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ABSTRACT 

Herpes simplex virus type 1 (HSV-1) is a common hu-
man pathogen causing cold sores and even more se-
rious diseases. It can establish a latent stage in sensory 
ganglia after primary epithelial infections, and reacti-
vate in response to stress or sunlight. Previous studies 
have demonstrated that viral immediate-early protein 
ICP0 plays a key role in regulating the balance between 
lytic and latent infection. Recently, It has been deter-
mined that promyelocytic leukemia (PML) nuclear bod-
ies (NBs), small nuclear sub-structures, contribute to 
the repression of HSV-1 infection in the absence of 
functional ICP0. In this review, we discuss the funda-
mentals of the interaction between ICP0 and PML NBs, 
suggesting a potential link between PML NBs and ICP0 
in regulating lytic and latent infection of HSV-1. 

KEYWORDS   herpes simplex virus type 1 (HSV-1), reac-
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INTRODUCTION 

Herpes simplex virus type 1 (HSV-1), the archetypal member 
of the alphaherpes virus subfamily, is a large, nu-
clear-replicating, dsDNA virus. HSV-1 is a human neurotropic 
virus and infects mucous membranes causing cold sores. 
Following primary infection in epithelial cells, HSV-1 estab-
lishes lifelong latent infection in sensory neurons of the 
trigeminal ganglia by getting access to nerve terminals, 
leading to periodic reactivation and lytic replication at the site 
of original infection. Latency is such a status when viral ge-
nome adopts a non-linear configuration and is transcription-
ally repressed with the exception of a region encoding the 
latency-associated transcripts (LATs). Provoked by stress 

stimuli that act on the neuron, the latent virus reactivates and 
switches to a productive viral replication, allowing the virus to 
spread. Although there are large numbers of literatures re-
lated to HSV-1 latency and reactivation, the mechanisms by 
which viral genomes are maintained in a repressed state 
during latency and the processes involved in reactivation 
from latency are still not fully understood (Mitchell et al., 2003; 
Shimomura, 2008). 

Previous studies have demonstrated that viral immedi-
ate-early protein ICP0, a promiscuous activator of gene ex-
pression, is responsible for efficient entry into lytic cycle and 
can induce reactivation of latent or quiescent viral genomes, 
which have led to the suggestion that it plays a key role in 
regulating the balance between lytic and latent HSV-1 infec-
tion (Everett, 2000; Preston, 2000; Halford et al., 2001; 
Everett et al., 2004a; Hagglund and Roizman, 2004). 

It is proposed that in the absence of functional ICP0, a 
promyelocytic leukemia (PML) nuclear bodies (NBs) related 
cellular repression mechanism silences viral transcription. 
ICP0 seems to counteract this process by stimulating the 
degradation of a number of cellular proteins via the ubiq-
uitin-proteasome pathway (Table 1) (Boutell et al., 2002;  
 
Table 1  Client proteins degraded by ICP0 

Protein Reference 

PML Chelbi-Alix and de Thé, 1999 

Sp100 Chelbi-Alix and de Thé, 1999 

ATRX Everett et al., 2007 

hDaxx Everett et al., 2007 

E2FBP1 Fukuyo et al., 2011 

Centromeric proteins CENP-A Lomonte et al., 2001 

CENP-B Lomonte et al., 2007 

CENP-C Everett et al., 1999 

Catalytic subunit of DNA-PK Lees-Miller et al., 1996 
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Everett et al., 2006; Everett et al., 2008a). 

LYTIC AND LATENT INFECTION OF HSV-1 

Evolutionary pressures by viral infection ensure that the host 
develops defense systems to eliminate virus, while viruses 
have adopted many strategies to outmaneuvre the host's 
immune and other anti-viral systems while maintaining their 
long term survival potential. HSV-1 has successfully devel-
oped a particularly exquisite form of accommodation within 
the host. Animal experiments revealed that the virus gains 
access to the termini of sensory neurons during primary in-
fection in epithelial cells, and is transported by retrograde 
axonal transport to the sensory ganglia, where it replicates 
briefly and then establishes a latent infection (Mitchell et al., 
2003; Shimomura, 2008) . 

Lytic HSV-1 infection involves abundant transcription from 
the entire viral genome in a regulated cascade of immedi-
ate-early (IE), early, and late gene products (Lehman and 
Boehmer, 1999). The IE gene products regulate the expres-
sion of later classes of viral genes. During latent cycle, the 
transcription of HSV-1 genome is repressed, and only LATs, 
which derive from a single locus that lies countersense to the 
IE gene encoding ICP0, are expressed in readily detectable 
amounts (Wagner and Bloom, 1997; Preston, 2000; Ef-
stathiou and Preston, 2005). HSV-1 thus establishes a 
life-long infection in a form that is not accessible to anti-viral 
defense. Periodically, episodes of lytic infection occur as a 
result of reactivation. 

HSV-1 latency is therefore a key component of its life cycle, 
and as such the underlying mechanisms have been a subject 
of considerable interest. In particular, the regulation of viral 
gene expression during various stages of lytic and latent 

infection has been a very active and productive field of re-
search (Wagner and Bloom, 1997). 

ICP0, a key activator of HSV-1 gene expression 

During successional steps of HSV-1 lytic cycle gene expres-
sion, the IE genes are the first to be transcribed, and their 
products are required for the activation of later classes of 
promoters. The main viral transactivators required for the 
expression of the HSV-1 genes are the IE proteins ICP0, 
ICP4 and the late protein VP16 (Table 2). 

VP16, a component of the HSV tegument which is re-
leased into the cell following fusion of viral envelope, binds to 
cellular factors HCF and Oct-1, initiating the whole genetic 
program by activating the expression of the IE genes (Ma-
hajan et al., 2002; Wysocka and Herr, 2003). 

ICP4, a factor exerting its transcriptional activity by binding 
specifically or nonspecifically to DNA (Smith et al., 1993), is 
absolutely required for the transactivation of the HSV-1 early 
and late genes (Watson and Clements, 1980; DeLuca et al., 
1985). 

ICP0, which appears to act upstream of other IE proteins, 
is a crucial regulator of the three classes of HSV genes and 
has also been shown to be able to transactivate several other 
heterologous promoters in transfection reporter assays. It had 
been established earlier that ICP0 and ICP4 produce a syn-
ergistic transactivation of those promoters, greatly exceeding 
that in the presence of either protein alone. ICP0 reactivates 
quiescent viral genomes and stimulates initiation of lytic in-
fection by transactivating a broad range of viral and cellular 
promoters, suggesting crucial roles of ICP0 in different stages 
of HSV-1 infection (Preston and Nicholl, 1997; Samaniego et 
al., 1998). 

 
Table 2  Expression time course and function of ICP0  

 Expression time course Function Reference 
Activate later classes of promoters and enhance viral 
transcription Cai and Schaffer, 1992 

Required for reactivation from latency Halford and Schaffer, 2001 
E3 ubiquitin ligase activity, and degrade cellular proteins 
by ubiquitin-proteasome pathway Boutell et al., 2002 

Disrupt PML NBs Maul et al., 1993 

Relocate class II histone deacetylase Lomonte et al., 2004 
Prevent the accumulation of histones, repress histone 
modifications Ferenczy and DeLuca, 2011 

ICP0 Immediate 
early 

Counteract type I interferon (IFN) response Mossman and Smiley, 2002 

Transactivation Watson and Clements, 1980 

Transcription repression Paterson and Everett, 1988 ICP4 Immediate 
early 

Initiate viral DNA replication Aslani et al., 2000 
Recruit general transcription factors, RNA polymerase II, 
histone acetyltransferases (HATs), and ATP dependent 
chromatin remodeling complexes to IE promoters, stimu-
late immediate-early gene expression 

Harris and Preston, 1991; Xiao et al., 1994; 
Klemm et al., 1995; Memedula and Bel-
mont, 2003; Mittler et al., 2003; Herrera and 
Triezenberg, 2004; von Einem et al., 2006  

VP16 Late 

Virions assembly von Einem et al., 2006 
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The function of ICP0 has been extensively studied, and an 
increasingly detailed picture of its interactions with cellular 
proteins and its biochemical functions is emerging (Kawagu-
chi et al., 1997a, 1997b; Everett et al., 1998; Everett et al., 
1997; Parkinson and Everett, 2000; Kawaguchi et al., 2001; 
Van Sant et al., 2001; Boutell et al., 2002; Boutell and Everett, 
2003; Gu and Roizman, 2003; Jackson and DeLuca, 2003). 
Direct transcriptional activators either bind to specific re-
sponse elements in target promoters or interact with host 
transcription factors that form part of the basal transcriptional 
machinery or associated activator complexes. Whereas ICP0 
itself does not bind DNA directly, it seems that ICP0 acts as a 
transactivator of viral genome and a specific subset of cellular 
genes through interaction with some cellular proteins. Several 
studies reported that ICP0 interacts with various cellular fac-
tors, including cyclin D3, elongation factor EF-1σ, transcrip-
tion factor BMAL1, ubiquitin-specific protease HAUSP 
(Everett et al., 1997; Kawaguchi et al., 1997a, 1997b) and 
also specific nuclear structures known as PML NBs (Gu and 
Roizman, 2003; Lukashchuk and Everett, 2010). 

Furthermore, one of the key roles of ICP0 relates to its 
expression of two E3 ubiquitin ligase activities located in ex-
ons 2 and 3 (Van Sant et al., 2001; Boutell et al., 2002; Hag-
glund and Roizman, 2002; Hagglund et al., 2002). The ubiq-
uitin ligase activity present in exon 2 is associated with a 
RING finger domain and is responsible for the protea-
some-mediated degradation of cellular proteins, including 
major proteins associated with PML NBs such as PML and 
speckled protein of 100 kDa (Sp100), centromeric proteins 
CENP-A and CENP-C, and the catalytic subunit of DNA- 
dependent protein kinase (Everett et al., 1998a; Everett et al., 
1999a; Lomonte et al., 2001; Gu and Roizman, 2003). The 
second ubiquitin ligase activity identified in exon 3 is respon-
sible for the degradation of the E2 ubiquitin-conjugating en-
zyme cdc34 (Van Sant et al., 2001; Hagglund and Roizman, 
2003). The present hypothesis to explain the wide transacti-
vating or derepressing activities of ICP0, as well as its impli-
cation in the establishment of lytic replication, is the ability of 
ICP0 to alter the higher-order structure of chromatin by tar-
geting a repressive factor for degradation (Everett, 2000) 
(Table 1). 

PML NBs, small nuclear sub-structures with  
multifunction 

PML NBs, also known as nuclear dot 10 (ND10) or PODs 
(PML oncogenic domains), are small nuclear sub-structures 
with a striking punctate appearance. The size of PML NBs is 
between 0.2 and 1 μm and its quantity is from 2–3 to 30 per 
cell, depending on the cell type and status. PML NBs are 
dynamic macromolecular inclusions of cellular proteins that 
form within the interchromosomal space in the nucleus 
(Sternsdorf et al., 1997a; Everett et al., 1999b; Dellaire et al., 
2006), functioning in oncogenesis, the DNA damage re-

sponse (Dellaire and Bazett-Jones, 2004), the stress re-
sponse, apoptosis (Bernardi and Pandolfi, 2003; Gresko et al., 
2009), senescence (Bischof et al., 2002), the ubiquitin path-
way (Antón et al., 1999; Lallemand-Breitenbach et al., 2001), 
various genetic disorders, viral infection and the interferon 
(IFN) response (Regad et al., 2001). 

An increasing list of cellular proteins has been proven to 
accumulate at PML NBs; those proteins can be divided into 
two categories, one is permanent components, such as PML, 
Sp100, the death domain-associated protein (Daxx), small 
ubiquitin like modifier (SUMO), and the bloom syndrome 
helicase (BLM), and the other category is proteins that pre-
sent in PML NBs only under specific circumstances (e.g. 
DNA repair machinery) or during overexpression (e.g. breast 
cancer protein BRCA1) (Negorev and Maul, 2001; Tavalai et 
al., 2008). 

PML (also known as TRIM19), a tripartite motif family 
protein, is the key component of PML NBs and required for 
assembly of these structures (Ishov et al., 1999; Zhong et al., 
2000). Posttranslational modification of PML by covalent 
conjugation to SUMO at K65, 160, 490, named SUMOylation, 
is required for proper formation of PML NBs and recruitment 
of PML NB-associated proteins (Sternsdorf et al., 1997b; 
Kamitani et al., 1998a, 1998b; Mϋller et al., 1998; Duprez et 
al., 1999; Ishov et al., 1999; Zhong et al., 2000; Seeler and 
Dejean, 2001; Shen et al., 2006). Sp100, another permanent 
component of PML NBs, is also found to be conjugated to 
SUMO; however, SUMOylation of Sp100 is not necessary for 
its localization to PML NBs (Sternsdorf et al., 1997b; Sterns-
dorf et al., 1999). 

PML NBs confer intrinsic resistance to viral  
infection 

PML NBs display intrinsic antiviral properties, targeting both 
DNA viruses and cytoplasmic replicating RNA viruses (Regad 
et al., 2001; McNally et al., 2008; Tavalai et al., 2008). Unlike 
cytokine-mediated responses, intrinsic antiviral resistance 
involves the actions of pre-existing cellular proteins to repress 
viral transcription (Saffert and Kalejta, 2008; Tavalai et al., 
2008). PML NBs have been demonstrated to repress the 
replication of HSV-1 shortly after virus entry by mechanisms 
that limit early viral gene transcription, although the process is 
counteracted by ICP0 (Everett et al., 2006; Everett et al., 
2007). Early studies also show that exogenous expression of 
PML isoform VI causes significant reduction of adenovirus 
(Doucas et al., 1996) and human cytomegalovirus (HCMV) 
infection (Ahn and Hayward, 2000), while depleting PML 
enhances varicella-zoster virus (VZV) and HCMV replication 
(Tavalai et al., 2006; Tavalai et al., 2008; Kyratsous and 
Silverstein, 2009). Daxx, another permanent component of 
PML NBs, was reported to be involved in transcriptional 
regulation. Knocking down Daxx results in increased adeno-
viral and HCMV replication in cells (Tavalai et al., 2008; 
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Schreiner et al., 2010). 
PML deficiency renders mice more susceptible to some 

viral infection, including lymphocytic choriomeningitis virus, 
vesicular stomatitis virus (VSV) (Bonilla et al., 2002), en-
cephalomyocarditis virus (El McHichi et al., 2010), resulting in 
an increased viral replication. Mouse embryonic fibroblasts 
(MEFs) derived from these mice are also more sensitive than 
wild type MEFs to rabies virus infection, while a high level of 
PML isoform IV leads to a reduction in rabies virus replication 
(Blondel et al., 2002). SUMOylation of PML IV is required for 
the antiviral effect (Blondel et al., 2010). Knocking down all 
PML isoforms by siRNA also significantly enhanced the 
propagation of influenza A virus strains PR8(H1N1), 
ST364(H3N2) (Li et al., 2009) and influenza virus in cells (Iki 
et al., 2005). Exogenous expression of PML III can also con-
fer resistance to human foamy virus (HFV) (Rolley et al., 
1995), VSV, influenza virus (Chelbi-Alix et al., 1998; Regad et 
al., 2001) and poliovirus infection (Pampin et al., 2006). 

Although multiple PML isoforms are reported due to al-
ternative splice of transcript, and most of isoforms localize in 
PML NBs, a subset of PML isoforms, lacking exons 5 & 6, 
named PML Ib, exist in cytoplasm and is enriched during 
HSV-1 infection. PML Ib is demonstrated to sequestrate ICP0 
and mediate the intrinsic cellular defense against HSV-1 
(McNally et al., 2008). Three of Sp100 isoforms could prevent 
the transcription of HSV-1 proteins ICP0 and ICP4 at the 
promoter level, and IFN could change the splice of the Sp100 
mRNA in favor of the inhibitor Sp100C (Negorev et al., 2009). 

Association of PML NBs with the viral genomes 
contributes to intrinsic resistance 

PML NBs have been implicated to inhibit the replication of 
adenovirus (Doucas et al., 1996) and limit early viral gene 
transcription of HSV-1 and HCMV shortly after virus entry 
(Everett et al., 2006; Tavalai et al., 2006; Everett et al., 2007). 
A number of studies show that PML NBs associate with the 
genome of several DNA viruses. Maul et al., for the first time, 
observed that the parental genomes of HSV-1, HCMV and 
adenovirus are associated with PML NBs (Ishov and Maul, 
1996; Maul et al., 1996). Via examining newly-infected cells 
at the edges of developing virus plaques, PML NB compo-
nent proteins were found to accumulate in PML NB like 
structures that are closely associated with the viral genomes, 
which only just enter the nucleus. PML and other PML NBs 
components were recruited to PML NB like structures during 
initial stages of infection, rather than the migration of 
pre-existing PML NBs (Wiesmeijer et al., 2002; Everett et al., 
2004a; Everett and Murray, 2005). The process occurs ex-
tremely rapidly and does not depend on expression of viral 
protein, implying an intrinsic antiviral response to viral ge-
nome entry (Everett and Murray, 2005). The SUMO interac-
tion motifs of PML, Sp100 and hDaxx are necessary for re-
cruitment of these repressive proteins to HSV-1 genomes 

(Cuchet-Lourenço et al., 2011). 
The infection of mutant HSV-1 ICP0, ICP4 and/or VP16 

causes quiescent infection which is stable and similar to la-
tent infection. However, quiescent infection could be reversed 
only by provision of herpes viral proteins such as ICP0 and 
not by alteration of cell physiological state. By establishing 
quiescent infection of mutant HSV-1 which inactivates ICP0, 
ICP4 and VP16, Everett et al. found that quiescent HSV-1 
genomes in human fibroblast nucleus are associated with 
enlarged PML NB like structures, and the foci viral genomes 
were apparently enveloped within a sphere of PML and other 
ND10 proteins (Everett et al., 2007). During the initial stages 
of establishment of a quiescent infection in such cells, other 
ND10 proteins such as Sp100, hDaxx, and alpha thalas-
semia/mental retardation syndrome X-linked (ATRX) were 
recruited into PML NB like structures which associated with 
HSV-1 genomes. Accumulations of conjugated ubiquitin 
were also observed in PML NB like structures. Viral gene 
expression can be reactivated by superinfection with a virus 
that expresses ICP0. PML deficiency decreases the re-
pression of ICP0-null mutant HSV-1(Everett and Chelbi-Alix, 
2007) (Fig. 1). 

Recently, PML NBs are reported to sequester newly as-
sembled VZV nucleocapsids in neurons and satellite cells of 
human dorsal root ganglia and skin cells infected with VZV in 
vivo. PML fibers of those PML NBs form spherical cages that 
enclose mature and immature VZV nucleocapsids. Only PML 
IV could enhance the sequestration of nucleocapsids by in-
teracting with VZV capsid surface protein, and significantly 
inhibit the viral infection by inhibiting nuclear egress and for-
mation of infectious virus particles (Reichelt et al., 2011). 
Therefore PML cages were suggested to play a crucial role in 
the intrinsic antiviral defense, and the efficient sequestration 
of virion capsids in PML cages appears to be a basic cyto-
protective function of PML NBs (Reichelt et al., 2011). 

These observations illustrate a crucial role of PML NBs in 
the intrinsic antiviral defense and the potential link between 
PML NBs and quiescent infections. Recruitment of PML NBs 
components to sites associated with HSV-1 genomes and 
VZV nucleocapsids contributes to the intrinsic defense 
against invading viral genome (Everett et al., 2007; 
Cuchet-Lourenço et al., 2011; Reichelt et al., 2011), which 
suggests a crucial role of PML NBs in resistance to viral in-
fection. However, the association of PML NBs with viral ge-
nome is complex in nature and requires further study. For 
example, Epstein-Barr virus genomes in latently infected cells 
do not appear to be associated with PML NBs (Bell et al., 
2000). 

Genomes of adenoviruses, simian virus 40, papillomavi-
ruses and polyomavirus were also shown to be associated 
with PML NBs. After entrance into the nucleus, parental ge-
nomes of those viruses move to the sites of pre-existing PML 
NBs, and the replication compartments of all these viruses 
become associated with PML NB like structures when viral 
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Figure 1.  Association of PML NBs components with HSV-1 genomes contributes to intrinsic resistance. A sphere of PML 
NBs components in human fibroblast nucleus forms enlarged PML NBs like structures enveloping the HSV-1 genomes, and leading 
to the repression of HSV-1 genomes. The inhibition is counteracted by proteasome dependent degradation of PML NBs mediated 
by ICP0. 

 
DNA replication begins (Doucas et al., 1996; Ishov et al., 
1997; Maul, 1998; Everett, 2001; Fraefel et al., 2004; 
Jul-Larsen et al., 2004; Smith and Helenius, 2004). 

ICP0 targets PML NBs 

The herpes viruses encode regulatory proteins that localize to 
and in many cases disrupt PML NB structure; the disruption 
of PML NBs by herpes virus regulatory proteins correlates 
with their functions in augmenting viral gene expression. 
Early studies have shown that ICP0 localized in the nucleus 
at the onset of infection, with a punctate staining pattern in a 
diffuse background. It is also suggested that these ICP0 foci 
corresponded to pre-existing cellular nuclear sub-structures 
PML NBs and that as infection progressed, ICP0 had the 
amazing effect of completely disrupting them (Maul et al., 
1993; Everett and Maul, 1994; Maul and Everett, 1994). 
Since PML staining disappears after HSV infection (Maul et 
al., 1993), it demonstrates that virus replication affects PML 
NBs. 

The localization of ICP0 to PML NBs is observed within a 
few hours post infection, followed by complete disruption of 
these structures, a process that requires both its RING finger 
domains conferring ICP0 the ubiquitin E3 ligase activity. The 

C-terminal region of ICP0 is required for efficient localization 
of ICP0 to PML NBs (Everett and Maul, 1994; Maul and 
Everett, 1994). The degradation of PML and the SUMO- 
modified isoforms of Sp100 is mediated by ICP0 in a pro-
teasome-dependent manner (Boutell et al., 2002). Therefore, 
it is partly explained why exogenous expression of PML III or 
PML VI could not inhibit HSV-1 infection due to the protea-
some dependent degradation of PML mediated by ICP0 
(Chelbi-Alix and de Thé, 1999; Lopez et al., 2002). This 
process closely correlates with the role of ICP0 in stimulating 
HSV-1 gene expression and lytic HSV-1 infection (Everett, 
1988, 1989, 2000; Everett and Maul, 1994; Meredith et al., 
1995; Hagglund and Roizman, 2004). It is reasonable to 
conclude that there is an intimate link between the ability of 
ICP0 to interact with and disrupt PML NBs, and the regulation 
of latent and lytic infection by ICP0 was in some way con-
nected. 

PML/Sp100-related repression mechanism in the 
absence of ICP0 

To further investigate the relationship between ICP0 and PML 
NBs, ICP0-null mutant viruses were constructed (Stow and 
Stow, 1986; Sacks and Schaffer, 1987). It was found then 
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that in the absence of ICP0, the virus was still replication 
competitive but grew poorly and also reactivated from latency 
at much lower levels than the wild type virus when the multi-
plicity of infection (MOI) was low (Stow and Stow, 1986; 
Sacks and Schaffer 1987; Leib et al., 1989; Cai et al., 1993). 
Virus mutants lacking the ICP0 gene have increased parti-
cle-to-PFU ratios, substantially lower yields, and decreased 
levels of gene expression and thus decreased probability of 
initiating lytic infection. ICP0-null mutant HSV-1 exhibits a 
greatly reduced plaque forming efficiency, but this defect is 
partially reversed in cells depleted of PML, Sp100, hDaxx or 
ATRX (Everett et al., 2006; Everett et al., 2008a). 

Provision of exogenous ICP0 allows reactivation of the 
quiescent genomes and entry into a normal productive cycle 
(Preston, 2000), strengthening the hypothesis that ICP0 
might be involved in the control of the balance between lytic 
and latent infection, such that in its absence the latent state is 
favored (Samaniego et al., 1998). The extent of this multiplic-
ity dependent defect was cell-type dependent and can be 
overcome by cell cycle status (Cai and Schaffer, 1991; Yao 
and Schaffer, 1995), being particularly marked in lim-
ited-passage human fibroblasts, while less severe in BHK 
and Vero cells (Everett et al., 2004a) and negligible in os-
teosarcoma cell lines such as U2OS (Yao and Schaffer, 
1995). Thus the defect could not be simply explained by 
damaged or faulty virus particles since apparently defective 
virus in one cell type was infectious in another (Yao and 
Schaffer, 1995). Furthermore, once lytic infection had been 
initiated at high MOI, the mutant viruses produced normal 
levels of viral transcripts, proteins and progeny particles 
(Everett, 1989). However, using an equivalent number of viral 
particles could reduce the proportion of successfully infected 
cells by as much as 10,000 fold. It seemed that the ICP0 
mutant results in low probability of initiating lytic infection, and 
once the lytic infection had progressed beyond the early 
stages, it proceeded normally (Everett, 1989). 

Cells have intrinsic defenses against virus infection, acting 
before the innate or the adaptive immune response. 
Pre-existing antiviral proteins such as PML, Sp100, and Daxx 
are stored in specific PML NBs. The antagonistic relationship 
between ICP0 and components of PML NBs has implied the 
existence of certain link. During HSV-1 lytic infection, the viral 
regulatory protein ICP0 localizes to PML NBs and induces 
the degradation of PML, thereby disrupting PML NBS and 
dispersing their constituent proteins whereas HSV mutants 
that fail to express ICP0 are defective in their abilities to 
modify and degrade PML NBs components (Maul et al., 
1993), leading to the consequence of latent infection. 

The strong correlation between the effects of ICP0 on PML 
NBs and its requirement for lytic virus infection prompted the 
hypothesis that PML NBs might have a repressive effect on 
HSV-1 gene expression and thereby constitute an intrinsic 
antiviral defense. ICP0-null mutant viruses are defective in 
PML degradation and PML NBs disruption, and concomi-

tantly they initiate productive infection very inefficiently. The 
evidence that depletion of PML from human fibroblasts in-
creases the probability of plaque formation and enhances 
gene expression of ICP0-null mutant HSV-1 (Everett et al., 
2006) further supported the possibility that PML NBs struc-
tures have a repressive effect on viral infection, and viral 
regulatory protein ICP0 that disrupts these structures does so 
to relieve this repression. Parallel studies using HCMV add 
weight to the hypothesis that PML and PML NBs contribute to 
an intrinsic cellular defense that represses herpes virus gene 
expression, which is countered by the activity of ICP0 during 
lytic infection (Everett, 2006; Everett and Chelbi-Alix, 2007). 
However, it is clear that PML cannot be the sole cellular factor 
involved in HSV-1 genome repression because the en-
hancement of ICP0-null mutant replication in PML-depleted 
cells is modest compared to that expected if repression were 
completely lifted (Everett et al., 2006). 

Sp100, yet another major PML NBs component, has been 
implicated in repression of HSV-1 gene expression (Negorev 
et al., 2006) and in the regulation of Epstein-Barr virus tran-
scription (Ling et al., 2005). It is confirmed that Sp100 is also 
involved in HSV-1 genome repression in the absence of ICP0 
in human fibroblasts by the observation that depletion of 
Sp100 results in a similar increase in ICP0-null mutant gene 
expression (Everett et al., 2008a). 

Furthermore, depletion of PML or Sp100 from human fi-
broblasts modestly enhances ICP0-null mutant HSV-1 infec-
tion and gene expression. Deficiency of both proteins com-
plements the mutant virus to a greater degree, but does not 
restore the plaque formation to wild type HSV-1 levels 
(Everett et al., 2006, 2008a). Those observations can be 
explained as both PML and Sp100 contribute to a cellular 
mechanism of HSV-1 genome repression; meanwhile, addi-
tional factors must be required for the remaining repression of 
ICP0-null mutant HSV-1 genomes that occurs in cells de-
pleted of both PML and Sp100. Recently, Lukashchuk et al. 
revealed that knock down ATRX or Daxx by RNAi increases 
both gene expression and ICP0-null mutant HSV-1 and 
plaque formation. ATRX and Daxx act as a complex func-
tioning in intrinsic antiviral resistance to HSV-1 infection. This 
process is also counteracted by ICP0 (Lukashchuk and 
Everett, 2010). 

Recently, E2FBP1/hDril1, an AT-rich interaction domain 
family protein, is reported to regulate the activation of PML 
NBs. E2FBP1 is capable of disintegrating PML NBs by spe-
cific deSumoylation of PML (Fukuyo et al., 2004). E2FBP1 
could repress ICP0 expression at the level of transcription, 
inhibiting accumulation of ICP0 RNA; however, this process 
is counteracted by ICP0 via polyubiquitylation of E2FBP1 
mediated by RING/HUL-2 (herpes ubiquitin ligase 2) domain 
of ICP0. E2FBP1 interacts with ICP0 in vivo, and affects 
ICP0’s nuclear distribution (Fukuyo et al., 2011). Those ob-
servations suggest that E2FBP1 functions as an intrinsic 
cellular defense factor in spite of its PML NB dissociation 
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function, also outmaneuvered by ICP0. 
A logical explanation for this phenomenon that HSV-1 

originates the lytic infection from latent state in virtue of ICP0 
may lie in resisting the host suicide or self-protection system, 
because cell death is detrimental for viral proliferation. On the 
one hand, ICP0 inhibits the breakage of PML NBs structure 
by E2FBP1 to repress the premature senescence; on the 
other hand, ICP0 could mediate the dissociation of PML NBs 
itself in HSV-1 infected cells. The direct or indirect relation-
ship between ICP0 and PML NBs may be out of HSV-1 
life-cycle demand. The key point for ICP0 to regulate the PML 
NBs function is exactly mediated during various HSV-1 life 
periods. 

The orthologues of ICP0 expressed by other alphaherpes 
viruses have similar biological functions and can disrupt PML 
NBs, including BICP0 of bovine herpes virus 1, Eg63 of 
equine herpes virus 1, ORF61 protein in VZV and EP0 in 
pseudorabies virus (PRV) (Parkinson and Everett, 2000). 

In a word, all the previous studies and observations estab-
lish the following inferences: (1) Components of PML NBs 
contribute to intrinsic anti-HSV defense mechanism; (2) E3 
ubiquitin ligase activity of ICP0 counterbalances the cellular 
repression by proteasomal degradation of PML NBs, pro-
moting viral gene expression and switching into lytic cycle; (3) 
Cells infected with ICP0-null mutant viruses fail to degrade 
repressive factors, resulting in quiescent status of viral ge-
nomes, which is the characteristic of latency; (4) The evi-
dence that depletion of PML enhances gene expression of 
ICP0-null mutant HSV-1 demonstrates that the link between 
PML NBs and ICP0 in regulating lytic and latent infection of 
HSV-1 does exactly exist. 

CONCLUSIONS 

The observations that HSV-1 mutants, failing to express the 
viral immediate-early protein ICP0, have a pronounced defect 
in viral gene expression and efficient progression of infected 
cells into lytic infection, especially at low MOI, have led to the 
inference that ICP0 produces a marked effect on the regula-
tion of the balance between lytic and latent HSV-1 infection. 

ICP0, acting as a wide-spectrum transactivator of gene 
expression and the ubiquitin E3 ligase activity conferred by 
the RING finger domain, is one of the most prominent activi-
ties, with the ability to localize to and disrupt discrete nuclear 
structures known as PML NBs or ND10. This disruption oc-
curs through ICP0-induced degradation of PML. HSV-1 mu-
tants that fail to express ICP0 or that express mutant ICP0 
proteins that lack RING finger activity are unable to disrupt 
PML NBs or to degrade PML. Such mutants have a profound 
defect in HSV-1 gene expression after infection of lim-
ited-passage human fibroblasts. With the data above, a hy-
pothesis that degradation of PML NBs plays a key role in 
progressing infected cells into productive infection arose, to 
which the accumulating evidence that several PML NBs pro-

teins, including PML and Sp100, are involved in the repres-
sion or regulation of viral gene expression lends support. All 
together, we conclude that there is a potential link between 
PML and Sp100—contributing to repression of HSV-1 gene 
expression and the functions of ICP0 in regulating lytic and 
latent infection. Understanding the mechanisms by which 
ICP0 represses intrinsic resistance will provide new insight 
into the pivotal role of ICP0 during HSV-1 infection, making 
ICP0 an attractive target for designing antiviral drug to pre-
vent HSV-1 diseases. 
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