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ABSTRACT 

Programmed necrosis, also known as necroptosis, has 
recently drawn great attention. As an important cellular 
regulation mechanism, knowledge of its signaling 
components is expanding. Necroptosisis demonstrated 
to be regulated by the RIP1 and RIP3 kinases, and its 
pathophysiological importance has been confirmed in a 
number of disease models. Here we review the new 
members of this necroptosis pathway, MLKL, PGAM5, 
Drp1 and DAI, and discuss some of their possible ap-
plications according to recent findings. 
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INTRODUCTION 

Necrosis is a type of cell death morphologically characterized 
by cell rounding, cell volume increase, organelle swelling, 
and the bursting of the cytoplasmic membrane (Laster et al., 
1988). Necrosis is different from apoptosis not only in its 
morphologic definition, but also in the general belief that it is 
an unregulated cell death. However, evidence that the re-
ceptor-interacting protein kinase 1 (RIP1) and RIP3-regulated 
cell deaths possess necrotic phenotypes completely changes 
this misconception (Cho et al., 2009; He et al., 2009; Zhang 
et al., 2009). Based on the convention that special names, 
such as anoikis, entosis, and pyroptosis etc. (Galluzzi et al., 
2012), are used for different types of cell deaths, “necrop-
tosis” has recently been used for programmed necrosis 
(Galluzzi et al., 2012) despite the fact that it was originally 
used to describe only RIP1-dependent necrosis (Degterev et 
al., 2005). 

Much of our understanding of necroptosis has been 
formed by studying tumor necrosis factor (TNF)-induced ne-
croptotic cell death (Vandenabeele et al., 2010) (Fig. 1). Upon 
TNF and TNF receptor 1 (TNFR1) ligation, TNFR1 recruits 
TNFR-associated death domain (TRADD), receptor-interac-

ting protein 1 (RIP1), and TNFR-associated factor 2 (TRAF2) 
(Harper et al., 2003; Micheau and Tschopp, 2003).TRAF2 
then binds to cellular inhibitor of apoptosis proteins 1 and 2 
(cIAP1/2), allowing for the recruitment of the linear ubiquitin 
chain assembly complex (LUBAC), which acts as a scaffold 
to recruit the TAB-transforming growth factor-activated kinase 
1 (TAK1) complex and IκB kinase (IKK) subunit NEMO to 
form TNFR1 complex 1 (Ea et al., 2006; Wu et al., 2006; 
Bertrand et al., 2008; Haas et al., 2009). After deubiquitina-
tion by cylindromatosis (CYLD) (Wright et al., 2007), RIP1 
recruits TRADD, the Fas-associated protein with a death 
domain (FADD) and caspase-8 combine to form TNFR1 
complex II (Micheau and Tschopp, 2003; Wang et al., 2008; 
Cho et al., 2009), which mediates apoptosis. When RIP3 is 
present, it can incorporate itself into complex II to form com-
plex IIb (also called necrosome), containing FADD, caspase 
8, RIP1, and RIP3 (Holler et al., 2000; Cho et al., 2009). Both 
an inhibition of caspase 8 and increase in RIP3 can promote 
the activity of the necrosome and result in necroptosis 
(Vercammen et al., 1998a; Zhang et al., 2009; Oberst et al., 
2011). Because both a dominant negative FADD expression 
and FADD depletion promote necroptosis, FADD appears to 
inhibit the necrosome (Galluzzi et al., 2011). The deubiquiti-
nating enzyme CYLD has been shown to promote necrop-
tosis in intestine epithelial cells, most likely by deubiquitinat-
ing RIP1 (Welz et al., 2011). However, ubiquitin editing en-
zyme A20 negatively regulates necroptosis (Vanlangenakker 
et al., 2011a). Other signaling molecules that promote NF-κB 
activation, such as TAK1 and cIAP1, also negatively regulate 
necroptosis (Vanlangenakker et al., 2011a, 2011b). 

The necroptotic and apoptotic pathways can compete 
against each other since both the inactivation of the necro-
some by the caspase 8-mediated RIP3 cleavage and the 
conversion of apoptosis to necroptosis by RIP3 upregulation 
have been reported (Zhang et al., 2009; Han et al., 2011; 
Oberst et al., 2011). FLICE-like inhibitor protein long (cFLIPL) 
binds with caspase 8 in the resting stage, and the basal ac-
tivity of caspase 8 is believed to be responsible for the inac- 
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Figure 1.  TNF-induced programmed necrosis pathway. Upon TNF induction, TNF receptor 1 recruits TRADD, RIP1, TRAF2 
and cIAP1/2 to form TNFR1 complex I. Within this complex, A20, an ubiquitin-editing enzyme, LUBAC, a linear ubiquitylating en-
zyme complex, and TAK1 negatively regulate TNF-induced programmed necrosis. Necrostatin-1 blocks necroptosis by targeting 
RIP1 kinases. The deubiquitination of RIP1 by CYLD and the inhibition of caspase-8 are critical for the assembly of necrosome. 
Within the necrosome, the apoptosis machinery FADD, cFLIP, and caspase-8 suppress the induction of necroptosis. The kinase 
activities of RIP1 and RIP3 are necessary for necrosome formation. After RIP3 is phosphorylated, it phosphorylates MLKL and 
PGAM5L, and then engages PGAM5S on the mitochondrial membrane, during which the engagement is inhibited by NSA. Once 
activated, PGAM5L/PGAM5S then activate the mitochondrial fission regulator Drp1 by dephosphorylation, thus leading to mito-
chondrial fission. 
 

tivation of the RIP1/RIP3 necrosome (Kaiser et al., 2011; 
Oberst et al., 2011; Zhang et al., 2011). However, it’s currently 
unknown how RIP3 suppresses the apoptosis pathway. Ne-
croptosis also functions as a backup for apoptosis (Vercam-
men et al., 1998a; Holler et al., 2000; Han et al., 2011; Kaiser 
et al., 2011; Oberst et al., 2011; Welz et al., 2011; Zhang et al., 
2011). For example, in the absence of caspase 8, the death of 
T cells isnot blocked, but uses a necroptosis pathway instead 
(Salmena and Hakem, 2005; Ch'en et al., 2011).   

The increasing attention on necroptosis is largely due to 
recent findings on its pathological and physiological impor-
tance. RIP1 kinase activity contributes to ischemic brain injury 
(Degterev et al., 2005; Northington et al., 2011) and myocar-
dial ischemia-reperfusion injury (Smith et al., 2007; 

Oerlemans et al., 2012). RIP3-mediated necroptosis is 
proven to be involved in pancreatitis (He et al., 2009), pho-
toreceptor cell loss (Trichonas et al., 2010), skin inflammation 
(Bonnet et al., 2011), and defense mechanisms against some 
virus infections, such as the vaccinia virus (He et al., 2009) 
and the murine cytomegalovirus (Upton et al., 2010). Ne-
croptosis also participates in the host defense against Sal-
monella Typhimurium infections (Robinson et al., 2012). One 
developmental role of necroptosis is demonstrated by rescu-
ing the embryonic lethality of FADD deficient mice with 
RIP1knockout, or Caspase 8 knockout withRIP3 gene dele-
tion (Kaiser et al., 2011; Zhang et al., 2011). In addition, ne-
croptosis is demonstrated to take part in lymphoproliferative 
disease (Ch'en et al., 2011; Kaiser et al., 2011), Crohn’s 
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disease (Gunther et al., 2011; Welz et al., 2011) and acute 
liver injury (Liedtke et al., 2011). 

Despite great progress in the past few years in the under-
standing the molecular mechanisms of programmed necrosis, 
necroptosis is still a new field in cell death study. Since a 
number of excellent reviews in the past couple of years have 
already summarized the basic RIP1/RIP3 necrosis pathway 
information, we briefly review the RIP1/RIP3 complexes and 
then focus on the recently identified components of the ne-
croptosis pathway.  

CURRENT INSIGHT INTO THE RIP1/RIP3  
SIGNALING COMPLEX 

RIP1 and RIP3 play a central role in TNF-induced necrop-
tosis (Cho et al., 2009; He et al., 2009; Zhang et al., 2009). 
Like the formation of complex II in apoptotic processes, ne-
crosome formation appears to be facilitated by the deubiq-
uitination of RIP1 (O'Donnell et al., 2011; Vanlangenakker et 
al., 2011b). While it is clear that the RIP1/RIP3 complex is the 
core of the necrosome, the formation and function mecha-
nisms of the necrosome are still largely unknown. Necro-
somes are large protein complexes with an estimated mo-
lecular weight of over 5 MDa (Feoktistova et al., 2011; Tenev 
et al., 2011). In addition to RIP1 and RIP3, the necrosome 
contains many other components and could be heterogene-
ous (Han et al., 2011). Recent studies have shown that RIP1 
and RIP3 form an oligomeric amyloid signaling complex (Li et 
al., 2012), which could be the backbone of the large necro-
some complex. RIP homotypic interaction motif (RHIM), 
found in both RIP1 and RIP3, is a key structure domain in 
both that mediates the formation of the amyloid complex. The 
scaffolds of amyloids may function as a crucial platform for 
recruiting other components, such as MLKL, and stimulating 
the downstream execution mechanisms of necroptosis (Li et 
al., 2012). Amyloid fibers, oligomers and aggregates can be 
found in various diseases, including Alzheimer’s. Since pri-
on-like amyloid aggregation itself can be cytotoxic, it would be 
very interesting to know if the cell can sense an amyloid-like 
necrosome as a dangerous signal or if it can initiate a specific 
signal for cell death. 

MLKL AS A NECESSARY COMPONENT FOR  
NECROSOME FUNCTION 

By screening a chemical library, Xiaodong Wang’s group 
found that necrosulfonamide ((E)-N-(4-(N-(3-methoxypyra-
zin-2-yl) sulfamoyl) phenyl)-3-(5-nitrothiophene-2-yl) acryla-
mide), referred to as NSA, can effectively block TNF-induced 
necroptosis in human cells. They further identified the mixed 
lineage kinase domain-like protein (MLKL) as a target of this 
compound (Sun et al., 2012). MLKL was also identified in the 
immunoprecipitation of RIP3, demonstrating that it interacts 
with RIP3 and is thus a component of the necrosome (Fig. 1). 

The importance of MLKL in necroptosisis also supported in 
later work by another group who identified it as a required 
molecule for TNF-induced necroptosis in a screening of a 
kinase/phosphatase shRNA library in human colon adeno-
carcinoma HT-29 cells (Zhao et al., 2012).  

Similar to the effects of RIP3 knockdown on necroptosis, 
the knockdown of MLKL blocked cell death, showing that 
MLKL is required for TNF-induced necroptosis (Sun et al., 
2012). To interact with MLKL, RIP3 needs to be phosphory-
lated at Ser227. The phosphorylation at Ser227 is likely to be 
autophosphorylation since it occurs when RIP3 is 
over-expressed and abolished in a kinase dead RIP3 mutant 
(Sun et al., 2012). In response to necroptosis induction, RIP3 
phosphorylates MLKL at Thr357 and Ser358. Neither posi-
tion’s phosphorylation is sufficient for necroptosis, but both 
are required for necroptosis. Mutations at Thr357 and Ser358 
do not affect the interaction between MLKL and RIP3, but has 
a dominant negative effect on the function of MLKL. In mice, 
Thr357 becomes an asparagine, while Ser358 is conserved. 
The regions around Ser227 in RIP3 and Thr357/Ser358 in 
MLKL are not conserved in humans and mice, which could be 
the reason for the undetectable interaction between murine 
RIP3 and human MLKL. Nevertheless, murine RIP3 interacts 
with murine MLKL, indicating that the functional relationship 
between RIP3 and MLKL is conserved in mammals. 

The phosphorylations of MLKL at Thr357 and Ser358 
have been proposed to be markers of necrosome activation 
because while a non-phosphorylated MLKL mutant can be 
incorporated into the necrosome, the phosphorylation of the 
two sites is required for cell death (Sun et al., 2012). Down-
stream necrosome activation events could be a sustained 
JNK activation and ROS generation (Zhao et al., 2012), but 
considering that the requirements of prolonged JNK activa-
tion and ROS induction are tissue and cell-type specific (He 
et al., 2009; Fortes et al., 2012), the other downstream events 
of MLKL could be more critical to programmed necrosis. 

DEPHOSPHORYLATION OF Drp1 BY PGAM5 AS A 
POTENTIAL CONVERGENT POINT OF DIFFERENT 
NECROTIC PATHWAYS 

By separating and analyzing cell extracts containing RIP3, 
PGAM5, a mitochondrial phosphoglyceratemutase was iden-
tified to be another necrosome associated protein by Xiao-
dong Wang’s group (Takeda et al., 2009; Wang et al., 2012). 
It was reported earlier that PGAM5 can use an alternative 
Ser/Thr phosphatase activity to dephosphorylate ASK1 
(Takeda et al., 2009). Dynamin-related protein 1 (Drp1), a 
regulator of mitochondrial fission, could be regulated by 
PGAM5 through the dephosphorylation of Drp1 (Wang et al., 
2012). Since mitochondrial fragmentation was observed dur-
ing necroptosis, a model was proposed where PGAM5 pro-
motes mitochondrial fission and subsequently cellular ne-
croptosis through the dephosphorylation of Drp1 (Fig. 1). 
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Notably, the two variants of PGAM5, PGAM5S and PGAM5L, 
function differently during necroptosis, even though they are 
both required for necroptosis execution. After the core part of 
necrosome is formed, PGAM5L binds to the necrosome, 
unaffected by the necroptosis inhibitor NSA; the binding of 
PGAM5S, however, is blocked by NSA. What makes PGAM5 
more interesting is that PGAM5S and PGAM5L are both 
required for intrinsic necroptosis induced by H2O2 or A23187. 
RIP1, RIP3, and MLKL, on the other hand, only affect extrin-
sic pathways induced by TNF-α and other extracellular lig-
ands. Even though the ubiquitous involvement of PGAM5 
needs more evidence, PGAM5 could fill the gap that is pre-
venting investigators from studying the common execution 
mechanisms for different forms of necrosis. It needs to be 
noted, though, that the role of mitochondrial fission in apop-
tosis is not clear since both supporting and opposing data 
have been reported (Frank et al., 2001; Lee et al., 2004; 
Germain et al., 2005; Parone et al., 2006; Brooks et al., 2007; 
Estaquier and Arnoult, 2007; Sheridan et al., 2008). Whether 
the role of mitochondrial fragmentation is a cause or conse-
quence of necrosis may need more investigation. 

DAI AS A NEW PARTNER OF RIP3 TO FIGHT 
AGAINST VIRUSES 

Cellular necroptosis can be induced by some viral infections 
(Benedict et al., 2002). Cho et al showed that RIP3 was used 
to mediate vaccinia virus-induced necroptosis when cellular 
apoptosis machinery was inhibited (Cho et al., 2009). Murine 
cytomegalovirus (MCMV) infection induces a form of ne-
croptosis that was shown to be RIP3-dependent by Upton et 
al (2010). While MCMV-induced cell death is controlled by 
RIP3 kinase activity and RHIM-dependent interactions, it 
does not depend on RIP1 or TRIF, two RHIM-containing 
members involved in regulated necrosis. Further studies 
have revealed that the DNA-dependent activator of IRF (DAI, 
also known as ZBP-1 or DLM-1), a RHIM domain containing 
protein and a potential DNA sensor, is the essential partner of 
RIP3 during MCMV infection induced necroptotic cell death 
(Upton et al., 2012).  

DAI was first identified as a cytoplasmic DNA sensor capa-
ble of inducing type 1 interferon production (Takaoka et al., 
2007), but was re-examined when DAI-/- mice showed the 
normal phenotype in both innate and adaptive immune re-
sponses to B-DNA and DNA vaccines (Ishii et al., 2008). While 
it’s questionable whether DAI isa DNA sensor for an anti-viral 
IFN response, virus-induced DAI-RIP3 complexes indicate that 
it could be a type of specialized sensor that is responsible for 
necroptosis, but not for type I interferon response.  

CHEMICAL INHIBITORS OF PROGRAMMED  
NECROSIS 

Small molecule compounds that inhibit programmed necrosis 

are not only effective tools in the study of necrotic cell deaths, 
but also have potential to become pro-drugs for developing 
treatments for necroptosis-related human diseases. Necro-
statin-1 is the first necroptosis inhibitor to have been widely 
used in vitro or in animal models to study necroptosis. It was 
screened out from a small compound library as an inhibitor of 
necroptosis (Degterev et al., 2005). Based on structure mod-
eling and prediction, necrostain-1 is believed to be a RIP1 
inhibitor (Degterev et al., 2008). Although it is a RIP1 inhibitor, 
necrostain-1 does not inhibit RIP1-mediated apoptosis, which 
is believed to be due to the fact that necrostain-1 does not 
inhibit RIP1 kinase activity (Han et al., 2009). The inhibition of 
necroptosis by necrostain-1 is at least partly due to its inhibi-
tion of the association between RIP1 and RIP3 (Degterev et 
al., 2008; He et al., 2009). The application of necrostain-1 in 
mice disease models has been proven to be a very useful 
experimental approach and has provided much valuable 
information on the role of necroptosis in pathological condi-
tions (Trichonas et al., 2010; Fortes et al., 2012). Currently, 
there is no RIP3 inhibitor available. Given the fact that RIP3 is 
involved in necroptosis but not apoptosis, a RIP3 inhibitor 
could be a more selective drug for necroptosis. 

As is mentioned above, NSA was screened out to block 
necroptosis downstream of RIP3 activation (Sun et al., 2012). 
Biotin-NSA/streptavidin-conjugated beads pull down and 
structure-activity relationship (SAR) studies reveal that NSA 
targets the N-terminal fragment of MLKL and covalently 
modifies MLKL through a chemical reaction called a Michael 
addition at a reactive amino acid residue cysteine. NSA tar-
gets human MLKL but not mouse MLKL, so NSA cannot be 
used in animal models, but NSA could become a pro-drug for 
clinical applications in treating necrosis related human dis-
eases. 

PERSPECTIVES 

Evidence suggests that necroptosis is a tightly regulated 
process important in various physiological and pathological 
conditions (Han et al., 2011; Vanlangenakker et al., 2012). 
Our understanding of the necroptosis pathway is still in its 
infant stage, compared to that of apoptosis,. The most un-
clear part of necroptosis is how it is executed. To date, we still 
lack a biomarker for the in vivo detection of necroptosis.  It is 
known that mitochondria play an important role in both 
apoptosis and necroptosis, and that Bcl-2 family proteins also 
have similar pro- and anti-roles for apoptosis and necroptosis 
(Tsujimoto et al., 1997; Kroemer et al., 1998; Meilhac et al., 
1999; Irrinki et al., 2011), but how Bcl-2 family members 
function in influencing apoptosis and necroptosis is unclear. 
Mitochondrial membrane permeability transition pore opening 
is believed to be involved in both apoptotic and necroptotic 
cell death, and the pore component cyclophilin D was re-
ported to be required for necroptosis (Nakagawa et al., 2005; 
Tsujimoto and Shimizu, 2007; Devalaraja-Narashimha et al., 
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2009). However, there is still no data suggesting the in-
volvement of cyclophilin D in RIP3-mediated necroptosis. It is 
highly possible that multiple necrosis pathways operate at the 
mitochondrial level. As more stimuli, including those via in-
trinsic pathways and extrinsic pathways, are discovered to 
trigger necrosis, RIP1/RIP3 dependent necrosis may be only 
one of many important necrotic pathways (Vercammen et al., 
1998b; Petit et al., 2002; Meurette et al., 2007; Jouan- 
Lanhouet et al., 2012). In addition to mitochondrial ROS, 
mitochondrial fission and sustained JNK activation, the 
phosphorylation of STAT3 on Ser727 and the interaction 
between STAT3 and GRIM-19, a subunit of mitochondrial 
complex I, was found during necroptosis (Shulga and 
Pastorino, 2012). Finding the convergent point and the 
common executing mechanism of the different pathways of 
necrosis is still a challenge. Further understanding of the 
mechanisms of programmed necrosis should have a signifi-
cant impact on the development of therapeutic intervention of 
many necrosis-related human diseases. 
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