and mTOR signaling pathways leads to
improved longevity and healthy aging (Fig. 2).

Autophagy: roles in metabolism and aging

Autophagy is a conserved catabolic process that delivers
damaged organelles or long-lived proteins to lysosomes for
bulk degradation (Kroemer and Levine, 2008; Rubinsztein
et al., 2011), which is considered as a mechanism that
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protects cells against accumulation of damaged organelles
and DNA, misfolded proteins, and allows cells to mobilize
their energy reserves in response to nutrients depletion,
hypoxia, and ER stress (Gonzalez-Polo et al., 2005; Kouroku
et al., 2007; Galluzzi et al., 2008; Morselli et al., 2010).
During the autophagic process, pre-autophagosome elon-
gates and fuses to form double-membrane vesicle auto-
phagosomes within the cytoplasm. The autophagosomes
fuse with acidic lysosomes where the entrapped contents
are degraded by proteases. The ER, mitochondria as well as
plasma membrane are the major membrane sources con-
tributing to the maturation of pre- or autophagosomal struc-
tures (Hayashi-Nishino et al., 2009; Hailey et al., 2010;
Ravikumar et al., 2010). More than 30 different genes reg-
ulating autophagy have been identified and characterized so
far. These autophagy-related genes (Atg) play important
roles in the key stages of autophagy process including ini-
tiation, elongation, maturation, and fusion with the lyso-
somes (Ravikumar et al., 2010).

Autophagy is essential for the maintenance of cellular
homeostasis and its dysregulation is involved in many met-
abolic disorders including obesity and insulin resistance, as
well as in aging (Meijer and Codogno, 2009; Vellai, 2009;
Rubinsztein et al., 2011). Defects in autophagy have been
shown to reduce insulin sensitivity in the liver of obese mice
with insulin resistance and hyperinsulinemia (Liu et al., 2009;
Codogno and Meijer, 2010; Yang et al., 2010). On the con-
trary, over-expression of Atg7, an important gene for
autophagy formation, diminished ER stress, improved
hepatic insulin sensitivity and fat metabolism, as well as
increased peripheral glucose disposal in high fat diet (HFD)-
fed or in ob/ob mice (Yang et al., 2010). The suppressive
effect of insulin on autophagy in the liver is mediated by
FoxO1-mediated transcriptional regulation of Atg genes (Liu
et al., 2009). In muscle cells, FoxO3 induces expression of a

number of autophagy-related genes in response to fasting
and denervation (Mammucari et al., 2007; Zhao et al., 2007),
and coordinately regulates the activity of both autophagy and
the ubiquitin-proteasome associated degradation system in
muscle cells (Ravikumar et al., 2010). However, autophagy
may action differently in other tissues. In obesity, autophagy
has also been found to mediate ER stress-induced reduction
of IR and adiponectin in adipose tissues (Chiocchetti et al.,
2007; Zhou and Liu, 2010; Zhou et al., 2010). In pancreatic
beta cells, autophagy is increased during the initial period of
HFD feeding presumably for protecting the beta cells as a
compensatory mechanism to boost their insulin production
(Ebato et al., 2008). Thus, there may be tissue-specific
action of autophagy under the conditions of obesity and
insulin resistance.

mTORC1 is an essential negative regulator of autophagy
(Takeshige et al., 1992; Ravikumar et al., 2010; Yu et al.,
2010). Several mTORC1 target genes, including Atg13,
ULK1, and ULK2, are found to be involved in the initiation
step of autophagosome formation in mammalian cells (Kim
et al., 2011; Shang and Wang, 2011). Atg13 and ULK1/2
interact with FIP200 to form a ULK1/2-Atg13-FIP200 stable
complex that signals to the autophagic machinery down-
stream of mTOR (Hay and Sonenberg, 2004; Ganley et al.,
2009; Hosokawa et al., 2009). Under nutrient-rich conditions,
mTORC1 suppresses autophagy through direct interaction
with this complex, which leads to phosphorylation-depen-
dent inhibition of Atg13 and ULK1 (Ravikumar et al., 2010;
Shang and Wang, 2011). Under the conditions of starvation
or rapamycin treatment, however, mTORC1 dissociates from
the complex, leading to dephosphorylation-dependent acti-
vation of ULK1 and ULK2, which finally triggers autophagy
(Ganley et al., 2009; Hosokawa et al., 2009; Kamada et al.,
2010). On the other hand, however, mTOR may be feed-
back-regulated by autophagy. Overexpression of Atg1
inhibits TOR signaling in Drosophila, presumably as a neg-
ative feedback on the activity of TOR and to further enhance
induction of autophagy (Scott et al., 2007).

Accumulating evidence suggests that autophagy-associ-
ated signaling and genes are involved in cell survival, cell
death, and aging (Meijer and Codogno, 2009; Vellai, 2009). It
has been observed that autophagic activity declines with age
and this decline is associated with accumulation of damaged
proteins and organelles, a common characteristic feature of
aging (Vittorini et al., 1999; Cuervo and Dice, 2000). Up-
regulation of important components of the autophagy pro-
cess prevents age-dependent neuronal damage and
enhances longevity in Drosophila (Simonsen et al., 2008).
Mutation of autophagy-related gene Atg7 results in hyper-
sensitive to nutrient and oxidative stress and decreased
lifespan in Drosophila (Juhász et al., 2007). In addition,
induction of autophagy by pharmacological reagents such as
rapamycin, resveratrol or the natural polyamine spermidine,
caloric restriction, or genetic manipulations such as knocking
down the autophagy inhibitor p53, all have been shown to
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improve animal survival and reduce age-related mortality in
C. elegans (Jia et al., 2004; Tavernarakis et al., 2008).
Recent studies indicate that autophagy may modulate aging
in germline-less C. elegans through coordination with lipid
metabolism to prolong life span in a mTOR-dependent
manner (Lapierre et al., 2011, 2012). Furthermore, inhibition
of autophagy by knocking-out or knocking-down essential
Atg genes leads to apoptosis or necrosis and prevents the
longevity promoting effect of CR (Meléndez et al., 2003;
Boya et al., 2005; Madeo et al., 2010).

An interesting question remains to be fully addressed is
whether activation of autophagy mediates the beneficial
effects of suppressing insulin/IGF-1 or mTOR signaling on
longevity. The studies in various invertebrate animal models
demonstrate that autophagy may be involved in mTOR sig-
naling-associated lifespan regulation. Earlier studies show
that autophagy is essential for dauer development and life-
span extension in C. elegans (Meléndez et al., 2003). The
mutation of worm bec-1 (Beclin 1), homologue of yeast
VPS30/mammalian beclin1, as well as atg-7 and atg-12,
blocks lifespan extension by a daf-2 mutant (Clancy et al.,
2001; Meléndez et al., 2003). Indeed, autophagy activation
has been found to be a common feature of all the long-lived
mutant worms (Hansen et al., 2008; Toth et al., 2008). In
yeast, autophagy is required for normal survival as well as
lifespan extension by rapamycin (Alvers et al., 2009a,
2009b). Similar results were found in Drosophila, in which
inhibition of autophagy abrogates rapaymcin-dependent
lifespan extension (Bjedov et al., 2010). Furthermore, stud-
ies in fly and mouse models of Huntington disease discov-
ered that inhibition of mTOR induces autophagy and reduces
toxicity of polyglutamine expansions and aggregate forma-
tion (Ravikumar et al., 2004). However, whether autophagy
plays similar roles in decreased metabolic signaling associ-
ated lifespan extension in vertebrates still needs to be
clarified.

CR is the most efficient inducer of autophagy and inhibi-
tion of autophagy diminishes the anti-aging effects of CR in all
species investigated (Levine and Kroemer, 2008; Rubinsz-
tein et al., 2011). CR-induced autophagy may be mediated by
activation of either AMP-activated protein kinase (AMPK) or
Sirtuin 1 (SIRT1) (Cantó et al., 2010; Morselli et al., 2010),
two important cellular energy sensors. Moreover, CR can
induce autophagy through the inhibition of insulin/IGF-1 and
mTOR signaling pathways (Kenyon, 2010).

ER stress: role in insulin/IGF-1 and mTOR signaling
and aging

ER plays critical roles in protein translation, folding, modifi-
cation, and transportation to its final cellular destination.
Under pathophysiological conditions in which increased
misfolded or mutant proteins accumulated in the lumen, ER
initiates an adaptive stress response pathway known as
unfolded protein response (UPR) to reestablish protein

equilibrium (Harding and Ron, 2002; Ron and Walter, 2007;
Yoshida, 2007; Ron and Hubbard, 2008).

ER stress was first identified as a response to glucose
limitation, which leads to accumulation of misfolded proteins
in the ER due to impaired protein glycosylation. It was later
shown that UPR could be activated in response to both
glucose and oxygen deprivation thus functions as a sensor
for cell energy status (Kauffman et al., 2002). Numerous
studies have demonstrated that ER stress plays a critical
role in the progress of chronic metabolic diseases such as
obesity, insulin resistance, and type 2 diabetes (Harding and
Ron, 2002; Fonseca et al., 2007; Hotamisligil, 2010), as well
as atherosclerosis (Vasa-Nicotera, 2004; Zhao and Acker-
man, 2006) and the aging-related neurodegenerative dis-
eases (Lindholm et al., 2006; Yoshida, 2007). Thus, ER
stress response and related signaling networks are emerg-
ing as potential intersection sites of metabolic disease and
longevity.

Aging is associated with a decline in the expression and
activity of several key molecular chaperones and folding
enzymes responsible for proper protein folding and the
adaptive response of the UPR, including immunoglobulin
heavy chain-binding protein (BiP)/glucose regulated proteins
78 (GRP78), calnexin, calreticulin, and protein disulfide
isomerase (PDI) (Naidoo, 2009), which may partly attribute
to age-associated increase in protein misfolding and aggre-
gation. However, some other ER stress related proteins such
as the pro-apoptotic marker CCAAT/enhancer-binding pro-
tein-homologous protein (CHOP) and ER induced apoptosis
marker caspase-12 are increased during aging. CHOP lev-
els are elevated in the brain and other tissues of aged mice
(Paz Gavilan et al., 2006; Naidoo et al., 2008) and in aged
animals with sleep deprivation-induced ER stress (Naidoo
et al., 2008). It is well established that CHOP mediates
apoptosis in response to ER stress (Wang et al., 1996;
Zinszner et al., 1998; Tabas and Ron, 2011). Elevated CHOP
levels have also been shown to sensitize cells to oxidative
insults (Ikeyama et al., 2003) and increase ROS levels in rat
fibroblasts (McCullough et al., 2001).

Information on the link between insulin/IGF-1 or mTOR
signaling and ER stress in life span determination remains
limited. However, available evidence suggests a close link
between these metabolic signaling pathways and ER, which
makes it a potential anti-aging target. Induction of ER stress
by chemicals or obesity has been suggested as a key
mechanism leading to insulin resistance and type 2 diabetes
(Ozcan et al., 2004, 2006). Under the condition of ER stress,
activated c-Jun N-terminal kinase (JNK) inhibits insulin sig-
naling through phosphorylation of IRS-1 at serine 307,
leading to the development of insulin resistance (Aguirre
et al., 2000; Hirosumi et al., 2002). Recent studies in C.
elegans show that a decrease in the expression levels of
inositol requiring enzyme 1 (IRE1) and X-box binding protein
1 (XBP-1), two key molecules involved ER-associated deg-
radation (ERAD), shorten lifespan extension induced by
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insulin/IGF-1 signaling mutation (Henis-Korenblit et al.,
2010). Notably, XBP-1 has been shown to function syner-
gistically with DAF-16 to activate dox-1, a newly identified
longevity gene, leading to enhanced resistance to ER stress
and extended life span in daf-2 mutants (Henis-Korenblit
et al., 2010). However, the underlying mechanisms remain
elusive. It is also unclear whether the IRE-1/XBP-1 axis is
altered during aging, which would impede the coordination
with other stress response factors and consequently impair
the ER stress response.

Emerging data indicate that ER is closely associated with
the autophagic process. ER is one of the major membrane
sources contributing to the maturation of pre- or autophag-
osomal structures and thus structurally connected to the
autophagic machinery (Hayashi-Nishino et al., 2009; Hailey
et al., 2010). In addition to the structural connection, ER also
functions closely with autophagy under both physiological
and pathophysiological conditions. It has been shown that
ER stress induces autophagy in mammalian cells (Ogata
et al., 2006), which provides an alternative mechanism to
remove misfolded proteins that cannot be degraded by
ERAD and thus assists ER homeostasis and cell survival
(Ding and Yin, 2008). Phosphorylation of PKR-like eukary-
otic initiation factor 2α kinase (PERK) and eukaryote initia-
tion factor 2α (eIF2), two molecules important for
translational regulation and cell survival during ER stress,
has been shown to be essential for autophagy formation
(Kouroku et al., 2007). As a result, defected autophagy in
liver leads to ER stress and insulin resistance in obesity
(Codogno and Meijer, 2010; Yang et al., 2010).

Although both mTOR and ER stress signaling have
attracted wide attention in fundamental cell biology and drug
discovery, evidence on the crosstalk between the two path-
ways has emerged only very recently (Appenzeller-Herzog
and Hall, 2012). As a key regulator of protein synthesis,
mTORC1 controls both upstream and downstream of ER
stress signals. Conversely, ER stress is able to activate
mTORC1 via ATF6a, which triggers the PI3K pathway and
increases the levels of RHEB by unknown mechanisms
(Appenzeller-Herzog and Hall, 2012). Chronic ER stress
leads to phosphorylation of the mTORC2 component RIC-
TOR by GSK3b, resulting in suppression of Akt activation
and glucose metabolism (Chen et al., 2011).

The interplay between mTOR signaling and UPR is par-
ticularly important in stress-induced apoptosis. Under unfa-
vorable growth conditions, activation of TSC1/TSC2 would
inhibit cell growth and thus protects cells from the harmful
environment. While under the conditions of TSC mutation or
rich in nutrients, mTORC1 is constitutively activated to
stimulate translation and promotes cell growth, which has
been found to cause ER stress (Ozcan et al., 2004; Kang
et al., 2011). Cells with mutation in either TSC1 or TSC2 are
hypersensitive to ER stress and undergo apoptosis. In
addition, defects in ER stress response in TSC mutant cells
could be restored by RAPTOR knockdown or by RHEB

activation (Kang et al., 2011), demonstrating a functional link
between mTOR signaling and ER stress. Consistent with
this, a recent study found that ER stress robustly activated
mTORC1, which in turn induced apoptosis (Kato et al.,
2012). However, while these results demonstrate a positive
relationship between ER stress and mTOR in apoptosis,
other studies suggest a negative correlation between ER
stress and mTOR. TSC-deficient cells have been found to be
more resistant to ER stress-induced autophagy, probably
due to constitutive activation of mTOR (Qin et al., 2010). In
response to oxidative and ER stress, activating transcription
factor 4 (ATF4) and CCAAT/enhancer-binding protein-beta
(C/EBP-beta) negatively regulate mTOR by stimulating the
expression of Redd1 (Jin et al., 2009), a known inhibitor of
mTOR (Corradetti et al., 2005) whose expression is induced
by a variety of cellular stress conditions, including hypoxia
and energy stress (Sofer et al., 2005).

Although direct evidence remains limited, some indirect
evidence postulates a potential linkage between ER stress
and mTOR in lifespan determination. Studies in worms show
that some genes that are involved in ER stress mediate
lifespan extension and TOR signaling (Jia et al., 2004;
Steffen et al., 2008). For example, GCN4, a nutrient-
responsive transcription factor that regulates diverse cellular
processes including autophagy and ER stress response
(Natarajan et al., 2001; Patil et al., 2004), has been found to
mediate lifespan extension in yeast (Steffen et al., 2008). In
addition, the hypoxia inducible factor-1 (HIF-1), one of the
targets of the mTOR pathway in mammalian cells, has been
shown to be involved in CR-induced lifespan extension in C.
elegans (Jia et al., 2004).

Mitochondria: the cellular powerhouse and a primary
determinant of longevity

Mitochondrion is another important player that may mediate
insulin/IGF-1 or mTOR signaling in aging. As major energy-
generating organelles in eukaryotic cells, mitochondria are
essential in maintaining cellular energy supplies by gener-
ating adenosine triphosphate (ATP) through oxidative
phosphorylation (OXPHOS). Mitochondria are also one of
the primary sites for the production of reactive oxygen spe-
cies (ROS), which are generated as a toxic by-product dur-
ing OXPHOS. Various studies have demonstrated that
increased ROS and oxidative stress as one of the important
causes of mammalian aging (Harman, 1956; Finkel and
Holbrook, 2000; Wallace, 2005).

It is well established that mitochondrial function and
activity are primary determinants of longevity. Defects in
mitochondrial function and/or reduction in mitochondrial
numbers are closely associated with many age-related dis-
eases, including metabolic syndrome, neurodegenerative
diseases, and cancer (Wallace, 2005). A progressive loss of
mitochondrial energetic capacity, which is observed in
diverse organisms including humans, is linked to age-
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associated decline in the expression of genes important for
mitochondrial electron transport chain (ETC) function and
energy metabolism (Petersen et al., 2003; McCarroll et al.,
2004; Zahn et al., 2006).

Insulin/IGF-1 signaling has been shown to regulate
mitochondrial DNA and OXPHOS protein syntheses, oxida-
tive capacity, and ATP production and dysregulation in
insulin signaling is associated with mitochondrial dysfunction
that leads to various metabolic diseases (Kelley et al., 2002;
Lowell and Shulman, 2005), although the causal relationship
between insulin resistance and mitochondrial dysfunction
remains to be further defined (Turner and Heilbronn, 2008). It
is still puzzling as to whether and how suppressed insulin/
IGF-1 signaling is associated with improved mitochondrial
function in longevity. Studies in a mouse model of Hunting-
ton’s disease show that reducing IRS2 level in brain induces
lifespan extension of animals with improved mitochondrial
function, autophagy, and oxidative stress resistance (Sada-
gurski et al., 2011), which is linked to increased nuclear
localization of the transcription factor FOXO1 and expres-
sion of FOXO1-dependent genes that exert these beneficial
effects. However, another study found that knockout of both
Irs-1 and Irs-2 in the liver activated the FOXO1 target gene
Hmox1 (heme oxygenase-1), leading to disruption of com-
plex III and IV of the respiratory chain, lower NAD+/NADH
ratio, and reduced ATP production (Cheng et al., 2009).
Apparently, there is a tissue-specific regulation of mito-
chondrial activity by insulin in aging.

The mTOR signaling has been shown as a direct regu-
lator of mitochondrial function (Ramanathan and Schreiber,
2009). In skeletal muscle, inhibition of mTOR by rapamycin
decreases the gene expression of peroxisome proliferator-
activated receptor γ (PPARγ) coactivator 1α (PGC-1α), a
master regulator of mitochondrial biogenesis in many tis-
sues, and estrogen-related receptor α and nuclear respira-
tory factors, resulting in a decrease in mitochondrial gene
expression and oxygen consumption (Schieke et al., 2006;
Narasimhan et al., 2009; Hwang et al., 2012), suggesting a
positive role of mTOR in mitochondrial function.

Interestingly, a series of studies conducted in yeast
showed that inhibition of TOR signaling extended life span
via modulation of mitochondrial respiration, function, and
gene expression. For example, deletion of the RAPTOR
extended lifespan in yeast by increasing mitochondrial res-
piration via enhanced translation of mtDNA-encoded oxida-
tive phosphorylation complex subunits (Bonawitz et al.,
2007). Reducing TORC1 signaling by rapamycin couples
respiration and ROS during growth, which extends chrono-
logical lifespan in yeast (Pan et al., 2011).

Accumulation of damaged proteins in mitochondria is a
feature common to all aged cells. Mitochondria damage-
induced autophagy or “mitophagy” is one of the major deg-
radation pathways in mitochondrial turnover and homeosta-
sis (Kim et al., 2007). Age-associated loss of autophagy
leads to accumulation of damaged mitochondria, which

triggers cell death and inflammation (Green et al., 2011).
Mitophagy can be induced by nutrient deprivation, oxidative
stress, hypoxia, mitochondrial dysfunction, and alterations of
mitochondrial permeability transition (MPT) (Lemasters,
2005). Elimination of damaged mitochondria by autophagy
serves as a rescue mechanism for cells to escape from cell
death (Codogno and Meijer, 2005). Recent studies show that
targeted mitochondrial damage led to up-regulation of
autophagy genes LC3B, ATG5, and ATG12 in human
endothelial cells (Mai et al., 2012). On the other hand, over-
expression of these genes improved mitochondrial mem-
brane potential and enhanced ATP production, which might
contribute to increased cellular longevity (Mai et al., 2012).

Some major neurodegenerative diseases, including Par-
kinson’s disease (PD), Huntington’s disease, and Alzhei-
mer’s disease, are linked to defects in mitochondria and
autophagy. PD is caused by the selective loss of dopami-
nergic neurons, which can be induced by mitochondrial
toxins. Several genes, inlcuding PINK1 (phosphatase and
tensin homolog (PTEN)-induced putative kinase 1), Parkin,
or DJ1, have been shown to play important roles in mito-
phagy and mutations of these genes often link to autosomal
recessive PD (Geisler et al., 2010; Youle and Narendra,
2011). As a critical determinant of mitophagy, Parkin is
selectively recruited to mitochondria with low membrane
potential, which facilitates the engulfment of mitochondria by
autophagosomes (Narendra et al., 2008). Overexpression of
Parkin eliminates mitochondria with deleterious mutations in
cytochrome oxidase subunit I (COXI) (Suen et al., 2010),
suggesting that Parkin may mediate a mitochondrial quality
control pathway to maintain organelle homeostasis. There is
some evidence suggesting that mTOR may be involved in
Parkin relocation and mitophagy (Gilkerson et al., 2011).
However, the molecular mechanisms underlying the cross-
talk between mitochondrial dysfunction and autophagy
remain to be further elucidated.

FUTURE DIRECTIONS AND CONCLUDING
REMARKS

Recent advances have significantly increased our under-
standing of how aging and health-span are regulated by
metabolic signals in response to cellular, nutrient, and envi-
ronmental cues. An emerging view is that aging and meta-
bolic dysfunction are closely associated and interventions
that improve metabolism may also extend lifespan. Several
manipulations, such as suppressing the insulin/IGF-1 and
the mTOR signaling pathways, improving ER and mito-
chondrial function, and activating the autophagic process,
have been shown to effectively slow down the aging process
in various species ranging from yeast, flies to rodents.
However, while these findings raise great hope to improve
health-span and extend lifespan by targeting metabolic sig-
naling pathways, many issues remain to be resolved before
these interventions can be effectively applied to clinic. One

REVIEW Fang Hu and Feng Liu

28 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



of the major challenges is that these metabolic signaling
pathways have tissue-specific function and whole-body
suppressing these pathways may lead to metabolic disor-
ders and accelerated aging. Thus, developing therapeutic
drugs targeting tissue-specific signaling pathways would be
of high clinic value. One of the promising targets is adipose
insulin signaling pathway. Consistent with this, fat-specific
disruption of this signaling pathway led to extended lifespan
and improved metabolism (Bluher et al., 2003; Katic et al.,
2007). Another possible target for aging is the mTORC1
signaling pathway in adipose tissues. Suppressing insulin
and mTOR signaling pathways in adipose tissues may pro-
mote the biosynthesis and secretion of adipokines that are
beneficial for health. Fat-specific suppression of these sig-
naling pathways, on the other hand, may decrease biosyn-
thesis and secretion of adipokines that are harmful to
metabolism and longevity. Consistently, significantly higher
levels of adiponectin, an anti-inflammatory and insulin sen-
sitizing adipokine, have been found in centenarians (Bik
et al., 2006).

Due to the complex nature of aging and metabolism, it is
not yet clear whether targeting key signaling pathways
involved in metabolism in specific tissues will actually
improve healthy aging in humans. It is also unclear how
tissue-specific signaling pathways could be effectively and
specifically targeted. New strategies to suppress tissue-
specific insulin and/or the mTOR signaling pathways or to
mimic CR response in humans should be of significant value
to improve metabolism and extend health-span. Further
studies are thus warranted to elucidate the tissue-specific
signaling pathways involved in the regulation of metabolism
and aging, which is essential for the development of effective
small compounds that exert tissue-specific function on
healthy lifespan.
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