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ABSTRACT

For many psychiatric and other traits, diagnoses are
based on a number of different criteria or phenotypes.
Rather than carrying out genetic analyses on the final
diagnosis, it has been suggested that relevant pheno-
types should be analyzed directly. We provide an over-
view of statistical methods for the joint analysis of
multiple phenotypes in case-control association studies.
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INTRODUCTION

For many complex traits, a good number of phenotypes
(endophenotypes, covariates, and biological variables) are
recorded and some of them flow into the definition of affected
and unaffected. As a simple example, hypertension is defined
by thresholds on two measurements, systolic and diastolic
blood pressure. A more complicated example is schizophre-
nia, for which books (DSM-IV; SCID, http://www.scid4.org/)
provide guidance on how to define this trait and other major
mental disorders. Genetic mapping studies by linkage or
association analysis may now be carried out on the basis of
the dichotomy, affected (cases) versus unaffected (controls),
but the reduction of dimensionality from multiple phenotypes
to just one dimension may involve a loss of information and
efforts have been made to base genetic studies on multiple
relevant phenotypes. This outline summarizes statistical
approaches to working with the multiplicity of phenotypes in
a meaningful manner.

A telling example of the value of considering multiple
phenotypes rather than a conventional disease definition is
hypertension in Lyon hypertensive rats. It was shown that two
different blood pressure measurements, diastolic and pulse

pressure, are controlled by different genes on different
chromosomes (Dubay et al., 1993). Thus, it appears likely
that an analysis based on the conventional definition of
“hypertension” might have missed both of these genes.

THE ONE-BY-ONE APPROACH

The simplest way of handling multiple phenotypes is to
analyze each of them separately. Each is likely to shed light
on a given trait from a somewhat different angle. Depending
on sample size, we may expect that one or more of the
phenotypes will result in a statistically significant outcome. In
practical application, for a given (quantitative) phenotype and
a given SNP with genotypes AA, AB, and BB, we want to test
whether phenotype means are the same at the three SNP
genotypes. This is usually carried out by a one-way analysis
of variance (ANOVA) resulting in an F statistic with 2 and n − 3
degrees of freedom (df), where n is the number of observa-
tions (individuals). For multiple phenotypes, multiple F tests
are carried out.

As each phenotype may only capture one aspect of the
trait, the one-by-one approach presumably is suboptimal.
There is also the question of how to handle the multiple p-
values resulting from the analysis of multiple phenotypes; this
question will be addressed below under the heading of
multiple testing. Thus, various ways of analyzing multiple
phenotypes in a combined manner have been proposed and
applied.

PRINCIPAL COMPONENTS

In genetic linkage analysis on family pedigree data, various
multivariate approaches to considering multiple phenotypes
have been developed, particularly in the earlier literature. For
example, a linear combination (a weighted sum) of pheno-
types that maximizes the linkage to a marker locus was

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011 519

Protein Cell 2011, 2(7): 519–522
DOI 10.1007/s13238-011-1059-5

Protein & Cell



shown to be much more powerful than standard linkage
analysis of one phenotype at a time (Allison et al., 1998).
However, in this outline we focus on genetic association
studies.

One approach of working with several phenotypes jointly
has been to transform phenotypes into principal components
(PCs). A principal component is a linear combination of
variables, and principal components are constructed in such
a way that the first PC extracts from the variables most of the
variability, with the second PC having second largest
variance, and so on. Furthermore, PCs are designed to be
independent of each other. In principle, there are as many
PCs as there are variables, but the main aim of constructing
PCs is to work with only a small number of them so that
together they account for, say, 80% of the variance in the
data. That is, a relatively small number of PCs reflect most of
the information in the data. This statistical technique is
elegant and efficient but one must bear in mind that PCs are a
statistical construct, which imposes a specific structure on the
data. Nonetheless, PCs have been used for many years to
condense phenotype information into a small number of
variables (PCs), more recently also to condense genotype
information for large numbers of single-nucleotide polymorph-
isms (SNPs) into a very small number of dimensions
(Patterson et al., 2006; Price et al., 2006). As an aside, a
common way of combining variables in social studies is to
create a scale, that is, a collection of items combined into a
single score (DeVellis, 2003). For example, a scale is often a
simple sum of responses to questions and, thus, is similar to a
principal component except that it is unweighted.

A potential drawback of PCs is that they combine variables
purely on the basis of their variance. In genetics, however, it
would be desirable to preferentially consider variables with
high heritability. Thus, so-called principal components of
heritability (PCH) have been derived (Ott and Rabinowitz,
1999; Klei et al., 2008). The first PCH is that linear
combination of variables with the highest heritability, the
second PCH has second-highest heritability, and so on. As
appealing and intuitive as this concept is, it does not seem to
have been applied much in practice.

MULTIVARIATE PHENOTYPE

Rather than condensing a multiplicity of phenotypes into a
small number of PCs, one might consider using the
phenotypes directly, without modification, if their number is
not too large. Thus, a single, one-dimensional phenotype
used in the one-by-one approach is replaced by a vector of
phenotypes, and one (multivariate) analysis is carried out on
this vector, that is, on all phenotypes. For example, in
diabetes research, two important phenotypes, serum insulin
release (I/G30) and insulin sensitivity (HOMA-IR), have been
used as one bivariate phenotype to test for combined
differences in means between genotypes (Holmkvist et al.,

2009). Generally, testing for simultaneous differences in
means of several phenotypes between three SNP genotypes
would be carried out in a multivariate analysis of variance
(MANOVA). This approach was used, for example, to test for
simultaneous mean differences of personality traits among
the three genotypes of an SNP in the promoter region of the
DRD4 gene (Bookman et al., 2002).

An approximation to multivariate analysis has been
proposed as follows (Manly, 2007). Consider genome-wide
association testing involving large numbers of SNPs and a
number k of phenotypes relevant for a complex trait. For a
given SNP, association with each of the k phenotypes is
tested and the largest test statistic is retained for this SNP,
provided that all k test statistics have the same null
distribution, for example, chi-square with 2 df. Alternatively,
test results need to be converted to p-values and the smallest
p-value is retained for the given SNP. This approach is carried
out for each SNP, where the smallest p-value is retained each
time at whatever phenotype this minimum p-value occurred.
The single, genome-wide test statistic for the association with
all phenotypes is then the overall smallest p-value, pmin,
occurring at any of the SNPs. How to interpret pmin will be
described in the next section.

MULTIPLE TESTING

For the moment, consider multiple SNPs but only a single
phenotype. At each SNP, an association test is carried out
resulting in a nominal significance level, pi, which is equal to
the probability of obtaining a test result at least as extreme as
the one found given no association. Often, a result is called
significant when pi≤ 0.05. With large numbers of SNPs,
however, this criterion will furnish 5% “significant” results by
chance alone. Thus, we need to make the criterion stricter
and do this by defining a new significance level, α =
probability that one or more test results are extreme just by
chance (Zhang and Ott, 2009), and then want to keep
α≤ 0.05. If p is a given threshold for nominal significance and
all m tests are independent then α = 1 − (1 − p)m. Thus, for a
fixed small α, we need to set p = 1 − (1 − α)1/m ≈ α/m, which is
known as the Bonferroni correction for multiple testing, and α
is called the genome-wide or experiment-wise significance
level.

Particularly for dependent tests, for example, association
tests involving large numbers of SNPs, the Bonferroni
correction is very conservative and reduces power although
many researchers feel that a Bonferroni-corrected p-value
represents the only legitimate claim for significance. As a
possible solution, an alternative way of defining significance
has been proposed, that is, the probability that a test result is
false given it is significant. This quantity is known as the false
discovery rate, FDR (Benjamini, 2010). Particularly FDR
levels obtained by the Benjamini-Hochberg method (Benja-
mini et al., 2001) are easy to apply and well-known. However,
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we will not discuss the FDR here further.
As a potential solution to the problem of large numbers, m,

of dependent tests, it has been proposed that one should find
the corresponding number, m’, of independent tests
(m’< <m), and apply the Bonferroni correction with m’ rather
than m (Cheverud, 2001). While this is an appealing concept
it turns out that computing m’ as originally proposed is not
straightforward but a simpler solution and corresponding
software have been developed (Nyholt, 2004).

With k phenotypes and m SNPs, the total number of tests
can be as high as k × m. At least the phenotypes are often
strongly correlated, so subjecting that many tests to the
Bonferroni correction tends to be rather conservative. A
solution to this problem consists of randomization testing
discussed in the next section.

RANDOMIZATION TESTS

Consider again an association test for a given phenotype with
each of m SNPs, which may or may not be correlated. Define
the largest test result, Tmax, as our single genome-wide test
statistic. To assess the significance level associated with
Tmax, we need to find the null distribution of Tmax, that is, its
distribution given no association. The trick is now to
approximate such a distribution on the computer by Monte
Carlo (computer simulation) methods. All we need to do is to
create a new dataset by randomly permuting the labels case
and control but leaving genotypes untouched. Clearly, in
such a dataset there cannot be any association between
disease and genotypes. Then we compute the largest test
statistic in this new dataset. We do this a large number of
times so that the resulting largest test statistics approximate
the distribution of Tmax under no association. The proportion
of permutated datasets with a largest test statistic at least as
large as the observed Tmax approximates the p-value
associated with Tmax. Such a procedure is called a permuta-
tion (randomization) test. It elegantly furnishes unbiased
estimates of p-values whose accuracy depends on the
number of permutation samples. The only drawback of the
procedure might be computing time. For example, for a
somewhat accurate estimation of a genome-wide significance
level of p = 0.05, more than 1000 randomization datasets are
required (Table 1).

For multiple phenotypes observed on an individual, as
mentioned above, we may define the smallest significance
level, pmin, over all phenotypes at any SNP as our genome-
wide test statistic. An equivalent permutation-based smallest
p-value is obtained in a good number of permutation datasets.
Their proportion with smallest p-values at least as small as the
observed pmin then represents the significance level asso-
ciated with pmin (Manly, 2007).

Computer-based randomization tests have been imple-
mented in a number of approaches (for example, Hoh and Ott,
2000; Hoh et al., 2001).

Randomization procedures as discussed here represent
the most general approach to dealing with multiple SNPs and
multiple phenotypes. For a single phenotype, the question
has been raised what number m’ of independent tests would
be equivalent to a very large number of SNPs (m → 1),
which, if dense enough, must be associated with each other.
In human linkage analysis, such a question has previously
been tackled (Lander and Kruglyak, 1995). For association
analysis, it has been found that the equivalent number of
independent SNPs is m’ = 1,000,000 in Europeans and m’ =
2,000,000 in Africans (Pe’er et al., 2008). Thus, in people of
European origin, whenever a nominal significance level at a
given SNP is smaller than 0.05/1,000,000 = 5 × 10−8 it can be
considered significant. In Asians, as demonstrated in Fig. 1,
linkage disequilibrium between markers tends to be even
stronger than in people with European ancestry so that m’ in
Asians is expected to be smaller than 1,000,000. Conse-
quently, the critical nominal significance level is increased and

Figure 1. Decay of linkage disequilibrium (r2) for pairs of

SNPs as a function of their physical distance. The graphs
show that background linkage disequilibrium is highest in
Asians and lowest in Africans. Calculations carried out by Dr.

Qingrun Zhang for SNPs on chromosome 22.

Table 1 Number, m’, of independent tests and 95% con-
fidence interval for a true significance level of p = 0.05 based
on an estimated significance level of pb = 0.05. Based on the

binomial distribution, B (0.05, m’)

m’ Confidence interval

100 (0.016, 0.113)

1000 (0.037, 0.065)

5000 (0.044, 0.056)

10000 (0.046, 0.054)
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association results can be declared significant more easily
than in individuals of European and African ancestry.
However, these significance levels only apply to a single
phenotype. With multiple phenotypes, the prudent solution is
to apply permutation testing, which can guard against too
many false positive claims of association.

DISCUSSION

Psychiatric traits like schizophrenia exhibit a multitude of
characteristics that deviate from “normal.” The “endopheno-
type approach” in schizophrenia research attempts to make
use of molecular biology and neurobiology to identify specific
brain dysfunctions (Braff et al., 2007). Here we have provided
an overview of statistical approaches to make simultaneous
use of endophenotypes in the search for genetic risk factors
underlying psychiatric traits. Our purpose has been to
increase power and to decrease the occurrence of false
positive results, with the latter being a particularly important
problem in genetic association studies (Ott, 2004). We plan to
implement relevant approaches in user-friendly computer
programs and make them generally available to researchers.
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