
Protein Cell 2012, 3(2): 132–139 
DOI 10.1007/s13238-012-2011-z 

 

132 © Higher Education Press and Springer-Verlag Berlin Heidelberg 2012 

Protein & Cell 

RESEARCH ARTICLE 

Study of drug function based on similarity of 
pathway fingerprint 
Hao Ye1,2, Kailin Tang2, Linlin Yang1,2, Zhiwei Cao3, Yixue Li1,2  

1 State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, China 
2 Shanghai Center for Bioinformation Technology, Shanghai 200235, China 
3 School of Life Science and Technology, Tongji University, Shanghai 200092, China 

 Correspondence: yxli@scbit.org 
Received December 29, 2011  Accepted January 4, 2012 

 
 
 

ABSTRACT 

Drugs sharing similar therapeutic function may not 
bind to the same group of targets. However, their tar-
gets may be involved in similar pathway profiles which 
are associated with certain pathological process. In this 
study, pathway fingerprint was introduced to indicate 
the profile of significant pathways being influenced by 
the targets of drugs. Then drug−drug network was fur-
ther constructed based on significant similarity of 
pathway fingerprints. In this way, the functions of a 
drug may be hinted by the enriched therapeutic func-
tions of its neighboring drugs. In the test of 911 FDA 
approved drugs with more than one known target, 471 
drugs could be connected into networks. 760 signifi-
cant associations of drug−therapeutic function were 
generated, among which around 60% of them were 
supported by scientific literatures or ATC codes of drug 
functional classification. Therefore, pathway finger-
prints may be useful to further study on the potential 
function of known drugs, or the unknown function of 
new drugs. 
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INTRODUCTION 

Drug discovery is known as time-consuming and laborious. 
To bring a single de novo compound to drug market, more 
than $800 million will be spent on average with a time period 
of ~15 years (Adams and Brantner, 2006). Moreover, about 
90% of drugs fail during the testing process in phase I clinical 
trials (Krantz, 1998). The high expenditure but low productiv-

ity has aroused widely concern on the traditional drug dis-
covery strategy. One of the suggestions has been proposed 
to mine drugs from those existing or failure compounds 
(Chong and Sullivan, 2007; Tobinick, 2009). Thus it becomes 
increasingly important to explore the potential functions of 
those known drugs or experimental compounds. 

Although experiments may provide precise information, 
the time-consuming and costly process would heavily hinder 
the application. Many studies have indicated that computa-
tional approaches can timely provide very useful insights for 
both basic research and drug development, such as predict-
ing drug−target interaction networks (He et al., 2010), pre-
dicting HIV cleavage sites in proteins (Chou, 1996), predic-
tion of body fluids (Hu et al., 2011a), predicting protein 
metabolic stability (Huang et al. 2010), predicting signal pep-
tides (Chou and Shen, 2007), predicting the network of sub-
strate−enzyme−product triads (Chen et al., 2010), predicting 
protein subcellular locations (Chou et al., 2011), predicting 
biological functions of compounds based on chemical– 
chemical interactions (Hu et al., 2011b). Actually, several 
novel mathematical approaches and physical concepts have 
been introduced into molecular biology, such as Mahalanobis 
distance (Chou, 1995), pseudo amino acid composition 
(Chou, 2001), graph and diagram analysis (Zhou and Deng, 
1984; Andraos, 2008; Chou, 2010), cellular automaton (Xiao 
et al., 2009), grey theory (Xiao et al., 2008), low-frequency (or 
Terahertz frequency) phonons (Chou, 1989), which can sig-
nificantly stimulate the development of biological and medical 
science. Especially, drug-related network based on graph 
theory has provided a useful platform for systematically in-
vestigating the existing drugs. For instance, Yildirim et al. 
(Yildirim et al., 2007) firstly constructed drug−target network, 
according to the relations of drug, target and therapeutic 
functions that were collected in DrugBank (Knox et al., 2011). 
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Figure 1.  Relationships between drugs and pathways. (A) Numeric distribution of drugs according to the ratio of their targets 
covered by feature pathways. (B) Numerical distribution of the pathways per drug. (C) Numerical distribution of drugs per pathway. 
(D) Bipartite graph of 14 anatomical main groups and corresponding top 3 frequently targeted feature pathways. Pathways are 
represented by red roundness, while green box means an anatomical main group (first level of ATC group). 
 

 
In addition to the therapeutic function indicated in ATC (Ana-
tomical Therapeutic Chemical) system, they investigated the 
topological features of existing drugs between different 
therapeutic function groups. Later on, a drug−therapy net-
work was built by Nacher (Nacher and Schwartz, 2008), to 
study the relations between drugs and their corresponding 
therapeutic functions. 

These methods have mainly focused on individual target, 
where the drug−drug relations were identified by targeting the 
same target. However, from a system aspect, proteins do not 
always perform their functions isolated but interact with other 
cellular components to form complexes or pathways (Barabási 
and Oltvai, 2004). Drugs without common targets could also 
exert the similar therapeutic effect to the same disease, ow-
ing to the phenomenon that different targets participate in the 
same pathway which is closely associated with the patho-
logical process. Obviously, such important information could 
be utilized to infer drug’s therapeutic functions. Here, we 
introduce a novel computational approach, the so-called 

“Pathway Fingerprint Similarity,” for studying drug functions. 
According to the drug−drug network built by the similarity of 
pathway fingerprint, the function of a drug could be sug-
gested by the enrichment of therapeutic function of its 
neighboring drugs. 

RESULTS 

The relationships between drug/function and feature 
pathway 

Firstly, we define pathway fingerprint as a binary vector that 
represents the significantly enriched pathways of drug targets. 
In this paper, each significantly influenced pathway is called 
feature pathway. In order to investigate whether the pathway 
fingerprint could represent the effects of a drug, we calculated 
the proportion of drug targets that included in the feature 
pathways for each drug. As it shows in Fig. 1A, 75.80% of 
drugs were discovered, of which, more than 70% of targets 
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were included in the corresponding feature pathways. More-
over, 62.35% of drugs with more than 90% of targets were 
detected in feature pathways. All of these indicate that the 
pathway fingerprint could well represent the potential function 
of most drugs. 

Figure 1B shows the distribution of feature pathways for 
drugs. 354 (59.50%) drugs could significantly influence more 
than one pathway. Nadide, a nutritive drug approved by FDA, 
which binds to 144 protein targets, may regulate 28 feature 
pathways. Under the “one target, one disease” paradigm of 
previous drug design (Wermuth, 2004), the multiple feature 
pathways may not only contain the molecular basis of the 
main therapy, but also indicate several other new functions. 
For example, Trastuzumab is an antibody drug used for 
breast cancer, which is designed to inhibit ErbB-2 in ErbB 
signaling pathway. Several lines of clinical evidence showed 
that Trastuzumab could treat other cancers that closely re-
lated with ErbB signaling pathway, such as ovarian cancer 
(Delord et al., 2010), glioblastoma (Mineo et al., 2004), head 
and neck cancer (Kondo et al., 2008), lung cancer (Azzoli et 
al., 2002). Moreover, Osteoclast differentiation pathway (an-
other feature pathway of Trastuzumab) may regulate the 
balance between bone formation and resorption which is the 
molecular basis of osteopetrosis/osteoporosis (Lazner et al., 
1999; Anandarajah et al., 2008). Figure 1C shows the dis-
tribution of drugs of feature pathways. Averagely, each 
feature pathway could be targeted by 12 (median 4) drugs. 
Neuroactive ligand−receptor interaction pathway was the 
most targeted pathway which could be significantly influ-
enced by 241 (40.50%) drugs. Receptors, such as G pro-
tein-coupled receptors (GPCRs), iron channel receptors in 
the pathway, were frequently designed as drug targets may 
be the reason. 

In order to get a global view of the relations between 14 
anatomical main groups and their frequently (top 3) targeted 
feature pathways, we built a bipartite graph in Fig. 1D. It is 
obvious that neuroactive ligand−receptor interaction and 
calcium signaling pathway were targeted by drugs in several 
anatomical main groups, such as cardiovascular system, 
nervous system, alimentary tract and metabolism. It may 
indicate that drugs in these anatomical main groups could 
result in several other effects because of such interactions. In 
fact, antipsychotic drugs were always found to induce side 
effects on metabolic or cardiovascular system (e.g. obesity, 
diabetes, hypertension) (Fodor, 2011; Liao et al., 2011). In 
addition, antineoplastic and immunomodulating agents, 
anti-infective agents and hematological therapy agents may 
show a different therapy model from other anatomical main 
groups, owing to sharing few feature pathways. While, 
Fc-gamma R-mediated phagocytosis, phagosome, were 
frequently targeted by immune-related drugs, namely, anti-
neoplastic and immunomodulating agents, and anti-infective 
agents. 

Drug−drug network 

From the results discussed above, the therapeutic functions 
of most drugs could be well represented by the correspond-
ing pathway fingerprint. Feature pathways could indicate the 
therapeutic interactions between drugs in different anatomical 
main groups. Herein, we built a drug−drug network aiming to 
study the therapeutic functions of the drugs with similar 
pathway fingerprint. After the selecting process described in 
MATERIALS AND METHODS, 6680 drug−drug pairs involv-
ing 471 individual drugs were generated (Fig. 2A). Moreover, 
411 drugs labeled with ATC code, correspond to 5167 
drug−drug pairs. All of the anatomical main groups and 61 
therapeutic main groups that were indicated in ATC codes 
were covered by these drugs. In the drug−drug network, 
drugs were clustered together with the similar pathway fin-
gerprint. It could be inferred that the clustered drugs tend to 
exert similar therapeutic functions on the basis of regulating 
similar biological processes. Combined with ATC classifica-
tion system, the proportions of drug−drug pairs in the same 
anatomical main groups (first level of ATC) and therapeutic 
main groups (second level of ATC) were 52.20%, 22.08%, 
respectively. If a drug seems to connect with the drugs from 
the same therapeutic main group, that may indicate its po-
tential therapeutic function. 

Cinnarizine is an anti-histaminic drug mainly used for the 
control of vomiting due to motion sickness. As it shows in Fig. 2B, 
it connected with seven anti-cardiovascular system drugs. Six 
of them (Amlodipine, Nitrendipine, Nimodipine, Nilvadipine, 
Nisoldipine, and Isradipine) are labeled with “C08,” which 
represents calcium channel blockers. Those drugs are al-
ways used to treat hypertension through regulating the vas-
cular contraction and expansion. While, Cinnarizine was 
found to block calcium channel and induce vascular expan-
sion (Deitchman et al., 1980). Moreover, the combination of 
Clofibrate and Cinnarizine for hypertension therapy has al-
ready been applied as a US patent by Metz et al. (patent Id: 
4156003) 

Ethopropazine is primarily used as an antidyskinetic to 
treat Parkinsonism. And Carbachol is a cholinergic agonist 
which was approved for the treatment of glaucoma. In Fig. 2C, 
their other neighbors belong to the therapeutic main group of 
muscle relaxants, which was obviously distinguished from 
themselves. Actually, Ethopropazine was always used as an 
antispasmodic agent in clinic therapy (Timberlake and 
Schwab, 1952). Kamikawa et al. proved that Carbachol could 
regulate the contraction of smooth muscle on the guinea-pig 
esophageal muscularis mucosae (Kamikawa and Shimo, 
1987). 

Mecasermin is a recombinant of human insulin-like growth 
factor 1 (IGF-1) which is used for the long-term treatment of 
growth failure in children with severe primary IGF-1 
deficiency (Fintini, Brufani and Cappa, 2009). In Fig. 2D, it 
connected with 3 anti-diabetes drugs (insulin lispro, insulin  
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Figure 2.  Drug−drug network and four extracted subnetworks. (A) Drug−drug network. Each node in the network represents a 
drug. Different colors are mapped according to the 1st-level ATC sub-group. Drugs with specifically and significantly similar pathway 
fingerprint are linked by edges. (B–E) are 4 examples extracted from the network. 

 
glargine and insulin recombinant). This may indicate that 
Mecasermin could regulate similar biological process with the 
neighbors. In fact, Mecasermin was proved to perform bene-
ficial effects in diabetes (Keating, 2008). 

In addition, although interferon alpha-3 was assigned with no 
ATC code, it was closely linked to 8 other interferons in Fig. 2E. 
That well matched the fact of similar therapeutic function of 
interferons. 

Besides those, we predicted the new functions of the 418 
drugs with no less than 3 neighbors. In this condition, 760 
drug−therapeutic function pairs were generated (see sup-
plementary data), covering 21 therapeutic main groups indi-

cated in second level of ATC system, corresponding to 339 
drugs (298 of them with known ATC codes). In the predicted 
results, 175 drugs (58.72%) were well matched with their 
known therapeutic functions. 458 drug−therapeutic function 
pairs (60.26%) could be supported by scientific literatures. 
Others may indicate potential therapeutic functions of drugs. 

DISCUSSION 

Molecular fingerprint was initially proposed to study the 
chemical structure of small molecules. It makes it easier to 
compare the structures and investigate the association be-
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tween the function and chemical structure. However, there 
may be some gaps between biological effect and chemical 
structure. Actually, compounds always exert their functions 
through binding protein targets. Proteins generally carry out 
their functions by the form of pathway. In this paper, pathway 
fingerprint which was used to represent the significantly 
regulated pathways of drug targets was first proposed to 
investigate the therapeutic functions of drugs. 

Although drugs were designed under the paradigm of “one 
target, one disease,” a lot of them were found to target addi-
tional targets. This may lead to new functions owing to regu-
lating several other biological processes. In the drug−drug 
network, drugs with the similar pathway fingerprint would 
cluster together. We designed the drug function prediction 
method according to the functional distribution of their 
neighbors in the network. 60.26% of the predicted results 
were supported by scientific literatures. This method could 
also be used to infer functions of active compounds, as long 
as we build a compound−drug network based on the similar-
ity of pathway fingerprint. 

In all, pathway may offer a new perspective to understand 
the drug−therapeutic function relations. Especially, the drug− 
drug network based on the similarity of pathway fingerprint 
may give some insights into the discovery of new indication or 
sides effects for existing drugs. Since user-friendly and pub-
licly accessible web-servers represent the future direction for 
developing practically more useful models, simulated meth-
ods, or predictors, we shall make efforts in our future work to 
provide a web-server for the method presented in this paper. 

MATERIALS AND METHODS 

Drug−drug network construction (see workflow in Fig. 3) 

Pathway selection 

A ‘pathway’ is defined as a manually annotated basic biological func-
tional unit. KEGG (Kanehisa et al., 2010) serves as a comprehensive 
resource for pathway information. As a result, 185 basic pathways 
were collected, including 5703 genes (all of the disease pathways in 
KEGG are excluded). 

Drug target and the corresponding pathway fingerprint 

911 FDA approved multi-target drugs are collected in DrugBank v3.0, 
which occupies 60.37% of approved drugs in the database. Then the 
Fisher’s exact test that was utilized in DAVID (Huang et al., 2009) 
was chosen to evaluate the pathway enrichment of targets for each 
drug. A pathway with an enriched p value of no more than 0.01 is 
identified as a feature pathway and it would be tagged “1” in the 
pathway profile vector; otherwise, it would be tagged “0.” The binary 
vector defined as pathway fingerprint was finally obtained. In this 
study, each drug could get a 185 dimension vector according to the 
influence on collected pathways. Finally, 595 of the drugs contained 

at least one feature pathway. 

Calculating the similarity of pathway fingerprint between drugs 

Herein, Tanimoto coefficient (Willett, Barnard and Downs, 1998) was 
used to evaluate the similarity of pathway fingerprint. Given a drug 
pair A and B, the Tanimoto coefficient for binary vectors was defined 
as formula (I) 

=
+ −

( , ) cT A B
a b c

                   (I) 

In this formula, a is the number of feature pathways for drug A, b is 
the number of feature pathways for drug B, and c is the number of 
feature pathways shared by drugs A and B. 

Specificity test on the similarity of pathway fingerprint for each 
drug pair 

In order to test whether the similarity of drugs A and B was specifi-
cally related to the special feature pathways of drugs, a control group 
is constructed. Retaining the pathway fingerprint sequence of the 
drug A, random pathway fingerprints of the drug were generated by 
randomly sorting the pathway 100,000 times. For each random 
pathway fingerprint of drug A, the tanimoto coefficient was calculated 
with pathway fingerprint of drug B. Then the random tanimoto coeffi-
cient set S (A,B) between drugs A and drug B was obtained. Z-score 
calculated by formula (II) was used to evaluate the specificity of the 
similarity (3 was set as the threshold) 

−
=

( , ) ( ( , ))
( ( , ))

T A B mean S A BZ
std S A B

              

 (II) 

Significance test on the similarity of pathway fingerprint for 
each drug pair 

A set M which contains the entire tanimoto coefficient between all 
drug pairs was generated. Whether tanimoto coefficient of each drug 
pair was significantly larger than the average of M was tested (3 was 
set as the threshold). 

Drug ATC classification system and drug function prediction 

The ATC system is used for the classification of drugs’ functions 
(http://www.whocc.no/atc/structure_and_principles/). In this system, 
drugs are assigned with a seven characters code that could classify 
drugs at 5 different levels. The first level of the ATC code indicates 14 
anatomical main groups and consists of one letter (e.g. ‘C’ means 
cardiovascular system). The second level of the code indicates the 
therapeutic main group and consists of two digits (e.g. ‘C02’ means 
anti-hypertensive). In this study, the potential functions of a drug were 
inferred, according to the distribution of its neighbors in the therapeu- 
tic main groups. Specifically, a hypergeom test described in formula 
(III) was taken to evaluate the functional enrichment of the drugs’ 
neighbors in the drug−drug network. 

•
−
−

=
= − ∑(  ,  )

0
1

x n xk
M N M

drug A function i n
x N

C Cp
C

         (III) 
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Figure 3.  Workflow of constructing the drug−drug pairs. 

 
N: number of nodes in the network minus 1; n: degree of drug A; M: if 
drug A belongs to the therapeutic main group i, M is the number of 
drugs in the network minus 1. Otherwise, M is the number of drugs in 
the network. k: number of drug A’s neighbors that belong to thera-
peutic main group i. Two additional requirements need to be satisfied. 
(1) Drug A must be directly linked with no less than 3 drugs in the 
network; (2) No less than 3 of drug A’s neighbors were included in the 

therapeutic main group i. 
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