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Human induced pluripotent stem cells (iPSCs) hold unprece-
dented potential to model human development and genetic
disorders due to their capability to self-renew and differentiate
into any somatic cell type.

In the year of 2011, a number of iPSC disease models have
been successfully developed for studying the mechanism of
human diseases as well as establishing platforms for drug
screening and testing (Batista et al., 2011; Brennand et al.,
2011; Devine et al., 2011; ltzhaki et al., 2011; Koch et al.,
2011; Liu et al., 2011a; Mazzulli et al., 2011; Nguyen et al.,
2011; Pasca et al., 2011; Quarto et al., 2011; Tiscornia et al.,
2011; Wu and Hochedlinger, 2011; Yazawa et al., 2011;
Zhang et al., 2011; Zhu et al., 2011). One key hypothesis of
current iPSC disease models is based on the presumption
that wild type and diseased iPSCs are equal to their
embryonic stem cell (ESC) counterparts. However, this
hypothesis seems to be challenged by several recent findings
on the striking differences between ESCs and iPSCs. At the
genomic level, the reprogramming process tends to cause the
accumulation of DNA mutations as well as other chromoso-
mal abnormalities related to cancer pathways (Panopoulos
et al.,, 2011). Whereas there is no relevant in vivo data
indicating that these mutations are indeed linked to tumor-
igenesis, the genetic aberrances accumulated during repro-
gramming probably interfere with the cellular parameters in
either iPSCs or their differentiated derivatives. If specific
diseases, especially those associated with genomic instabil-
ity, facilitate the accumulation of more genetic mutations
during reprogramming, this could result in wrong explanation
of the phenotypes of iPSC disease models. In fact, the
evaluation on how aspects of specific diseases affect
reprogramming-associated mutations has not been reported.
Additionally, at the epigenomic level, the residual epigenetic
memories of iPSCs from their original cellular environment
likely represent another barrier to being a true phenocopy of
their ESC counterparts. In support of this, mouse iPSCs, but
not ESCs, show immune rejection upon transplantation
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(Zhao et al.,, 2011), suggesting that subtle epigenetic
differences might cause substantially different cell identities.
To date, it is not clear whether disease-associated epigenetic
memories exist in patient-specific iPSCs. Only a few groups
examined the successful resetting of abnormal epigenetic
marks during reprogramming, such as histone and DNA
methylation, in their iPSC disease models (Marchetto et al.,
2010; Liu et al., 2011a). At the differentiation level, a number
of reports have shown that iPSCs behave differently from their
ESC counterparts (Buchholz et al., 2009; Bock et al., 2011;
Kim et al., 2011), although researchers still don’t know how
this difference affects recapitulation of disease phenotypes in
vitro. It should also be noted that certain diseased somatic
cellular environments might contribute to the defective
reprogramming with a higher possibility. For example, cellular
defects in Fanconi anemia patient fibroblasts resulted in a
complete blockage of iPSC generation (Raya et al., 2009).
Hence, to avoid misinterpretation of results, it seems
essential to first evaluate whether generated patient iPSCs
are completely reset to a patient ESC-like status. Along
this line, thorough examination of various cellular parameters
in patient-specific iPSCs could be a critical step before
employment of any iPSC disease model in mechanistic
studies or drug testing. As complementary approaches, the
relevant assays with overexpression of a mutant (e.g. for
dominant mutation) or knock-down of an endogenous protein
(e.g. for recessive mutation) in disease-related cell types
should be included to verify the specific aspects of disease
phenotypes.

Furthermore, the lack of appropriate control iPSC lines
constructs another important experimental limitation for the
use of patient-derived iPSCs. In fact, the “wild type” or
“healthy” iPSC lines currently used as controls are derived
from “phenotypically normal” populations, which nevertheless
carry various genetic and epigenetic polymorphisms. The
major concern with respect to these epigenetic and genetic
variations is that they may cause inconsistent phenotypic
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Figure 1. Studying human diseases with pluripotent stem cell (PSC) models. Classic iPSC disease models utilize multiple
control and diseased iPSC lines to recapitulate disease phenotypes (left). Correction of disease mutation in patient iPSCs (middle) or
knock-in of disease mutation in hESCs (right) is able to generate isogenic PSC lines for disease modeling.

outputs. Although it could be helpful to use many iPSC lines
from different individuals to overcome some variations
(Fig. 1), high genetic background noise derived from multiple
individuals would mask the subtle phenotypic differences in
iPSC disease models, especially for diseases with low
penetrance or diseases related to aging. Correction of
known disease-specific mutations in patient iPSCs, which is
now becoming feasible, probably represents a superior
approach to generate isogenic iPSC controls for disease
modeling (Fig. 1) (Deyle et al., 2011; Hockemeyer et al., 2011;
Howden et al., 2011a, 2011b; Li et al., 2011; Liu et al., 2011b,
2011c; Panetal., 2011; Sebastiano et al., 2011; Soldner et al.,
2011; Yusa et al., 2011; Zou et al., 2011). Nevertheless, these
studies are still based on a presumption that patient iPSCs
can faithfully recapitulate disease phenotypes upon differ-
entiation like their ESCs counterparts.

A more unbiased way to model diseases would be to
genetically manipulate ESCs and introduce disease-specific
mutations (Fig. 1). Recently, Jaenisch group have success-
fully generated Parkinson disease-specific ESCs by
introducing related genetic mutations with Zinc Finger
Nuclease (ZFN) technology (Soldner et al., 2011), opening
an avenue to model diseases with isogenic mutation-bearing
ESCs. The engineered human ESCs with disease-associated
mutations may represent the most reliable model for disease
study. Direct knock-in of disease-specific mutations in
ESCs would bypass the reprogramming steps as well as
reprogramming-associated side-effects. This would not only
short-cut the necessity for strict validation of patient-derived

iPSCs but also avoid the potential misconclusions that
could arise from the use of a defective iPSC disease model.
Indeed, differential pathological characteristics between
patient specific iPSCs and ESCs have been recently
observed in specific disease contexts (Urbach et al., 2010).
For instance, human ESCs and iPSCs behave differently in
modeling fragile X syndrome triggered by extended copies of
CGG trinucleotide repeat in chromosome X-encoded
FMR1 gene. In this case, FMR1 is transcriptionally activated
in patient ESCs, but epigenetically silenced in diseased
iPSCs (Urbach et al., 2010), raising a concern on whether
iPSC disease models could faithfully reflect the process of
diseases. In contrast, the disease phenotypes of Marfan
syndrome were recently successfully recapitulated by using
both patient iPSCs and ESCs (Quarto et al., 2011),
arguing that iPSC models could act faithfully at least in
certain disease contexts. Therefore, isogenic mutant ESCs
generated by reverse genetic manipulation indeed provide
superior tools for modeling single-gene genetic disorders,
although iPSC-based models are irreplaceable for studying
specific human diseases especially those with unknown
biological clues, such as schizophrenia (Brennand et al.,
2011).
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