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ABSTRACT

Chromatin structure governs a number of cellular
processes including DNA replication, transcription, and
DNA repair. During DNA replication, chromatin structure
including the basic repeating unit of chromatin, the
nucleosome, is temporarily disrupted, and then reformed
immediately after the passage of the replication fork. This
coordinated process of nucleosome assembly during
DNA replication is termed replication—coupled nucleo-
some assembly. Disruption of this process can lead to
genome instability, a hallmark of cancer cells. Therefore,
addressing how replication-coupled nucleosome assem-
bly is regulated has been of great interest. Here, we
review the current status of this growing field of interest,
highlighting recent advances in understanding the
regulation of this important process by the dynamic
interplay of histone chaperones and histone modifica-
tions.

CHROMATIN STRUCTURE AND NUCLEOSOME

ASSEMBLY

In eukaryotic cells, genomic DNA is packaged into chromatin,
an organized complex of DNA and proteins (Luger et al.,
1997; Kornberg and Lorch, 1999; Wu and Grunstein, 2000;
Chodaparambil et al., 2006). The fundamental unit of
chromatin is the nucleosome, consisting of 146 base pairs
of DNA wrapped around a histone octamer containing a
tetramer of histones H3-H4 and two dimers of histones H2A-
H2B. During S phase of the cell cycle, chromatin structure
must be propagated to daughter cells to maintain gene
expression state and genome integrity. How chromatin
structure is inherited during S phase of the cell cycle remains
largely unknown (Goldberg et al., 2007). During DNA

replication, eukaryotic cells disassemble nucleosomes to
facilitate progression of the DNA replication machinery (Falbo
and Shen, 2006). Following replication, newly-synthesized
histones, as well as parental histones, must be deposited
onto the nascent DNA strands to mediate nucleosome
formation and reassembly of chromatin higher order structure.
This coupling of DNA replication and nucleosome assembly is
termed replication-coupled (RC) nucleosome assembly. It is
believed that DNA RC nucleosome assembly plays an
important role in the inheritance of chromatin structure.

During RC nucleosome assembly, parental H3-H4, as well
as newly-synthesized H3-H4, are deposited first followed by
rapid deposition of H2A-H2B dimers to form nucleosomes.
Once assembled into nucleosomes, H3-H4 molecules remain
stably bound to DNA, whereas nucleosomal H2A and H2B
can exchange with free H2A and H2B (Rocha and Verreault,
2008; Ransom et al., 2010). Therefore, it is important to
understand how H3-H4 are deposited, the factors involved in
deposition and the regulatory mechanisms contributing
toward nucleosome assembly. Because the deposition of
newly-synthesized H3-H4 molecules and the regulation of
their deposition are relatively well understood compared to
the transfer of parental histones H3-H4 behind replication
forks, this perspective will focus on how newly-synthesized
H3-H4 are deposited.

THE FUNCTION OF THREE HISTONE

CHAPERONES IN RC NUCLEOSOME

ASSEMBLY IN YEAST

Deposition of newly-synthesized H3-H4 during DNA replica-
tion requires histone chaperones. Histone chaperones are a
group of proteins that help regulate nucleosome deposition by
binding to the positively charged histones and shielding their
charge from the highly negatively charged DNA (Tyler, 2002).
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The classic histone chaperone involved in RC nucleosome
assembly is chromatin assembly factor 1 (CAF-1). CAF-1
consists of three subunits (Kaufman et al., 1997) and was first
identified in human cells as a factor that promotes nucleo-
some assembly during DNA replication (Stillman, 1986).
CAF-1 binds H3-H4 and facilitates nucleosome assembly
following DNA replication and DNA repair by interacting with
PCNA, a component of the DNA replication machinery
(Shibahara and Stillman, 1999). Yeast cells lacking CAF-1
exhibit reduced silencing at telomeres, as well as the silent
mating type loci, and are sensitive to DNA damaging agents
(Kaufman et al., 1997; Linger and Tyler, 2005), phenotypes
shared among nucleosome assembly factor mutants.

The ability of CAF-1 to deposit H3-H4 onto replicated DNA
is assisted by Asf1, another H3-H4 histone chaperone (Tyler
et al., 1999; Mello et al., 2002). Asf1 was first identified in a
genetic screen based on its ability to disrupt transcriptional
silencing in budding yeast when overexpressed (Le et al.,
1997). Later, it was shown that Asf1 was a histone chape-
rone functioning in both replication-coupled and replication-
independent nucleosome assembly (Tyler et al., 1999).
Structural studies have revealed that Asf1 binds H3-H4
dimers through an H3 interface that is involved in the
formation of (H3-H4)2 tetramers (English et al., 2006). In
human cells, it is proposed that Asf1 can disrupt parental
nucleosomes (Groth et al., 2007). Furthermore, Asf1 is
required for acetylation of histone H3 lysine 56 (H3K56Ac),
a mark of newly-synthesized histones that has been found to
be important for DNA replication and DNA repair (Recht et al.,
2006; Chen et al., 2008; Li et al., 2008).

A more recently described H3-H4 histone chaperone in

yeast is Rtt106. Rtt106 was first identified in a genetic screen
for regulators of Ty1 transposition in budding yeast (Scholes
et al., 2001). In a separate genetic screen, we identified
Rtt106 as a protein that functions in parallel to PCNA in
transcriptional silencing (Huang et al., 2005). Furthermore,
we have shown that Rtt106 is a histone H3-H4 chaperone
involved in RC nucleosome assembly (Li et al., 2008). Like
mutations in genes encoding other histone chaperones, the
rtt106∆ mutant cells exhibit significant loss of silencing at
telomeres and at the silent mating type locus and are
sensitive to DNA damage agents when combined with
deletion of CAC1, the large subunit of CAF-1 (Huang et al.,
2007; Li et al., 2008). Rtt106 is also proposed to have a role in
replication-independent nucleosome assembly as well as the
regulation of histone gene expression (Imbeault et al., 2008;
Fillingham et al., 2009).

These remarkable discoveries have led to the following
question: how are (H3-H4)2 tetramers, one of the building
blocks of nucleosomes, formed during S phase of the cell
cycle if Asf1 binds the same H3 surface involved in (H3-H4)2
tetramer formation? We and others have made observations
that support a model in which H3-H4 dimers are transferred
from Asf1-H3-H4 to CAF-1 and Rtt106, which in turn deposit
H3-H4 onto replicating DNA for nucleosome formation. First,
the association of histone H3-H4 with CAF-1 and Rtt106 is
reduced in asf1∆ cells (Li et al., 2008). Second, Asf1 has been
shown to interact directly with CAF-1 (Tyler et al., 2001; Mello
et al., 2002). Together, these three histone chaperones, CAF-
1, Rtt106 and Asf1, coordinate the deposition of newly-
synthesized H3-H4 during DNA replication, but how exactly
these chaperones cooperate is unclear (Fig. 1).

Figure 1. Coordination of histone chaperones for replication-dependent nucleosome assembly. During DNA replication,
nucleosomes are disassembled and then reassembled behind the replication fork. The three histone chaperones, CAF-1, Asf1 and Rtt106

coordinate to deposit newly-synthesized H3-H4 onto the replicated DNA. It is still unclear how the Asf1-H3-H4 complex interacts with
CAF-1 and Rtt106 for histone deposition. It is also unknown whether CAF-1 and Rtt106 bind H3-H4 dimers or tetramers.
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MULTIPLE ACETYLATION EVENTS REGULATE

ASSEMBLY OF NEWLY-SYNTHESIZED HISTONES

H3 AND H4 IN BUDDING YEAST

Modifications on histones regulate distinct cellular processes,
including gene transcription, DNA replication, and DNA
repair. These diverse functions are carried out by distinct
modifications, including acetylation, phosphorylation, methy-
lation and ubiquitination, which modulate chromatin structure
and/or recruit proteins to chromatin to mediate a specific
process (Strahl and Allis, 2000; Turner, 2000; Jenuwein and
Allis, 2001; Vidanes et al., 2005). Histone acetylation is
catalyzed by histone acetyltransferases (HATs), a group of
enzymes that transfer the acetyl group from the cofactor
acetyl-Coenzyme A (acetyl-CoA) to the ε-amino group of
lysine residues on histones (Marmorstein and Roth, 2001;
Roth et al., 2001; Carrozza et al., 2003; Marmorstein, 2004). It
was discovered years ago that newly-synthesized histones
were acetylated and rapidly deacetylated following deposition
(Ruiz-Carrillo et al., 1975; Jackson et al., 1976). It is only
recently that we have begun to appreciate the function of
acetylated newly-synthesized H3-H4.

The most highly-conserved mark of newly-synthesized
histones is acetylation of histone H4 lysines 5 and 12 (H4K5,
12Ac). While acetylation on newly-synthesized histone H3 is
conserved, the distinct acetylated sites are not. In HeLa cells,
acetylation at the H3-N terminus of new H3 is barely
detectable (Sobel et al., 1995). Moreover, acetylation of H3
lysine 56, a well-established and abundant mark of newly-
synthesized H3 in budding yeast (Masumoto et al., 2005), is
less abundant in mammalian cells (Jasencakova et al., 2010).
Acetylation of distinct sites of newly-synthesized H3-H4 is
catalyzed by different histone acetyltransferases. For
instance, Hat1 acetylates lysine 5 and 12 of H4 (Ai and
Parthun, 2004). Rtt109 acetylates lysine 56 of H3 in yeast
(Driscoll et al., 2007; Han et al., 2007), and in mammalian
cells, this modification is catalyzed by CBP/p300 and/or Gcn5
(Das et al., 2009; Tjeertes et al., 2009). Recently, we have
shown that new H3 acetylation at the N-terminal tail is carried
out by the lysine acetyltransferasesGcn5, Rtt109 and possibly
Elp3 (Li et al., 2009; Burgess et al., 2010). Thus, acetylation of
multiple sites at newly-synthesized H3-H4 is catalyzed by
distinct lysine acetyltransferases (Fig. 2). How acetylation of
these sites functions to promote nucleosome assembly is an
interesting question.

Genetic studies suggest that acetylation of newly-
synthesized H3-H4 is important for nucleosome assembly
(Ma et al., 1998). Only recently have studies revealed that
histone acetylation serves an important regulatory function
during nucleosome assembly. For instance, In yeast cells,
H3K56Ac, which peaks during S phase of the cell cycle
(Masumoto et al., 2005; Han et al., 2007; Chen et al., 2008),
increases the binding affinity between H3-H4 with CAF-1 and
Rtt106 and promotes efficient deposition of H3-H4 onto

replicating DNA by these two histone chaperones (Li et al.,
2008). In contrast, acetylation of lysine residues at the H3 N-
terminus regulates the binding of H3-H4 with CAF-1, but not
Rtt106 (Burgess et al., 2010). Therefore, acetylation of H3
lysine 56 and acetylation of lysine residues at the H3 N-
terminus function to promote nucleosome assembly by
enhancing histone binding with distinct histone chaperones.

Finally, despite the conservation of H4K5, 12Ac from yeast
to humans, its function is still unknown. In mammalian cells,
prior to deposition, the canonical H3, H3.1, is associated with
H4K5,12Ac, which is distinct from the pattern observed on
nucleosomal H3.1-H4 (Loyola et al., 2006). Histone H4
molecules in CAF-1-H3-H4 complexes are acetylated at
lysine residues 5, 8 and 12 in both yeast and human cells
(Verreault et al., 1996; Zhou et al., 2006). Furthermore, the

Figure 2. Histone acetylationofH3-H4 regulates replication-
dependent nucleosome assembly by promoting the inter-

action of histones with histone chaperones. The histone
acetyltransferases Gcn5, Rtt109, Elp3, and Hat1 are involved
in marking newly-synthesized histones H3-H4. Some of these

acetylation marks are known to promote histone interactions
with histone chaperones for chromatin assembly. Acetylation
of the N terminus of H3 is primarily carried out by Gcn5. Elp3
and Rtt109 also contribute to the acetylation of the H3 N

terminus, but how these three distinct lysine acetyltransferases
coordinate these acetylation events is not known. In addition,
Rtt109 acetylates H3K56 on the core of histone H3. Hat1 and

Elp3 acetylate lysine 5, 8 and 12 on H4; however, the functions
of these H4 marks are unclear.
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diacetylated H4 pattern is also found on H3.1-H4 dimers
associated with Asf1 (Jasencakova et al., 2010). Therefore, it
is tempting to speculate that H4K5, 12Ac also regulates the
interaction between H3-H4 with histone chaperones. Alter-
natively, acetylation of these lysine residues may facilitate
nuclear import of newly-synthesized H3-H4. In yeast, Hat1,
the enzyme catalyzing H4K5, 12Ac, associates with newly-
synthesized H3-H4 within the cytoplasm and remains asso-
ciated as the entire complex moves to the nucleus before
transferring the associated histones to other histone chaper-
ones (Ai and Parthun, 2004; Shahbazian and Grunstein, 2007).
Future studies are needed to address these possibilities.

PERSPECTIVE: THE FUNCTION OF

MODIFICATIONS ON NEWLY-SYNTHESIZED

HISTONES IN NUCLEOSOME ASSEMBLY IN

MAMMALIAN CELLS

Many of the studies on nucleosome assembly and its
regulation cited above have been carried out in budding
yeast. While many of the RC nucleosome assembly
components are conserved from yeast to mammalian cells,
nucleosome assembly and its regulation have their own
distinct characteristics in mammalian cells. First, in mamma-
lian cells, there are two sequence homologs of Asf1, Asf1a
and Asf1b. Like Asf1 in yeast, both Asf1a and Asf1b regulate
replication-dependent and replication-independent nucleo-
some assembly; however, Asf1a and Asf1b appear to have
distinct functions. For example, Asf1a, but not Asf1b,
interacts with HIRA, a H3-H4 chaperone involved in
replication-independent nucleosome assembly (Tagami et al.,
2004). Second, to date, there is no clear mammalian homolog
of the yeast Rtt106; however, recent studies suggest that the
H3.3-H4 histone chaperone DAAX and FACTcomplex contain
regions similar to the yeast Rtt106 (VanDemark et al., 2006; Li
et al., 2008; Drane et al., 2010). Third, while H3K56Ac,
catalyzed by CBP/P300 and/or Gcn5 (Das et al., 2009;
Tjeertes et al., 2009), has been shown to have similar
functions in mammalian cells as yeast (Das et al., 2009)
(Yuan et al., 2009), it is still unclear as to how this modification
regulates nucleosome assembly in mammalian cells, as its
abundance is relatively low compared to yeast cells (Jasenca-
kova et al., 2010). Fourth, there are two major forms of H3 in
mammalian cells, canonical H3 (H3.1, H3.2) and histone H3
variant H3.3, which are deposited by distinct histone chaper-
ones (Ahmad and Henikoff, 2002). Finally, while modifications
on newly-synthesized H3-H4 have been extensively profiled in
mammalian cells (Loyola et al., 2006; Jasencakova et al.,
2010), the functions of these modifications have not been well
studied. Therefore, it would be interesting to determine how
modifications on newly-synthesized H3-H4 regulate nucleo-
some assembly pathways in mammalian cells and how this
regulation coordinates with concurrent DNA replication.

In summary, over the past few years, we have gained great

insight into the regulation of nucleosome assembly through
histone modifications and control of histone-histone chaper-
one interactions. However, there are still many unanswered
questions. How does the chromatin modifying machinery aid
in the regulation of nucleosome assembly and what regulates
these interactions? How does the Asf1-H3-H4 complex pass
histone dimers to CAF-1 and/or Rtt106 for deposition? How
are parental nucleosomes transferred behind the DNA
replication fork? What contributes to histone chaperone
specificity for particular H3 variants? Do modifications on
H2A-H2B facilitate their deposition at the replication fork?
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