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ABSTRACT

Apoptotic regulation is critical to organismal home-
ostasis and protection against many human disease
processes such as cancer. Significant research efforts
over the past several decades have illuminated many
signaling molecules and effecter proteins responsible for
this form of programmed cell death. Recent evidence
suggests that transfer RNA (tRNA) regulates apoptotic
sensitivity at the level of cytochrome c-mediated apopto-
some formation. This finding unexpectedly places tRNA
at the nexus of cellular biosynthesis and survival. Here
we review the current understanding of both the
apoptotic machinery and tRNA biology. We describe the
evidence linking tRNA and cytochrome c in depth, and
speculate on the implications of this link in cell biology.
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CYTOCHROME C AND THE INTRINSIC APOPTOTIC

PATHWAY

Apoptosis is the major process through which unnecessary,
damaged, and harmful cells are eliminated. Multi-cellular
development, homeostasis, immunity and protection against
cancer all require intricate regulation of programmed cell
death (Thompson, 1995; Vaux and Korsmeyer, 1999). Two
major apoptotic routes exist in mammalian cells: the extrinsic
and intrinsic pathways. The final common end point of both
pathways is activation of the proteolytic caspase (cysteine-
dependent aspartate specific protease) cascade. This causes
cleavage of numerous cellular targets resulting in cellular
shrinkage, fragmentation, membrane blebbing and nuclear
condensation and termination of cell life (Chang and Yang,
2000; Li and Yuan, 2008). The extrinsic pathway is activated

by engaging death receptors such as Fas and TRAIL
receptors with their cognate ligands (Ashkenazi and Dixit,
1998). This leads to the formation of the membrane-bound
death inducing signaling complex (DISC), which recruits the
initiator procaspase-8 by the adaptor protein FADD. In the
DISC, procaspse-8 is activated by oligomerization (Yang
et al., 1998; Chang et al., 2003). The intrinsic pathway
responds to “intracellular” cues such as DNA damage, onco-
gene activation, nutrient deprivation, and lineage information.
Intrinsic apoptotic signals converge to cause mitochondrial
outer membrane permeabilization (MOMP). This leads to the
release of cytochrome c, an essential electron transfer chain
component, from mitochondria to cytosol (Wang, 2001). The
discovery of the role of cytochrome c in apoptosis (Liu et al.,
1996) came as a shock to a field that regarded apoptosis as
being carried out by deadly signaling molecules. It casts light
on an ingenious design during evolution that has endowed a
potent destructive power to a molecule so essential for life,
and gives a striking physical form for the philosophic phrase
that life and death are inseparable.

In the cytosol, cytochrome c is a ligand for Apaf-1 (the
apoptotic protease activating factor-1) (Zou et al., 1997).
Apaf-1 binds to dATP or ATP in an inactive state, and
cytochrome c binding stimulates the intrinsic (d)ATPase
activity of Apaf-1 leading to the hydrolysis of (d)ATP to
(d)ADP. Subsequently, (d)ADP is exchanged with a free
(d)ATP molecule in the cytosol (Kim et al., 2005). Then, with
the assistance of at least three proteins: HSP70, cellular
apoptosis susceptibility protein (CAS), and putative HLA-DR-
associated protein 1 (PHAP1), Apaf-1 assemblies into a
heptameric, wheel-like structure known as the apoptosome
(Acehan et al., 2002; Kim et al., 2008). Oligomerized Apaf-1
recruits caspase-9 through an interaction involving the
caspase recruitment domain (CARD) on both proteins.
Caspase-9 is subsequently activated by oligomerization
(Boatright et al., 2003).
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PHYSIOLOGIC AND PATHOLOGICAL

REGULATION OF CYTOCHROME C-MEDIATED

CASPASE-9 ACTIVATION

Regulation of cytochrome c-mediated caspase-9 activation
occurs both before and after cytochrome c release. Prior to
cytochrome c release, Bcl-2 family proteins are major
regulators of the apoptotic switch. These proteins, which
contain up to four Bcl-2 homolog (BH1 to BH4) domains, are
divided into an anti-apoptotic subfamily (e.g., Bcl-2, Bcl-XL,
and Mcl-1) and two pro-apoptotic subfamilies: multiple BH
domain-containing proteins (e.g., Bax and Bak) and BH3-only
proteins (e.g., Bid) (Adams and Cory, 1998). BH3-only
proteins act furthest upstream and are activated by various
mechanisms including increased transcription, phosphoryla-
tion, and proteolytic processing (Huang and Strasser, 2000).
While the precise mechanisms are unclear, BH3-only
proteins promote cytochrome c release either directly by
stimulating multiple BH domain-containing proteins to form
pores on the mitochondrial outer membrane or indirectly by
counteracting anti-apoptotic Bcl-2 proteins (Chipuk and
Green, 2008).

A range of cellular factors regulates apoptosome formation
after cytochrome c release. The physiologic concentrations of
potassium and calcium suppress apoptosome formation, the
latter by preventing nucleotide exchange by Apaf-1 (Cain
et al., 2001; Bao et al., 2007). HSP70 and HSP90 have been
demonstrated to interact with Apaf-1 and inhibit interaction
between Apaf-1 and caspase-9 (Beere et al., 2000; Bruey
et al., 2000; Pandey et al., 2000; Saleh et al., 2000), while
HSP27 binds to cytochrome c and blocks its interaction with
Apaf-1 (Bruey et al., 2000). The oncoprotein prothymosin-α
(Pro-T) also impairs apoptosome assembly although the
mechanism is undefined (Jiang et al., 2003). Furthermore,
although low levels of dATP or ATP promote apoptosome
formation, high levels of these nucleotides inhibit apoptosome
by directly binding to cytochrome c (Chandra et al., 2006).

Post-translational modification of cytochrome c is critical
for apoptosome formation. Newly synthesized cytochrome c
is unable to activate Apaf-1 until it undergoes heme
attachment concurrent with its import into mitochondria
(Martin and Fearnhead, 2002). Additionally, oxidized but not
reduced cytochrome c has been found to activate caspases
(Saleh et al., 2000). In the physiological setting, intracellular
glutathione (GSH), generated as a result of glucose metabo-
lism by the pentose phosphate pathway, is necessary for
maintaining cytochrome c in a reduced form and abrogating
its pro-apoptotic function (Vaughn and Deshmukh, 2008).

Cellular life and death decisions can be changed even after
apoptosome formation. Cytosolic cytochrome c-mediated
caspase activation is directly inhibited by the inhibitor of
apoptosis (IAP) proteins. IAPs were originally identified in
baculoviruses, and homologs are present throughout the tree
of life. Each IAP protein contains at least one but often two to

three characteristic zinc binding BIR sequences (baculovirus
IAP repeats) (Salvesen and Duckett, 2002). In mammalian
cells, X-linked IAP (XIAP) is a potent caspase inhibitor. XIAP
binds to partially processed caspase-9 and blocks its activity
and further activation. XIAP also inhibits caspase-3 and
caspase-7 (Salvesen and Duckett, 2002).

The intrinsic apoptotic pathway is frequently inactivated in
tumor cells by a variety of mechanisms. Several of the more
prominent examples are described here. The tumor suppres-
sor p53 is probably the most commonly mutated gene in
human cancer. Wild type p53 activates transcription of Bax
and BH-3-only proteins (e.g., Puma, Noxa, and Bid), while
also acting as a BH3-only protein to induce cytochrome c
release independently of transcription. Both functions are
disabled by most, if not all, tumor-associated p53 mutations
(Vousden and Lane, 2007). The Bcl-2 family is also widely
dysregulated in tumors. The founding member of this group,
Bcl-2, was identified as a highly expressed oncogene in
human follicular B cell lymphomas due to a chromosomal
translocation that places Bcl-2 adjacent to the IgG heavy
chain locus (Adams and Cory, 1998). Mcl-1 is another well-
known anti-apoptotic Bcl-2 protein. This protein is rapidly
degraded in normal cells, but its stability is increased in some
tumor cells (Schwickart et al., 2010). Apaf-1 expression is
decreased in some melanoma cells by hyper-methylation of
the Apaf-1 promoter (Soengas et al., 2001). Another common
mutation in tumor cells is the highly active PI-3K/Akt pathway.
One target for this pathway is the BH3-only protein Bad,
which upon phosphorylation forms a complex with 14-3-3 and
loses its pro-apoptotic activity (Datta et al., 1997).

tRNA, and ribonucleic acid in general, is a recently
identified and unique player in apoptotic regulation (Mei et
al., 2010). Changes in the levels of tRNA and other RNAs are
ubiquitous in oncogenic settings (Ruggero and Pandolfi,
2003; White, 2005). This raises the attractive possibility that
RNAs play a pivotal role in the regulation of apoptosis.

CANONICAL tRNA FUNCTION: THE ADAPTOR

FOR PROTEIN SYNTHESIS

tRNAs arose early in evolution as the adaptors in the
translation of genetic information into protein sequences. All
tRNA molecules fold into a conserved cloverleaf secondary
structure through regions of internal self-complementarity. A
set of conserved nucleotides then facilitates the formation of a
compact L-shaped tertiary structure (Fig. 1). The folding of the
L shape involves coaxial stacking of the acceptor stem with
the T stem-loop to form the top arm of the L, and coaxial
stacking of the dihydrouridine stem (D-stem) with the antic-
odon stem-loop to form the vertical arm of the L. tRNAs are
differentiated from each other according to the attached
amino acid at the 3' end, which matches the anticodon triplet
on the vertical arm. This match of an amino acid with a
trinucleotide sequence in tRNA is the underlying basis of the
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genetic code. It is through this match that aminoacyl-tRNAs
deliver amino acids to specific codon positions on the
ribosome through base pairing interactions with tRNA antic-
odons, thus enabling decoding of mRNA sequences into
amino acid sequences. The degeneracy of the genetic code,
whereby more than one triplet codons correspond to a given
amino acid, is achieved by having multiple tRNAs (known as
isoacceptors) with the same amino acid specificity but with
distinct anticodons.

Many enzymes required for the tRNA adaptor function are
both highly conserved and essential for growth. For example,
all mature tRNAs possess the CCA sequence at the 3′ end as
the obligate site for aminoacylation and for stable interaction
with the ribosome (Fig. 1). This sequence is not encoded in
human genomic DNA and must be added post-transcription-
ally by the CCA-adding enzyme, which exists in all living
organisms. The human CCA enzyme shares considerable
sequence and structural homology with its bacterial counter-
parts (Yue et al., 1996). Aminoacylation of tRNA is catalyzed
by aminoacyl-tRNA synthetases (aaRSs); there are 20 such
enzymes in mammalian cells, one for each canonical amino
acid, and these enzymes are highly conserved throughout
their respective amino acid families.

The human mitochondrial genome encodes a separate set
of tRNAs specifically for protein synthesis in the organelle.
Although mitochondrial tRNAs generally have lower GC
content and shorter stem-loop regions compared to their
cytoplasmic counterparts, they still appear to fold into the
same conserved L-shaped tertiary structure (de Bruijn and
Klug, 1983; Watanabe et al., 1994). Importantly, protein
enzymes that operate on mitochondrial tRNAs for the adaptor
functions in the organelle, such as the mitochondrial CCA
enzyme, and the 20 mitochondrial aminoacyl-tRNA synthe-
tases are encoded by the nuclear genome. These nuclear-
encoded mitochondrial enzymes nonetheless share high

sequence homology with their cytoplasmic counterparts.
The strong conservation of protein components that enable
and promote the tRNA adaptor function emphasizes the
importance of this role in biology.

NON-CANONICAL FUNCTIONS OF tRNA

Several recent examples suggest that tRNAs have important
extra-translational functions. First, replication of the RNA
genome of human immunodeficiency virus 1 (HIV-1) requires

the CCA sequence of the human host tRNALys
3 as the primer

for initiation of the replication cycle (reviewed in Kleiman et al.,

2010). The specific tRNALys
3 , together with the other two

tRNALys isoacceptors and the aminoacylation enzyme lysyl-
tRNA synthetase (LysRS), are also required for packaging of
the virus. The molecular interactions that direct the assembly
of the tRNALys/LysRS packaging complex suggest the
potential for developing new anti-viral agents. Second, while

the translation initiator tRNAMet
i plays a crucial role in the

initiation of protein synthesis, it also has the ability to act as a
pre-mRNA splicing regulator in a manner independent of its
role in protein synthesis. Specifically, alternative splicing
events resulting from AUG codon mutations are suppressible

by initiator tRNAMet
i variants harboring anticodon mutations

that match the AUG mutations (Kamhi et al., 2010). This
mechanism of regulation of splicing appears to play a role in
quality control of splicing in the cell nucleus, preventing the
generation of premature termination codons. Third, tRNA is a
sensor of stress and nutrient deprivation that responds to
these and other adverse situations by translocating in a
retrograde fashion from the cytosol to the nucleus (Shaheen
et al., 2007). This retrograde movement reduces tRNA
availability in the cytosol, perhaps minimizing energy expen-
diture from protein synthesis. Uncharged tRNAs also accu-
mulate in nutrient deprivation conditions and are efficient
activators of the GCN2 kinase pathway (Hinnebusch, 2005).
Activated GCN2 kinase phosphorylates the initiation factor
eIF2a, causing inactivation of the initiation factor eIF2B, and
repression of GCN4, an activator of general protein synthesis.
This reduces the overall rate of protein synthesis, limiting
amino acid consumption while allowing the cell to translate
appropriate amino acid biosynthesis and stress-response
genes.

Stress conditions also result in cleavage of tRNAs near
anticodon sequences, resulting in tRNA half molecules
(Thompson et al., 2008; Thompson and Parker, 2009a, b).
These tRNA fragments have been identified in a wide variety
of stress conditions, particularly during amino acid starvation
or oxidative stress. Stress-induced tRNA cleavage may be
catalyzed by a Dicer-dependent complex (Cole et al., 2009),
or by the enzyme angiogenin (Yamasaki et al., 2009), a
member of the RNase A family. Angionenin is typically
sequestered in the nuclear compartment but is released into
the cytosol during stress (Yamasaki et al., 2009). Production

Figure 1. Sequence and structure of E. coli tRNACys:
(left) the cloverleaf secondary structure and (right) the L-
shaped tertiary structure.
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of tRNA fragments does not significantly deplete total tRNA
levels, suggesting fragment generation has a function
beyond depletion of cellular tRNA pools. One hypothesis is
that tRNA fragments may inhibit global translation by
forming repression complexes to block the initiation or
elongation steps of protein synthesis (Yamasaki et al.,
2009), or to affect the degradation or repression of specific
mRNAs by recruiting tRNA processing enzymes to mRNAs
(Elbarbary et al., 2009a, b). One tRNA fragment in particular
has been implicated in proliferation of a broad range of
cancer cells (Lee et al., 2009), indicating a role in tumor
progression.

THE CYTOCHROME C AND tRNA CONNECTION

We began examining possible roles for RNA in regulating
apoptosis many years ago. A puzzling observation was
that up to 1 mM concentration of dATP is needed to
induce caspase-9 activation in cell lysates while the
intracellular concentration of dATP is only in 10 μM range
(Liu et al., 1996; Mesner et al., 1999). One possible
explanation for this was that an inhibitor was present in the
cell lysates that decreased the effectiveness of dATP. It
seemed possible to us that RNA, essentially a polymer of
nucleoside monophosphates, might have an inhibitory effect.
This was supported by the observations that RNase treatment
of S100 HeLa and Jurkat cell lysates strongly increased
caspase-9 activation, and that addition of total cellular RNA to
either S100 extracts or a reconstituted caspase-9 activation
system potently blocked caspase-9 activation. These results
implicate an inhibitory role of RNA in the activation of
caspase-9 (Mei et al., 2010).

Systematic examination of the steps leading to caspase-9
cleavage identified cytochrome c as the target of the RNA
inhibitor. Analysis of cytochrome c-associated species found
that it was tRNA that binds specifically to cytochrome c both in
vitro and in cells. The relevance of this finding in living cells
was demonstrated by the ability of microinjected tRNA to
inhibit cytochrome c-induced apoptosis, and by the ability of a
tRNA-specific RNase to enhance both apoptosis and
caspase-9 activation (Mei et al., 2010). Taken together,

these results show that tRNA binds to cytochrome c and
inhibits the formation of the apoptosome (Fig. 2).

This finding raises intriguing questions regarding the
generality of a role of tRNA in apoptotic and other protein
functions. Below we discuss briefly the implications of this
finding in the context of cell death, proliferation, and
oncogenic transformation.

ARE CYTOCHROME C AND tRNA LIVING AN AGE-

OLD ROMANCE?

Both cytochrome c and tRNA are ancient molecules. tRNA is
present in all known forms of life, and its secondary and
tertiary structures are highly conserved across species and
organelles (see above). Cytochrome c is present in most
eukaryotes that have amitochondrial electron transport chain.
Cytochrome c from any species usually cross-reacts with
cytochrome c-oxidase enzymes from another species, under-
scoring the conservation of cytochrome c function throughout
evolution. We speculate that the cytochrome c:tRNA interac-
tion is similarly evolutionarily ancient. Given the small size
(~100 aa) and highly positively charged nature of cytochrome
c, its preferential binding to tRNA relative to other RNAs is
striking. The structural nature of this association should be
highly interesting.

Suppression of the cytochrome c’s pro-apoptotic function
by tRNA links protein synthesis to apoptotic susceptibility.
Cells with high translation rates are often rapidly proliferating,
and increased apoptotic resistance may prevent futile cycles
of cellular proliferation and death. The cytochrome c:tRNA
connection may also contribute to apoptotic resistance of
tumor cells, which is supported by multiple lines of evidence.
Human cytosolic tRNAs are transcribed by RNA polymerase
III (pol III) (Lowe and Eddy, 1997; White, 2004). The critical
tumor suppressors p53 and Rb directly bind and inhibit
pol III, while c-Myc and Ras activate pol III transcription
(Larminie et al., 1999; Crighton et al., 2003; Gomez-Roman
et al., 2006). Increased biosynthesis of tRNA is required for
proliferation and likely represents an obligatory step in
tumorigenesis (White, 2005; Marshall et al., 2008). Indeed,
tRNA is highly expressed in tumor cells (White, 2005).

Figure 2. Cytochrome c-mediated caspase activation. Intracellular apoptotic stimuli provoke the release of cytochrome c (cyt.
c) from mitochondria to the cytosol (A), where it binds to Apaf-1 (B) promoting the assembly of Apaf-1 into the heptameric
apoptosome (C). The apoptosome recruits and oligomerizes the precursors of caspase-9 (Casp9), leading to its auto-proteolytic

processing (D). Mature caspase-9 then activates procaspase-3 (pro-Casp3) through trans-cleavage (E). tRNA binds to cytochrome
c and prevents its interaction with Apaf-1.
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For example, breast cancer cells have 4–5 fold increased
median nuclear tRNA expression and 5–20 fold increased
median mitochondrial tRNA expression (Pavon-Eternod
et al., 2009). Additionally, several RNase drugs have
shown specific anti-tumor activity that is dependent on their
catalytic ability (Costanzi et al., 2005). Onconase/Ranpirnase
is the furthest developed and has reached phase III clinical
trials for the lung tumor mesothelioma, and is in phase II
trials for several other cancers (Costanzi et al., 2005).
Onconase preferentially cleaves tRNA in a manner that
correlates with apoptotic sensitivity (Iordanov et al., 2000;
Saxena et al., 2002; Suhasini and Sirdeshmukh, 2006). As
a potential chemotherapeutic agent, Onconase has attrac-
tive attributes, including low systemic toxicity and p53-
independent killing. We believe that a better understanding
of the role of tRNA in apoptotic resistance should provide a
rational basis for the use and improvement of tRNA-based
tumor therapy.

Relative to its role in electron transport, the ability of
cytochrome c to initiate apoptosis is a relatively recent
evolutionary phenomenon. For example, cytochrome c from
C. elegans does not induce apoptosome formation or activate
caspases (Riedl and Salvesen, 2007). Thus, the role of
cytochrome c in the electron transport chain is even more
basic than its role in apoptosis. Cytochrome c carries
electrons from the mitochondrial inner membrane protein
complex III to complex IVand is essential for the generation of
the mitochondrial membrane potential (Δψ) that drives ATP
formation. Interaction between cytochrome c and both
mitochondrial and cytosolic tRNA has been detected in
healthy cells. It is thus possible that tRNA may regulate the
electron transport chain and oxidative phosphorylation. It
remains to be seen whether the cytochrome c:tRNA interac-
tion provides a way to coordinate protein translation both
inside and outside mitochondria with energy production. An
additional point of interest is that mutations in mitochondrial
tRNA are widely associated with human diseases (Wallace,
2005). It is generally assumed that these mutations affect
mitochondrial protein synthesis, although protein synthesis
defects have not always been detected in such cases. It
would be interesting to test whether these tRNA mutations
might affect cytochrome c action.

Cytochrome c and tRNA are both ancient and extensively
studied molecules. The surprising interaction between them
underscores how much we have yet to learn about other well-
studied biologic systems. This interaction is a striking
example of direct regulation of protein function by RNA that
is very different from well-established models in which RNA
acts principally at the level of gene expression. The protein
and RNA worlds may be further intertwined than previously
imagined.
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