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ABSTRACT 

Derived from neural stem cells (NSCs) and progenitor 
cells originated from the neuroectoderm, the nervous 
system presents an unprecedented degree of cellular 
diversity, interwoven to ensure correct connections for 
propagating information and responding to environ-
mental cues. NSCs and progenitor cells must integrate 
cell-intrinsic programs and environmental cues to 
achieve production of appropriate types of neurons and 
glia at appropriate times and places during develop-
ment. These developmental dynamics are reflected in 
changes in gene expression, which is regulated by 
transcription factors and at the epigenetic level. From 
early commitment of neural lineage to functional plas-
ticity in terminal differentiated neurons, epigenetic 
regulation is involved in every step of neural develop-
ment. Here we focus on the recent advance in our un-
derstanding of epigenetic regulation on orderly genera-
tion of diverse neural cell types in the mammalian 
nervous system, an important aspect of neural devel-
opment and regenerative medicine. 
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INTRODUCTION 

Neural stem cells (NSCs) in the central nervous system begin 
as a single layer of columnal neuroepithelial cells in the ven-
tricular zone (VZ) of the neural tube (Temple, 2001). After 

initial symmetric divisions to self-expand, NSCs divide 
asymmetrically to give rise to differentiated progeny and 
maintain a copy of themselves, demonstrating both self-  
renewal and differentiation, two defining features of stem cells. 
Throughout neural development, NSCs undergo changes so 
as to generate a vast diversity of neural cells: neurons, as-
trocytes and oligodendrocytes, following a precisely con-
trolled timing program to build up the most complex nervous 
system. 

The best example of sequential cell generation by NSCs is 
demonstrated in corticogenesis, the developmental process 
of the cerebral cortex. The cerebral cortex is a six-layered 
structure derived from the anterior neuroectoderm. NSCs in 
the cerebral cortex first generate neurons, a process called 
neurogenesis, and then glia. Within cortical neurogenesis, 
different neuronal subtypes are generated in a precise timing 
order, aligned into different layers in an “inside-out” manner: 
early born neurons form the deeper layers while later-born 
neurons form the upper layers (Jacobson, 1991; Hevner et al., 
2003). This timing program is preserved in cultured corti-
cal-derived NSCs (Qian et al., 1998; Qian et al., 2000; Shen 
et al., 2006; Ravin et al., 2008), and also in NSCs derived 
from mouse and human pluripotent embryonic stem cells 
(Eiraku et al., 2008; Gaspard et al., 2008). However, the mo-
lecular mechanisms driving the orderly generation of different 
types of neurons and glia from NSCs remain to be uncovered. 
Recent studies have begun to reveal the important role of 
epigenetic mechanisms in timing cell fate choice of NSCs. 

Epigenetic regulation leads to inheritable changes in 
phenotype or gene expression other than changes in the 
DNA sequence (Morange, 2002; Holliday, 2006; Bernstein et 
al., 2007; Goldberg et al., 2007; Jamniczky et al., 2010). 
Epigenetic events are defined as the structural adaptation of 
chromosomal regions so as to register, signal or perpetuate 
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Figure 1.  Major epigenetic regulators involved in the differentiating process from embryonic stem cells into neural stem 
cells and the timing of cell fate determination of neural stem cells (neurogenesis and gliogenesis). 

 
altered activity states (Bird, 2007), which is accomplished 
through three highly interconnected pathways: DNA methyla-
tion, chromatin modifications including ATP-dependent 
chromatin remodeling and covalent histone modification, and 
non-coding RNA expression (Bernstein and Allis, 2005; Goll 
and Bestor, 2005; Allis et al., 2007; Goldberg et al., 2007). In 
this review, we provide an overview on epigenetic regulation 
of neurogenesis through different mechanisms and their in-
terplay and highlight the most recent progresses in the field. 

DNA METHYLATION 

DNA methylation is one of the major epigenetic mechanisms 
in vertebrate (Groth et al., 2007; Suzuki and Bird, 2008). DNA 
methylation is required for fundamental processes, including 
gene imprinting, X chromosome inactivation in females, 
transcriptional repression of transposons in both germ and 
somatic cells and the establishment and maintenance of 
stable cellular identities (Yoder et al., 1997; Walsh and Bestor, 
1999; Bird, 2002; Jaenisch and Bird, 2003; Ooi and Bestor, 
2008b; De Carvalho et al., 2010; Deaton and Bird, 2011; Goll 
and Halpern, 2011). A family of DNA methyltransferases 
(Dnmts), including de novo DNA methyltransferases Dnmt3a 
and Dnmt3b and maintenance methyltransferase Dnmt1, 
mediates the methylation reaction, which adds a methyl 
group (-CH3) to the 5′ position of the pyrimidine ring of cyto-
sine residues and primarily occurs at CpG dinucleotides (Li et 
al., 1992; Okano et al., 1999; Goll and Bestor, 2005; Surani et 
al., 2007). DNA cytosine methylation is typically a repressive 
mark associated with transcriptional silencing. It can directly 
interfere with the binding of transcription factors to their target 
gene sequences or indirectly suppress gene expression 
through a family of methyl-CpG binding domain containing 
proteins (MBDs) such as MBD1-3 and methy-CpG binding 
protein (MeCP2) (Robertson and Wolffe, 2000), which further 
recruit repressor complexes containing histone deacetylases 

(HDAC) (Robertson et al., 2000). 

DNA methylation regulates neural development 

Reduction of DNA methylation by ablation of Dnmt1 or 
Dnmt3b in mice leads to embryonic lethality, with multiple 
developmental defects including neural tube defects (Li et al., 
1992; Okano et al., 1999). While mice lacking Dnmt3a alone 
are able to live to birth, postnatal neurogenesis is severely 
affected (Okano et al., 1999; Nguyen et al., 2007; Wu et al., 
2010a). The difference in phenotype could be explained by 
overlapping function of these two genes and the temporal 
difference in their expression in the nervous system. Dnmt3b 
is expressed in early neural progenitor cells (NPCs) and de-
creases as neural development proceeds. In contrast, the 
Dnmt3a full length variant is barely detectable in E10.5 
mouse forebrain but expression significantly increases from 
E13.5 and persists into adulthood (Feng et al., 2005; Li et al., 
2007; Wu et al., 2010a). In the postnatal forebrain, Dnmt3a is 
expressed in the subventricular zone (SVZ) and the hippo-
campal dentate gyrus. It mediates methylation at the non-
promoter regions in genes related to nervous system devel-
opment and neurogenesis, but methylates the proximal pro-
moter regions of non-neuronal genes such as GFAP (Wu et 
al., 2010a). Loss of Dnmt3a in postnatal NSCs leads to 
down-regulation of neurogenic genes Dlx2, Neurog2 and Sp8, 
but up-regulation of genes involved in astroglial and oli-
godendroglial differentiation, accounting for the impairment of 
neurogenesis (Wu et al., 2010a) (Fig. 1). 

The MBD protein family members are predominantly ex-
pressed in neurons in the central nervous system (Juliandi et 
al., 2010b), but recently evidence for their involvement in 
adult neurogenesis begins to emerge. MBD1 is required for 
postnatal neurogenesis in the SGZ (Zhao et al., 2003). It 
binds to the promoter of the fibroblast growth factor 2 (FGF2) 
gene, a mitogen for NSCs and progenitor cells. Loss of 
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Figure 2.  The network of epigenetic regulation in controlling neurogenesis. Different epigenetic mechanisms can cooperate 
and constitute a regulation network to regulate cell fate. The color filled arrows indicate experimentally tested regulation and the 
blank arrows indicate proposed regulation in CNS. REST/NRSF, RE-1 silencing transcription factor or neural restrictive silencer 
factor; MeCP2, methyl CpG binding protein 2; Dnmt3a/Dnmt3b, DNA (cytosine-5)-methyltransferase 3a or b; MBD1/2, 
methyl-CpG-binding domain protein 1 or 2. 

 
MBD1 in adult NSCs reduces methylation of the FGF2 pro-
moter region, and increases the level of FGF2, leading to 
impairment of neuronal differentiation (Li et al., 2008) (Fig. 1). 
Recently, both MeCP2 and MBD1 have been shown to 
regulate microRNA expression, suggesting interplay between 
different epigenetic mechanisms (Liu et al., 2010; Wu et al., 
2010b) (Fig. 2). 

Interestingly, a recent study shows that postnatal acquisi-
tion of methylation at the germline differentially methylated 
region is associated with specific and selective loss of im-
printing of the delta-like homologue 1 (Dlk1) gene, which 
encodes membrane-bound and secreted isoforms of a 
NOTCH ligand with the former expressed in NSCs and the 
latter expressed in niche astrocytes. The membrane-bound 
Dlk1 in NSCs is required for self-renewal and adult neuro-
genesis in response to secreted Dlk1 from niche astrocytes 
(Ferrón et al., 2011) (Fig. 1). These studies demonstrate that 
DNA methylation could occur at gene- and context-specific 
level to allow fine tuning of neurogenesis. 

DNA methylation is also an important mechanism for tim-
ing the neuron/glia fate choice, which has been discussed in 
excellent reviews by Nakashima’s group (Kohyama et al., 
2008; Juliandi et al., 2010a, b). A change in DNA methylation 
of the astrocyte-specific gene promoters (such as GFAP) 
allows the progenitor cells to generate neurons at early stage, 
and then switch to adopt glial fate during late stage in re-

sponse to gliogenic signals such as LIF and CNTF (Kohyama 
et al., 2008; Namihira et al., 2008) (Fig. 1). Conditional dele-
tion of Dnmt1 in Nestin positive neural progenitor cells led to 
accelerated demethylation in glial differentiation-related 
genes and precocious astroglial differentiation (Fan et al., 
2005). In contrast, ectopic expression of MeCP2, an MBD 
family gene mutated in Rett syndrome, in NSCs exposed to 
astrocyte-inducing factors prevents astroglia differentiation 
but promotes neuronal differentiation; however this is not 
associated with methylation of the GFAP promoter but the 
binding of MeCP2 to the hypermethylated exon region of the 
GFAP gene (Setoguchi et al., 2006; Tsujimura et al., 2009) 
(Fig. 1). Hence the status of DNA methylation in both pro-
moter and exon regions of cell-specific genes is critical for 
cell-fate determining. 

DNA demethylation in neural development 

DNA methylation can be removed passively through blocking 
methylation of newly synthesized DNA during DNA replica-
tion, or actively through enzymatic reactions that remove the 
methyl-modifications (Weiss and Cedar, 1997; Kapoor et al., 
2005; Niehrs, 2009). Evidence for active demethylation has 
emerged since the 1980s when it was demonstrated that 
mammalian cells contain an enzymatic activity, which re-
leases tritium from 5-(3H-methyl) cytosine-labeled DNA 
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(Gjerset and Martin, 1982) and demethylation occurs in a 
site-specific manner and independent of DNA synthesis 
(Wilks et al., 1984). Recent advance in reprogramming dif-
ferentiated cells to pluripotent state also provides a prominent 
example of DNA demethylation (Bhutani et al., 2010). The 
identity of a direct demethylase, an intuitive choice for de-
methylation, however, has been elusive and controversial 
(Ooi and Bestor, 2008a; Ma et al., 2009). Interestingly, it has 
been found that DNMT3a/3b are also capable of deamination 
that changes a cytosine to thymidine, providing a mechanism 
for cyclic transition between methylation and demethylation 
(Métivier et al., 2008). Different groups have identified in the 
past year or so enzymes that modify the methyl group to 
indirectly mediate active demethylation in mammalian cells, 
such as the ten-eleven translocation (TET) family, the 
AID/APOBEC family, and a family of base excision repair 
(BER) glycosylases (Rai et al., 2008; Bhutani et al., 2010; 
Cortellino et al., 2011; Ficz et al., 2011; Guo et al., 2011; He 
et al., 2011b; Pastor et al., 2011; Song et al., 2011; Wu et al., 
2011a, b; Xu et al., 2011). These enzymes first modify the 
methylated cytosine by hydroxylation, deamination, oxidation, 
or a combination of these modifications, leading to its re-
placement by DNA repair. These studies have further sup-
ported the notion that active DNA demethylation is an impor-
tant determinant for the DNA methylation signature of a cell 
(Bhutani et al., 2011). 

The nervous system is perhaps one of the earliest speci-
fied tissues during development. It emerges in a process 
called neurulation which occurs after neural induction of the 
ectoderm by the underlying mesoderm into the neuroecto-
derm (Smith and Schoenwolf, 1997). Expression of neural 
tissue-specific marker genes, such as Nestin and Sox1, first 
becomes detectable at E7.0–E8.0 in mouse embryos (Wood 
and Episkopou, 1999; Kawaguchi et al., 2001). NSCs that are 
responsive to FGF2 to generate floating neurospheres in vitro 
first appear at E8.5 and persist into adulthood (Reynolds and 
Weiss, 1992; Tropepe et al., 1999). Maintenance of the NSC 
identity requires activation of Notch signaling pathway (Na-
kamura et al., 2000; Hitoshi et al., 2002; Hitoshi et al., 2004). 
However, what mechanism induces early NSC fate has been 
less clear. A recent study has shown that Hes5, one of the 
target genes of Notch signaling, is highly methylated in E7.5 
embryos but completely demethylated by E9.5 (Hitoshi et al., 
2011). Interestingly, two mammalian homologues of the 
Drosophila Gcm gene, Gcm1 and Gcm2, play a critical role in 
demethylation of the Hes5 promoter, allowing it to respond to 
the Notch signaling. Single knockout of Gcm1 or Gcm2 par-
tially reduced but double knockout Gcm1 and 2 significantly 
reduced derivation of definitive NSCs, and the reduction 
could be rescued by Hes5 expression, suggesting that ex-
pression of Hes5 which is enabled by demethylation through 
Gcms in early embryos is required for generation of NSCs 
(Hitoshi et al., 2011) (Fig. 1). The demethylation does not 
involve MBD4, which possesses thymidine glycosylase activ-

ity, so the mechanism of active demethylation by Gcms 
needs to be further investigated. 

DNA demethylation has been shown to be important for 
activity-dependent modulation of adult neurogenesis in the 
hippocampus. This is mediated by Gadd45b, an activ-
ity-induced immediate early gene, which can act as a sensor 
in mature neurons for changes in environment. Gadd45b 
promotes DNA demethylation and relieves repression of 
genes critical for adult neurogenesis, including brain-derived 
neurotrophic factor (BDNF) and FGF2, thus providing a 
bridge between neuronal activity and proliferation and neuron 
production of adult neural progenitor cells (Ma et al., 2009; 
Wu and Sun, 2009; Ma et al., 2010) (Fig. 1). Furthermore, the 
three demethylation enzymatic systems seem to act coop-
eratively: a TET1/APOBEC-mediated oxidation-deamination 
mechanism promotes DNA demethylation in the adult brain 
through a process that requires the BER pathway (Guo et al., 
2011), indicating the adult brain possesses a robust, active 
demethylating machinery. 

CHROMATIN VARIATIONS: COVALENT HISTONE 
MODIFICATION AND NONCOVALENT  
MECHANISMS 

The nucleosome is the fundamental repeating subunit of 
chromatin, consisting of an octamer of histone proteins 
(Kornberg, 1974). The N-terminal tails of histones are highly 
subject to a diverse and complex array of posttranslational 
covalent modifications, including acetylation, methylation, 
phosphorylation, ubiquitylation, sumoylation, ADP ribosyla-
tion, deamination and proline isomerization (Zhang and 
Reinberg, 2001; Kouzarides, 2007). However, not all these 
modifications will be on the same histone at the same time. 
Among these modifications, acetylation and lysine methyla-
tion are most studied and can be identified by chromatin im-
munoprecipitation (ChIP) on CHIP assays using modifica-
tion-specific antibodies. 

Histone acetylation 

Histone acetylation is catalyzed by histone acetyltransferases 
(HATs) on the lysine residues of the N-terminal histone tails, 
which destabilizes nucleosome structure or arrangement and 
allows other nuclear factors, such as transcriptional activators, 
to gain an access to a genetic locus, leading to gene activa-
tion (Roth and Allis, 1996; Wade et al., 1997; Sterner and 
Berger, 2000). Histone acetylation is a reversible process and 
can be removed by HDACs, which leads to gene repression 
(Pazin and Kadonaga, 1997; Kuo and Allis, 1998). For ex-
ample, HDAC-mediated transcriptional repression is essential 
for the proliferation and self-renewal of NSCs (Sun et al., 
2007; Sun et al., 2011) (Fig. 1). Neural-expressed HDACs 
interact with TLX, an essential neural stem cell regulator, to 
suppress TLX target genes, including the cyclin-dependent 
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kinase inhibitor P21 and the tumor suppressor gene Pten, to 
promote NSC proliferation (Sun et al., 2007). Inhibition of 
HDACs by the anti-epileptic drug valproic acid (VPA) or 
trichostatin A induces neuronal differentiation and inhibits glial 
cell differentiation of adult NSCs, which is likely mediated 
through upregulation of neuronal specific genes, such as 
neurogenic basic helix-loop-helix transcription factors NeuroD, 
Neurogenin 1(Ngn1) and Math1 (Hsieh et al., 2004; Yu et al., 
2009). Conditional loss of HDAC1 and 2 in neural precursor 
cells prevented them from differentiating into neurons 
(Montgomery et al., 2009), while conditional knockout of 
HDAC1/2 in oligodendrocyte precursor cells disrupts oli-
godendrocyte formation (Ye et al., 2009), suggesting histone 
deacetylation plays important roles at different stages of 
neural development (Fig.1). 

Histone methylation and demethylation 

Compared with HATs and HDACs, which can modify more 
than one lysine residue, lysine methyltransferases which 
catalyze histone methylation usually modify one single lysine 
on a single histone (Bannister and Kouzarides, 2005). Con-
sequently, lysine methylation regulates transcriptional activity 
depending on the location and number of methyl-groups: 
histone H3 methylation at lysine 4 (K4), K36 and K79 leads to 
transcriptional activation (Bannister et al., 2005; Zhao et al., 
2005; Cartagena et al., 2008; Edmunds et al., 2008), 
whereas histone H3 methylation at K9 and K27 as well as 
histone H4 methylation at K59 leads to transcriptional silenc-
ing (Rougeulle et al., 2004; Alvarez-Venegas and Avramova, 
2005; Zhao et al., 2005). 

Unlike histone acetylation, which seems to be dynamic 
and reversible, histone methylation had been thought to be 
stable and could be reversed only by histone replacement. 
However recent discoveries of histone demethylase indicate 
that histone methylation could be subject to changes during 
development. Since the first histone demethylase LSD1 was 
identified in 2004, many other findings of such enzymes, such 
as AOF1/KDM1A, JHDM2A, JMJD2/KDM4, GASC1, SMCX/ 
JARID1c, JARID1d, YJR119c/KDM5, JMJD3/UTX/KDM6A, 
FBXL/KDM2, have been reported (Shi et al., 2004; Cloos et 
al., 2006; Whetstine et al., 2006; Yamane et al., 2006; Huarte 
et al., 2007; Iwase et al., 2007; Lan et al., 2007; Lee et al., 
2007a, b; Ciccone et al., 2009; Mosammaparast and Shi, 
2010). The selectivity of histone demethylases for mono-, di-, 
or tri-methylated lysines provides more precise functional 
control of lysine methylation. 

The status of histone methylation is also regulated by 
growth factors, creating a temporal neuron/glia switch during 
development. In later stage of cortical culture, FGF2 facili-
tates the access of transcription factors activated by CNTF to 
the GFAP promoter by inducing H3K4 methylation and sup-
pressing H3K9 methylation, promoting the astrocyte fate 
(Song and Ghosh, 2004; Irmady et al., 2011) (Fig. 1). 

Recently, bivalent domains which possess both activating 
and repressive modifications such as H3K4 and H3K27 me-
thylation were discovered in many developmental regulatory 
gene loci in embryonic stem cells (ESCs) (Azuara et al., 2006; 
Bernstein et al., 2006; Golebiewska et al., 2009; Jiang et al., 
2011). The bivalent marks keep these genes in a “poised” 
state to maintain the ESC’s ability to self-renew but be ready 
to differentiate upon appropriate signals. Removing the 
H3K27 methylation ensures them to switch from 
self-renewing state to differentiation in response to environ-
mental cues (He et al., 2011a). Upon differentiation signals, 
specific H3K27 demethylases such as JMJD3 resolves the 
bivalent domain at the nestin promoter, permitting neural 
lineage commitment (Burgold et al., 2008). Similarly, 
H3K4me2/3 histone demethylase JARID1b (KDM5b/PLU1) 
has been found to be essential for ESC differentiation along 
the neural lineage (Schmitz et al., 2011). Depletion of Dpy-30, 
a core subunit of the SET1/MLL histone methyltransferease 
complexes, significantly reduces H3K4 methylation but does 
not affect ESC self-renewal. Instead, loss of Dpy-30 sup-
presses the induction of neural specific genes by retinoic acid 
(Jiang et al., 2011). These results indicate the importance of 
H3K4 methylation in developmental potential of ESCs into 
neural lineage (Fig. 1). 

Chromatin remodeling complexes 

Chromatin remodeling complexes provide additional nonco-
valent mechanisms to modify chromatin accessibility by 
changing histone-DNA interaction in an ATP-dependent 
manner (Martens and Winston, 2003; Smith and Peterson, 
2005; de la Serna et al., 2006; Hargreaves and Crabtree, 
2011). These complexes consist of three classes based on 
the similarities of their ATPase subunits to the Swi2/Snf2, 
Isw1, and Mi-2 proteins. Mammalian SWI/SNF complexes 
contain one of two catalytic ATPase subunits: Brm (for 
Brahma; also called SNF2α) and Brg1 (also called SNF2β). 
During neural development, the expression of Brg1 is pre-
dominantly in neurons, but not in progenitor cells in the em-
bryonic cerebral cortex before E13, then afterwards is in-
duced in progenitor cells in the VZ and SVZ (Randazzo et al., 
1994; Matsumoto et al., 2006). Deletion of Brg1 in Nestin-cre 
mice causes defects in neuronal differentiation and glial gen-
eration, suggesting Brg1 is required to maintain gliogenic 
populations of NSCs (Matsumoto et al., 2006). Interestingly, 
Brg can function as both repressor and activator independent 
of its ATPase activity in regulating Shh signaling in the fore-
brain (Zhan et al., 2011), providing another piece of evidence 
to reveal the complexity of epigenetic regulation. 

The Polycomb group of proteins and recently identified 
Brahma related gene (Brg)/Brahma (Brm)-associated factor 
complexes are also important chromatin remodeling factors. 
In ES cells, lineage-specific genes are repressed by Poly-
comb-mediated H3K27 trimethylation. The Polycomb group 



Epigenetic control on cell fate choice in neural stem cells  Protein & Cell 
 

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012 283 

(PcG) family of proteins was first identified in Drosophila be-
cause of patterning defects caused in PcG mutant flies (Ken-
nison, 1995). PcG proteins form two repressor complexes, 
Polycomb repressive complex 1 (PRC1) and Polycomb re-
pressive complex 2 (PRC2), to serve as enzymes that carry 
out histone modifications (Ringrose and Paro, 2004; Schmitz 
et al., 2011). The PRC2 proteins including Eed, Suz12, and 
Ezh1 or Ezh2 act as methyltransferases to catalyze methyla-
tion of lysine 27 of histone H3 (Cao et al., 2002; Nekrasov et 
al., 2005). The trimethylation marks deposited by PRC2 re-
cruit PRC1, and then members of PRC1 such as Ring1A/B 
and Bmi1 modify histone H2A, leading to a cascade of ac-
tions of gene silencing (Wang et al., 2004). In addition to 
cooperating on many PcG target genes, PRC2 and PRC1 
can also have independent targets (Ku et al., 2008). PcG 
targeting is highly dynamic during the transition from ESCs to 
neural progenitor cells, and to fully differentiated neurons 
(Mohn et al., 2008). ESCs acquire characteristic epigenetic 
marks during their differentiation to the neural lineage 
(Meissner et al., 2008; Sato et al., 2010). Ablation of PcG 
proteins at different developmental stages yields distinct 
outcomes (Testa, 2011), suggesting the recruitment and 
targeting of PcG factors is temporally regulated (Fig. 1). How 
PcG complexes are recruited to different targets at different 
developmental stages awaits further investigation. 

The BAF complexes (npBAFs and nBAFs) exert functions 
important for self-renewal of NSC or neuronal differentiation 
depending on the different combinatorial assembly of the 
complexes (Lessard et al., 2007; Wu et al., 2007; Yoo et al., 
2009). For example, differentiation of ES cells into neural 
progenitor cells is accompanied by activation of Brm and 
npBAF. While npBAF is assembled specifically in neural 
progenitor cells to promote self-renewal, nBAF is found only 
in postmitotic neurons and dedicated to neuron-specific func-
tions, indicating the existence of cell-type specific and de-
velopmental stage-specific chromatin remodelers (Lessard et 
al., 2007; Wu et al., 2007). 

NONCODING RNA 

Recently, emerging evidence has pointed to an important role 
of RNAs, particularly non-protein coding RNAs (ncRNA) in 
controlling multiple epigenetic phenomena such as 
X-chromosome inactivation, gene imprinting and 
RNAi-mediated silencing (Bernstein and Allis, 2005; Mattick 
and Makunin, 2006). The sizes of ncRNAs range from 21 
nucleotides (nt), as in the case of mature microRNAs 
(miRNAs), to more than 100,000 nt, such as the Air (an-
tisense to Igf2r) RNA (Lyle et al., 2000; Storz, 2002; Bartel, 
2004; Mattick and Makunin, 2005; Cao et al., 2006). Several 
distinct classes of ncRNAs, such as small nucleolar RNA 
(snoRNA), microRNA (miRNA) and long ncRNA (lncRNA), 
have been found highly expressed in the nervous system 
(Cao et al., 2006; Mehler and Mattick, 2006, 2007; Mehler, 

2008). The involvement of ncRNAs in various cellular and 
nuclear processes is totally fascinating. The mechanisms by 
which long non-coding RNAs regulate gene expression await 
exciting discoveries in the coming years. Here we will focus 
on the microRNA pathway, which has been extensively 
studied. 

miRNA are a class of small non-coding RNAs of generally 
21–25 nucleotides long that alter gene expression by 
post-transcriptional inhibition or degradation of complemen-
tary mRNA sequences (Ambros, 2003; Ambros, 2004; He 
and Hannon, 2004). The mature miRNA is derived from lar-
ger precursors that form imperfect stem-loop structures, and 
is released from the primary transcript through stepwise 
processing by two ribonuclease-III (RNase III) enzymes, 
Drosha and Dicer (Lee et al., 2004; Griffiths-Jones et al., 
2008; Moazed, 2009). A miRNA recognizes its target mRNA 
through a “seed match,” between the seed—a 6 nucleotide 
stretch at the 5′ end of the miRNA—and a matching region at 
the 3′ untranslated region (3′-UTR) of the mRNA (Grimson et 
al., 2007; Bartel, 2009). Most animal miRNAs form imperfect 
base-pairs with their targets beyond the “seed region,” al-
lowing a miRNA to regulate many, even hundreds of genes 
(Cao et al., 2006; Shen and Temple, 2009). 

Disruption of miRNA pathway by depleting Dicer expres-
sion in zebrafish leads to gross malformation of the brain and 
defective neuronal differentiation (Giraldez et al., 2005). 
Conditional knockout Dicer in mouse neocortex results in 
reduced cortical size, increased neuronal apoptosis and de-
fective cortical layering (De Pietri Tonelli et al., 2008). How-
ever neuroepithelial cells and neuronal progenitor cells are 
spared at early stage until E14 when they undergo apoptosis 
(De Pietri Tonelli et al., 2008; Kawase-Koga et al., 2010). 
This could reflect stage-specific requirement of miRNA during 
cortical development, possibly at the time when neuronal 
output is at peak. Indeed, several miRNAs including miR9, 
miR-124, miR-92b and miR-23 are selectively expressed at 
different stages during neural stem cell and progenitor cell 
lineage progression (Cao et al., 2006). miR-124, which is the 
most abundant miRNA in both embryonic and adult CNS, 
controls the lineage progression from adult SVZ tran-
sit-amplifying cells to neuroblasts (Cheng et al., 2009). It 
promotes neuroblast production by targeting Sox9, a tran-
scriptional factor important for stem cell activity, to suppress 
its protein expression in neuroblasts (Cheng et al., 2009). 
miR-9 is also highly enriched in NPCs of many vertebrates, 
including zebrafish, chickens, mice and humans (Kapsimali et 
al., 2007; Leucht et al., 2008; Coolen and Bally-Cuif, 2009; 
Joglekar et al., 2009). Ectopic expression of miR-9 in the 
developing mouse cortex led to premature neuronal differen-
tiation and disrupted the migration of new neurons in the 
cortex through targeting Foxg1 (Shibata et al., 2008). In adult 
neurogenesis, miR-9 inhibits NSC proliferation and promotes 
neural differentiation by targeting the nuclear receptor TLX, 
which is an essential regulator of NSC self-renewal (Zhao et 
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al., 2009). Recently, direct reprogramming of non-neuronal 
cells into neurons in vitro has become possible even from 
human cells. In addition to a selected set of transcription 
factors, MiR-9/9* and miR-124 expression in human fibro-
blasts can also induce their conversion into neurons (Yoo et 
al., 2011). This process can be facilitated by NEUROD2 and 
the rate of conversion can be enhanced by transcription fac-
tor ASCL1 and MYT1L, suggesting these brain-enriched 
miRNAs cooperate with neural-specific transcription factors 
to regulate neural cell fate. 

NETWORK OF EPIGENETIC REGULATION IN  
CONTROLLING NEUROGENESIS 

Epigenetic state of a gene involves a complex chromatin 
signature, but not just any single epigenetic mechanism. 
These different epigenetic mechanisms can cooperate and 
constitute a regulation network to regulate cell fate. For ex-
ample, DNA methylation/demethylation is often found to be 
coupled with histone modification during neural development. 
Using ChIP, it has been shown that unmethylated DNA is 
largely assembled with acetylated histone and methyl groups 
on identical DNA sequences correlated with non-acetylated 
histones (Eden et al., 1998; Hashimshony et al., 2003). This 
effect might be partially mediated by methylcytosine-binding 
proteins MeCP2 and MBD1, which recruit histone deacety-
lases to the methylated regions. On the other hand, histone 
modification complex can also affect DNA methylation. The 
PcG protein Ezh2, which catalyses trimethylation of H3K27 
on surrounding neucleosomes, directly interacts with DNMTs 
(Vir é  et al., 2006). Dnmt3a is generally excluded from 
H3K4me3-high, CpG-rich proximal promoters, but is enriched 
in inter- and intragenic regions flanking CpG islands, possibly 
because of the inhibitory effect of H3K4 methylation on 
Dnmt3a binding to chromatin. Inhibition of DNMT induced cell 
cycle arrest and decreased multipotency, and these effects 
might be mediated by an increase in miRNAs expression to 
suppress PcG proteins, which are targets of miRNAs (So et 
al., 2011). On the other hand, miRNA expression can be 
modulated by promoter methylation or histone acetylation. 
For example, genome-wide sequencing of miRNA in WT and 
MeCP2-KO mouse cerebella has shown that MeCP2 directly 
controls miRNA expression (Wu et al., 2010b). MBD1 has 
been shown to suppress miR-184 and posttranscriptionally 
regulate Numbl expression, which is known as a regulator of 
brain development (Liu et al., 2010). The interaction between 
miRNA and other epigenetic machinery suggests that there is 
a highly controlled feedback mechanism (Gatto et al., 2010; 
Iorio et al., 2010). 

Remarkably, in this epigenetic regulation network, 
REST/NRSF, a transcription repressor, seems to be able to 
link the different mechanisms together. By binding DNA and 
co-repressor Co-REST, N-CoR, mSin3A, REST/NRSF can 
recruit histone deacetylases, histone methyltransferases and 

LSD1-containing complexes to facilitate nonneuronal lineage 
restriction (Lunyak and Rosenfeld, 2005). Interestingly, 
comparative sequencing has revealed that REST/NRSF also 
targets multiple brain-related miRNA including miR-9/9* and 
miR-124 (Conaco et al., 2006; Wu and Xie, 2006). MiR-9 and 
miR-124 can mediate the switch from npBAF to nBAF during 
neuronal differentiation from neural progenitor cells, adding 
another level of regulatory complexity to the neural fate tran-
sition (Yoo et al., 2009) (Fig. 2). 

CONCLUDING REMARKS 

Neural development, a life-long process beginning from 
neural induction, involves regional patterning and temporal 
specification, neurogenesis and gliogenesis, and synaptic 
connection and plasticity. The delicate balance between gene 
activation and repression in different neural cell types, un-
doubtedly requires multiple levels of regulation in addition to 
transcriptional regulation, including those imposed by epige-
netic mechanisms that involve neural cell specialized chro-
matin states, so the cells know where, when, what to be, and 
how to interact and respond. Environmental factors such as 
morphogens and niche molecules that specify neural pro-
genitor fate and that enable the switch from neuronal to glial 
cell generation must also impinge on the epigenetic system. It 
is quite likely that fundamental progenitor programs, such as 
those seen during cortical development, are encoded at the 
epigenetic level. Moreover, alterations on the epigenomic 
machinery cause aberrant DNA methylation and histone 
acetylation triggering alterations on the transcriptional level of 
genes involved in the pathogenesis of neural degenerative 
diseases such as Alzheimer’s disease, Parkinson’s disease 
(Balazs et al., 2011; Habibi et al., 2011; Mastroeni et al., 
2011). It remains to be investigated how epigenetic regulation 
of neurogenesis plays a role in the etiology and progression 
of neurodegenerative diseases. While epigenetic mecha-
nisms control neurogenesis can be as universal as an open 
hand, we must bear in mind for generating such a sophisti-
cated scheme as the nervous system, epigenetic regulation 
must also be as individual as a fingerprint. With the tremen-
dous technical advances in our ability to analyze gene ex-
pression, decode deep sequences, and uncover complex 
structures, we can imagine the day for deciphering epigenetic 
fingerprints of specific neural cell types will soon be coming. 
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