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ABSTRACT 

Protein folding, stability, and function are usually in-
fluenced by pH. And free energy plays a fundamental 
role in analysis of such pH-dependent properties. Elec-
trostatics-based theoretical framework using dielectric 
solvent continuum model and solving Poisson-Boltzm-
ann equation numerically has been shown to be very 
successful in understanding the pH-dependent proper-
ties. However, in this approach the exact computation 
of pH-dependent free energy becomes impractical for 
proteins possessing more than several tens of ioni-
zable sites (e.g. > 30), because exact evaluation of the 
partition function requires a summation over a vast 
number of possible protonation microstates. Here we 
present a method which computes the free energy us-
ing the average energy and the protonation probabili-
ties of ionizable sites obtained by the well-established 
Monte Carlo sampling procedure. The key feature is to 
calculate the entropy by using the protonation prob-
abilities. We used this method to examine a well-studied 
protein (lysozyme) and produced results which agree 
very well with the exact calculations. Applications to the 
optimum pH of maximal stability of proteins and pro-
tein–DNA interactions have also resulted in good 
agreement with experimental data. These examples 
recommend our method for application to the elucidation 
of the pH-dependent properties of proteins. 
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INTRODUCTION 

Background 

The structural stability and function of proteins are usually 
influenced by the concentration of hydrogen ions (pH). 
Changes in pH, for example of the cellular environment, shift 
the protonation equilibria of the ionizable (or titratable) resi-
dues of proteins, and consequently alter their charges and 
the electrostatic interactions among residues, resulting in a 
marked pH-dependence of protein folding, stability, and ac-
tivity. Thus, mechanistic understanding of the pH-dependent 
properties of proteins is of strong interest. 

In the past two decades, significant advances have been 
made in modeling of the pH-dependent properties of proteins 
(Antosiewicz et al., 1994; Bashford, 2004). Especially, the 
electrostatics-based framework using the dielectric solvent 
continuum model and solving the Poisson-Boltzmann (PB) 
equation numerically (i.e. the framework of pH-dependent 
continuum electrostatics) have been shown to be remarkably 
accurate for a wide range of applications, including average 
protonation of ionizable residues (Beroza et al., 1991), pKa 

shifts of ionizable residues (Bashford and Karplus, 1991), 
pH-induced conformational changes of proteins (Huang et al., 
2002; Langella et al., 2006), pH-dependence of enzymatic 
activity (Tynan-Connolly and Nielsen, 2007), and pH-depen-
dent protein–protein (Dong et al., 2003), protein–DNA (or 
RNA) interactions (Misra et al., 1998; Olson, 2001; Frick et al., 
2004), etc. Indeed, several web servers for the calculations of 
pH-dependent properties of proteins have become available 
(Gordon et al., 2005; Kantardjiev and Atanasov, 2006; Ty-
nan-Connolly and Nielsen, 2006). 

Theoretical treatment of pH-effects on the stability and ac-
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tivity of a protein requires evaluation of pH-dependent free 
energy of the protein. The free energy is one of the most 
central quantities in biomolecular modeling. However, it is 
one of the most difficult quantities to compute on the basis of 
atomic-level simulations (Rodinger and Pomès, 2005; Mei-
rovitch, 2007). In the theoretical framework of continuum 
electrostatics, the protonation microstate of a protein pos-
sessing N ionizable sites is characterized with an N-compo-
nent vector, in which each component is a two-value variable 
defining the microstate of an ionizable site: for the protonated 
site occupied by a proton, the variable is set to 1; for the un-
protonated site, to 0. Thus, evaluation of free energy involves 
the computation of the partition function of 2N protonation 
microstates for the protein (see also Theory). To exactly 
compute all 2N microstate energies is very time-consuming 
and, owing to the current capacities of computation, becomes 
impractical for the proteins with more than several tens of 
ionizable sites (e.g. 230 = 1,073,741,824 microstates for 30 
ionizable residues). Since the numbers of those sites of many 
proteins are significantly greater than 30, reliable methods to 
estimate the protonation partition function and, hence the free 
energy, are necessary for modeling the pH-dependence of 
protein properties. 

Several methods for estimation of the protonation partition 
function have been developed. One of them is a rather direct 
method which sums up the low-energy protonation micro-
states obtained by a Monte Carlo sampling procedure based 
on Metropolis algorithm (Metropolis et al., 1953). However, a 
special procedure for comparison of the microstate energies 
has to be designed for collecting the lowest microstate ener-
gies and assuring that each microstate is taken only once 
(Alexov and Gunner, 1999; Alexov, 2004). Another method is 
an application of the proton linkage model which relates the 
pH-induced change in the relative free energy to the average 
number of protons released from the protein when shifting 
from a reference pH to a desired pH (Tanford, 1970; Yang 
and Honig, 1993; Misra et al., 1998). 

In this study, we present a method to compute the ioniza-
tion free energy directly using the average protonation energy 
and the protonation probabilities of ionizable sites estimated 
by a well-established Monte Carlo method (Beroza et al., 
1991). As justified by theoretical considerations, the method 
treats the protonation entropy of protein as the sum of the 
entropy contributions from individual ionizable sites. Calcula-
tion of the entropy is based on the protonation probabilities of 
the ionizable sites which can be obtained by the Monte Carlo 
procedure (Beroza et al., 1991). Testing the accuracy of this 
method by examining a well-studied protein, the lysozyme, 
produced results which agree very well with the exact calcu-
lations. To further demonstrate the potential, the method was 
applied to calculate the optimum pH of maximal stability of 
proteins and the pH-dependent free energy of protein–DNA 
interaction, and the results show a good agreement with the 
experimental data. These examples as shown in Fig. 1 dem-

demonstrated that our method is capable of evaluating the 
pH-dependent free energy of proteins. 

Theory 

We employ the modeling framework of protein protonation 
using the dielectric continuum solvent model (Ullmann and 
Knapp, 1999). This framework uses an N-component vector, 
X=(x1,…,xi,…,xN), to define the protonation microstate of a 
protein possessing N ionizable sites. The vector component, 
xj, is a two-value variable that defines the protonation micro-
state of ionizable site j: for the protonated site occupied by a 
proton, xj is set to 1; for the unprotonated site, xj is set to 0. 
Taking the neutral protonation state (i.e. acids are protonated, 
and bases are unprotonated) as the reference (designated as 
X0), the potential energy of the protein in a protonation 
microstate (designated as Xn) at the given pH and tempera-
ture T is 
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where kB is the Boltzmann constant, and the quantities of the 
reference state are indicated by the superscript “0”: 0

jx  is 1 
for acids and 0 for bases, ,p intr

a jK  is the intrinsic p aK  value 
of site j, 0

jz  is the formal charge of site j in the unprotonated 
state (i.e. –1 for acids and 0 for bases), and jkB  is the elec-
trostatic interaction between two unit charges at sites j and k. 
Therefore, the partition function of protein protonation is 
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where B1/( )β k T= . In principle, the ionization free energy 
from the reference (neutral protonation) state at the given pH 
and temperature T can be directly calculated according to 
ΔG=–kBT lnZ. As mentioned, however, it becomes computa-
tionally impractical for proteins with more than several tens of 
ionizable sites (e.g. > 30), because the computation requires 
a summation over all possible 2N protonation microstates of 
the protein. For such proteins, one has to use an approxima-
tion method. 

In order to develop an approximation method, we focus on 
the ensemble averages of the potential energy and the pro-
tonation probabilities of ionizable sites, which are given, re-
spectively, by 
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Since each ionizable site has only two possible protona- 
 



Protein & Cell  Qiang Huang et al.  

232 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2012 

 

 

 
 

Figure 1.  The structures used in the calculations of this study. (A) lysozyme (PDB code: 7LYZ), where the protein chain is 
colored with rainbow spectrum. (B) Cathepsin B (PDB code: 1HUC), where chain A is in yellow, and chain B in purple. (C) λcI rep-
ressor-operator complex (PDB code: 1LMB), where two protein chains are in greencyan and green, respectively, and two DNA 
chains in purple and yellow, respectively. 

 
tion microstates (i.e. protonated: xj = 1, and unprotonated: xj = 
0), the average probability of site j to be in the “unprotonated” 
state is 

1j jλ θ= − .                  (5) 

According to the Gibbs formula for the entropy, with the 
protonation and “unprotonation” probabilities, the protonation 
entropy of site j is 

B( ln ln )j j j j js k θ θ λ λ= − + .        (6) 

On the other hand, the overall protonation entropy of a 
protein is usually given by 

2

B lnn n
n
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where pn is the probability of finding the protein in the micro-
state, Xn, and given by 
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As we will show in Appendix A, Eq. 7 can theoretically be 
expressed as the sum of the (entropy) contributions from the 
N individual sites: 

N

j
j

S s= ∑ .                 (9) 

This relationship leads to a more direct method to estimate 
the free energy. To avoid the summation over all 2N possible 
microstates, we employ the well-established Monte Carlo 
sampling procedure (Beroza et al., 1991) to obtain (i.e. to 
approximate) the average protonation energy U and the pro-
tonation probabilities, ( 1,2, , )jθ j N= … , according to Eqs. 3 
and 4, and thereby the entropy with Eqs. 5, 6, and 9. Since 
the pressure-volume term is negligible, the (Gibbs) ionization 
free energy is then approximated by the average energy and 
the entropy, as 

pH
mc mcG U TS≈ − ,            (10) 

where the subscript ‘mc’ indicates the values estimated by 
the Monte Carlo method. Details about the Monte Carlo pro-
cedures for evaluating the average protonation energy and 

the protonation probabilities in Eq. 10 can also be referred to 
these studies (Beroza et al., 1991; Ullmann and Knapp, 1999; 
Rabenstein and Knapp, 2001). Note that, as mentioned, the 
ionization free energy in Eq. 10 is a relative value from the 
reference state, i.e. the neutral protonation state. 

RESULTS 

Comparison with the exact calculations for lysozyme 

We first tested the accuracy of the method by examining a 
small, well-studied protein, lysozyme, in which only 21 of the 
32 ionizable sites are relevant for titration, due to that 11 
arginines have very little effects on other residues titration in 
the pH range from 0 to 12 (Beroza et al., 1991). We calcu-
lated the exact ionization free energies of the lysozyme in the 
pH range from 0 to 12 with the partition function requiring the 
sum over all 221 protonation microstates (Eq. 2). Alternatively, 
the ionization free energy was estimated by the average en-
ergy and entropy obtained by 10,000 Monte Carlo sampling 
steps, respectively. The intrinsic p aK  values and site–site 
interactions used here were the same as those used in prior 
studies (Bashford and Karplus, 1990; Beroza et al., 1991). 
Details can be seen in the calculation example included in the 
MEAD suite of programs. 

Figure 2A shows that the exact free energies and those 
obtained by 10,000 Monte Carlo sampling steps are almost 
the same. For further comparison of both approaches, we 
calculated the exact values of the average energy and of the 
entropy according to Eqs. 3 and 7 by a sum over all 221 
microstates. The values from both methods are almost the 
same (Fig. 2B and 2C). In particular, the Monte Carlo-based 
values of the entropy are almost identical to those by the 
exact calculations (Fig. 2C), demonstrating that Eqs. 7 and 9 
are equivalent, just as theoretically justified in Appendix A. 
Also, the results indicate that the efficient Monte Carlo sam-
pling procedure (Beroza et al., 1991) provides a solid basis 
for our method. 
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Figure 2.  The ionization free energies of the lysozyme in 
pH range 0–12 obtained by the exact calculation and our 
method. (A) The ionization free energy. (B) The average en-
ergy. (C) The protonation entropy. 

Optimum pH of maximal stability of Cathepsin B 

Proteins are known to differ in the optimum pH of their stabil-
ity. Numerical calculations of pH-dependent free energy 
would support the understanding of the molecular origin of 
the specific pH of protein stability, and may also provide 
guidelines for the design of proteins which are stable and 

active in a certain range of pH (Tynan-Connolly and Nielsen, 
2006; Tynan-Connolly and Nielsen, 2007). In previous nu-
merical calculations, the optimum pH was determined as the 
pH of the minimum free energy of folding. Alexov has calcu-
lated the optimum pHs for a number of proteins, for example 
Cathepsin B, using the Monte Carlo approximation method, 
with a special procedure that collects the lowest microstate 
energies and thus assures that each microstate is taken only 
once (Alexov, 2004). 

Figure 3 shows the pH-dependent free energies of 
Cathepsin B in the pH range of 0–14 calculated with our ap-
proach. Three energies were computed: the free energy of 
the unfolded state, the free energy of the folded state, and the 
free energy of folding. The pH-dependent free energy of the 
unfolded state was calculated with the same method used by 
Alexov (Alexov, 2004). Different from Alexov’s study, here the 
free energies of the folded state and folding were not scaled 
by an additive constant. The results indicate that the optimum 
pH of Cathepsin B is 5.15, in excellent agreement with the 
experimental value (Alexov, 2004). The shape of three curves 
of the pH-dependent free energies are very similar to those in 
the corresponding figure in Ref (Alexov, 2004), further dem-
onstrating that our method obtained equivalent results, and is 
capable of calculating the pH-dependent free energy of pro- 
teins in the folded state. 

 

 
 

Figure 3.  The pH-dependent contributions to the folded, 
unfolded, and folding free energies of Cathepsin B in pH 
range 0–14. 
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The pH-dependence of protein-DNA binding 

Protein–DNA interactions are important for transcriptional 
regulation in both prokaryotes and eukaryotes. Because of 
the highly charged nature of nucleic acids, electrostatic forces 
and therefore pH play a significant role in protein–DNA in-
teractions, e.g. the λcI repressor-operator system. It has been 
shown that the affinity of the repressor to its operators is 
highly dependent on pH, and pH effects contribute to the 
discrimination of DNA binding sites by the repressor (Senear 
and Ackers, 1990; Senear and Batey, 1991). Hence, to un-
derstand how a gene regulatory protein binds to specific DNA 
sequences, it is necessary to quantify the pH effects on the 
binding free energy of the protein-DNA system. In the past, 
the pH-dependent protein-DNA binding in the λcI repress- 
sor-operator system has been studied intensively for testing 
the accuracy of theoretical models used to calculate electro-
static free energies of protein-DNA binding. Misra et al. (1998) 
have used nonlinear Poisson-Blotzmann (NLPB) equation to 
elucidate the pH-dependence of the repressor-operator 
binding free energy. The calculated values were found to be 
in good agreement with the experimental data (Senear and 

 

 
 

Figure 4.  The pH-dependence of binding free energy of 
the λcI repressor-operator. (A) The change of ionization free 
energy upon the binding of the unbound λcI repressor to DNA 
in pH range 0–14. (B) The pH-dependent binding free energy 
in pH range 4–9 obtained with a best fitting pH-independent 
term of 72.7 kcal/mol. 

Ackers, 1990). In their study, they employed an approximation 
method in which the pH effect on the binding was described 
with the expression given by Tanford (1970), who treated the 
problem of pH-dependence in terms of multiple equilibria in-
volving acids and bases. To compare with this method, we 
computed the pH-dependent contribution to the binding free 
energy for this protein-DNA system by our approach. 

Because the DNA titration has no significant role in the 
proton-linked effects at physiological pH (i.e. is independent 
of pH), the pH-dependent contribution to the binding free 
energy depends mainly on the ionization free energies of the 
protein-DNA complex and the unbound protein. Therefore, 
the binding free energy of the λcI repressor-operator system 
can be written as 

pH pHΔΔ Δ Δ ΔΔ neutral
binding complex proteinG G G G= − + , (11) 

where pHΔ complexG  and pHΔ proteinG  are the ionization free 

energies of the complex and the unbound protein at the given 
pH, respectively, with respect to the hypothetical state in 
which all ionizable residues of the protein are neutral (i.e. the 
neutral protonation state). The additive constant term, 
ΔΔ neutralG , is the pH-independent electrostatic contribution 
to the binding from the complex and the unbound protein in 
the neutral protonation state. To calculate the protonation 
energies, we first carried out MD simulations to generate 
conformational ensembles for the complex and the unbound 
protein, as described in MATERIALS AND METHODS. Fifty 
MD conformational snapshots of the complex or the unbound 
protein were extracted from the production run trajectories at 
the intervals of 20 ps. Then, the protonation energies of the 
snapshots at 20°C were calculated and averaged. 

Figure 4A shows the difference in the protonation energy 
between the complex and the unbound protein, i.e. the 
pH-dependent contribution to the binding free energy. With a 
best-fitting pH-independent term of 72.7 kcal/mol (i.e. the 
ΔΔ neutralG value), the pH-dependent binding free energy 
was computed, as shown in Fig. 4B. The results illustrate that 
the pH-dependence of the calculated values is in good 
agreement with the experimental data (Senear and Ackers, 
1990) and demonstrates the accuracy of our method in de-
scribing pH-dependent protein-DNA interactions. Note that 
the ΔΔ neutralG  value does not influence the pH-depende-
nce, but only shifts the binding free energy by the same value 
at each pH. However, in order to use the general expression 
given by Tanford (1970), Misra et al. have actually shown that 
the total electrostatic free energy of the repressor–operator 
interaction opposing binding is about 73 kcal/mol (Misra et al., 
1998), which is very similar to our fitting value. Details about 
this and how single ionizable residues affect the binding free 
energy can be referred to the study by Misra et al. (1998). 

DISCUSSION 

Since the pH-dependent free energy plays a fundamental role 
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in the analysis of the pH-dependence of protein folding, sta-
bility and activity, accurate calculation of the pH-dependent 
free energy is one of the most important and challenging 
areas in the field of protein modeling and simulations. In the 
past, the framework of the pH-dependent continuum electro-
statics has been proven to be a suitable basis for further 
methodology development. However, because the number of 
ionizable residues in most of proteins is more than several 
tens, e.g. 30, one has to use an approximation method. Pre-
viously, two methods based on Monte Carlo simulation have 
been developed (Misra et al., 1998; Alexov, 2004). Inspired 
by them, in this study we have developed a new Monte 
Carlo-based method. This method was tested and validated 
by comparisons with the exact calculations for lysozyme, with 
the experimental values of optimum pH of maximal stability of 
Cathepsin B and of the pH-dependence of the λcI repres-
sor-operator binding. 

Both Cathepsin B and the λcI repressor-operator binding 
have also been studied by the two previously developed 
Monte Carlo simulation methods (Misra et al., 1998; Alexov, 
2004). The method by Alexov calculates the free energy with 
a direct estimation of the partition function by summing up the 
low-energy protonation microstate obtained by Monte Carlo 
sampling. As a result, this method needs a special compari-
son procedure to ensure that each microstate is taken only 
once (Alexov, 2004). In contrast, our method does not need 
such a procedure because it is not required for Monte 
Carlo-based determination of ensemble averages of the pro-
tonation energy and of the probabilities of ionizable sites. On 
the other hand, another method based on the proton linkage 
model provides an effective method to obtain the 
pH-dependent free energy, by relating the pH-induced 
change of reaction free energy to the average number of 
protons released from the considered molecular system 
(Tanford, 1970; Yang and Honig, 1993; Misra et al., 1998). 
Thus, like ours, this method also uses the Monte Carlo-based 
values of the protonation probabilities of ionizable sites. But a 
major difference is that our method does not need to define a 
reference pH for calculations. 

As mentioned, usually an exact calculation of the ioniza-
tion free energy is feasible only for those proteins with ioni-
zable sites less than 30. Of course, in practice many sites of a 
protein with a large number of ionizable groups may be either 
fully protonated or unprotonated and thereby only a limited 
number of sites have fractional protonation probabilities that 
really contribute to the protonation entropy in Eq. 6. However, 
to determine which sites are fully protonated or unprotonated, 
one has to carry out Monte Carlo calculations in advance. 
Thus, approximation methods are needed for a large number 
of proteins. For this purpose, Monte Carlo approximation 
methods based on the Metropolis importance-sampling 
strategy have been developed, including ours. As shown in 
Theory section, the efficiency of the Monte Carlo sampling is 
crucial for the accuracy of our method. Fortunately, the Monte 

Carlo sampling procedure used for calculating the protonation 
probabilities has already been proven very effective, and has 
wide applications (Beroza et al., 1991; Kannt et al., 1998; Da 
Silva et al., 2001; Rabenstein and Knapp, 2001; Seiffert et al., 
2007; Tynan-Connolly and Nielsen, 2007). It was found that 
about 10,000 Monte Carlo steps provide average protonation 
values with an absolute error of ≈ 0.02 protons (Beroza et al., 
1991). Even for proteins with several hundreds of ionizable 
sites, the time required for sampling is reasonable, such as in 
our previous study on influenza virus hemagglutinin (Huang 
et al., 2002). Beroza et al. have pointed out that quantitative 
discrepancies between theory and experiment are attributed 

to the accuracy of the input to the Monte Carlo sampling, i.e. 
the electrostatic interactions between two unit charges at the 
ionizable sites in Eq. 1, rather than to the Monte Carlo 
method itself (Beroza et al., 1991). Therefore, the accuracy in 
the Monte Carlo sampling provides a solid basis for our 
method which uses the Monte Carlo-based protonation 
probabilities to calculate the protonation entropy. 

In conclusion, we have presented a method for calculating 
pH-dependent free energy of proteins using the dielectric 
solvent continuum model and solving the Poisson-Boltzmann 
equation numerically. Our method computes the free energy 
directly using the average energy and the protonation prob-
abilities of ionizable sites obtained by the well-established 
Monte Carlo sampling procedure. The key feature of this 
method is to calculate the protonation entropy by using the 
Monte Carlo-based protonation probabilities. Thus, the 
method can be implemented easily, and its application results 
here support that this method may find potential application to 
the elucidation of the pH-dependent properties of proteins. 

MATERIALS AND METHODS 

Structural models and partial charges of atoms 

The ionization free energies of lysozyme, Cathepsin B, barnase- 
barstar binding, and λcI repressor-operator were calculated with the 
described method (Fig. 1). The structural models for the lysozyme 
and corresponding parameters such as the partial charges of atoms 
were taken directly from the calculation example included in the 
MEAD (Macroscopic Electrostatics with Atomic Detail) suite of pro-
grams (Bashford and Gerwert, 1992; Bashford, 1997). These data 
have been used in previous studies by Bashford and Karplus (1990), 
and Beroza et al. (1991). The structures for Cathepsin B and the λcI 
repressor-operator were generated by MD simulation described 
below. For Cathepsin B, an MD simulation system was constructed, 
and the starting coordinates of the protein are those from the 2.15 Å 
resolution crystal structure in the Protein Data Bank (PDB code: 
1HUC) (Musil et al., 1991). For the λcI repressor-operator, two MD 
simulation systems were constructed for the unbound protein (i.e. the 
λcI repressor) and the protein-DNA (i.e. λcI repressor-operator) com-
plex, respectively; the starting coordinates of the unbound protein 
and the complex were taken from the refined 1.8 Å resolution crystal 
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structure (PDB code: 1LMB) (Beamer and Pabo, 1992). For MD 
simulations, CHARMM27 force field (MacKerell et al., 1998) was 
used for all three systems. Thus, the partial charges of atoms used 
for calculating the ionization free energy were also assigned accord-
ing to the CHARMM27 force field. To compute the ionization free 
energy, for each system (Cathepsin B, barnase, barstar, barnase- 
barstar complex, the λcI repressor, the λcI repressor-operator com-
plex) we extracted 50 conformational snapshots of the structure from 
the production MD simulation runs, as described in the following 
subsection. 

Molecular dynamics simulations 

MD simulations were carried out to generate conformational ensem-
bles of Cathepsin B, barnase, barstar, the λcI repressor, and the λcI 
repressor- operator complex for the calculations of ionization free 
energies (for starting structures see above). To construct a simulation 
system, the starting all-hydrogen structure of Cathepsin B (or λcI 
repressor, or λcI repressor-operator complex) was merged into a 
rectangular box of TIP3P (Jorgensen et al., 1983) water molecules. 
The thickness of the water layer between the protein and the closest 
box-boundary was ~14 Å. The ionic concentrations in the water box 
were set to those as used in corresponding experimental studies, i.e. 
for Cathepsin B 100 mmol/L, and for the λcI repressor and the λcI 
repressor-operator complex, 200 mmol/L KCl. Equal numbers of Na＋ 

(or K－) and Cl－ ions were first determined according to the given 
ionic concentrations, and then additional Cl－ ions were placed into 
the box to neutralize the system. Simulations were run under N, P, T 
conditions using the program NAMD (Kale et al., 1999), with the 
pressure P = 1 atm, and the temperature T = 300 K (for Cathepsin B) 
or 293 K (for two λcI repressor-operator systems). Periodic boundary 
conditions, particle-mesh Ewald (PME) method of the electrostatic 
forces (Essmann et al., 1995), SHAKE algorithm (Ryckaert et al., 
1977), and 1-fs time step were employed. The period for each simu-
lation run was 2 ns: 1-ns equilibration phase was first completed, and 
then 1-ns production phase was collected. To calculate the ionization 
free energy, 50 MD conformational snapshots of Cathepsin B (or 
barnase-barstar systems, or λcI repressor-operator systems) were 
extracted from the 1-ns production run at time intervals of 20 ps. 

Calculation of ionization free energy 

The MEAD suite of programs (Bashford and Gerwert, 1992; Bashford, 
1997) was employed for electrostatic calculations based on the con-
tinuum solvent model. With the atomic coordinates of every MD con-
formational snapshot, the program multiflex was used to compute the 
electrostatic interactions of charged ionizable residue pairs, Bjk, in Eq. 1, 
with the dielectric constants 4pε =  inside the protein and 80sε =  

for the solvent. For the computation of the electrostatic potential, the 
finite difference lattice was set up as a cubic box containing the whole 
structure. Electrostatic potentials were calculated with two focusing 
steps: a grid spacing of 1.0 Å (grid centered at the protein) and of 
0.25 Å (grid centered at the ionizable group). With the obtained 

,p intr
a jK  and jkB , the Monte Carlo procedure implemented in the 

program Karlsberg (Rabenstein and Knapp, 2001) was then used to 

calculate the average energy U in Eq. 3 and the protonation probabil-
ity, Θi, in Eq. 4. To compute the probability of an individual ionizable 
site, 10,000 protonation microstates were sampled with a standard 
deviation less than 0.01 protons for each ionizable site. Then, the 
ionization free energy was calculated based on Eqs 5, 6, and 9. For 
the calculations using the MD snapshots, the free energy was first 
calculated for every snapshot and then averaged over all 50 snap-
shots. 
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Appendix A 

Considering a statistical-mechanical system that consists of N dis-
tinguished components (e.g. particles, or, ionizable sites of protein in 
our case), a microstate of the system is determined by a specific set 
of the one-dimensional “coordinates” of the components, i.e. the state 
vector, 1( , , , , )j Nx x x= … …x . To derive Eq. 7, we begin with a state 
vector X with N continuous components, [ ]0,1 ( 1,2, , )jx j N∈ = … . 
Accordingly, the probability of finding the system in a specific micro-
state, X, is 

( )

( )( )
βE

βE
ep
e d

−

−
=
∫

x

x
x

x
x

,               (A1) 

where E(X) is the potential energy of the microstate. According to the 
Gibbs formula for the entropy, the (configurational) entropy of the 
system is given by 

B ( )ln ( )S k p p d= − ∫x x x x .             (A2) 

On the other hand, for component j, one may define the probability 
of finding the component in the microstate xi as p(xi), which is satis-
fied with 

1

0
( ) 1j jp x dx =∫ .                (A3) 

Because the so-called microstate of the system, X is actually the 
combination of the microstates of the N individual components, and 
the combined probability of the N components to be in the microstate 
X is the product of those of the individual components, we have 

1
( ) ( )

N

j
j

p p x
=

=∏x .                 (A4) 

Substitute Eq. A4 into A2 and consider Eq. A3, one can show 

1
B 0

1
( )ln ( )

N
j j j

j
S k p x p x dx

=
= − ∑ ∫ .         (A5) 

Specific to the protein protonation, the component xi is a two-value 
variable (1 or 0), and the averages are protonation probability 

( 1)j jp x θ= =  and unprotonation probability ( 0)j jp x λ= =  (see 

Eqs. 4 and 5), respectively. So, based on the general Eqs. A2 and A5, 
we have 
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( )
2

B B
1 1

ln ln ln
N

n n j j j j
n j

N
S k p p k θ θ λ λ

= =
= − = − +∑ ∑ .     (A6) 

Therefore, the protonation entropy of the protein is the sum of the 
contributions from N individual ionizable sites, as shown in Eq. 7. 
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