Skip to main content
Log in

An insight into the gene-networks playing a crucial role in the cotton plant architecture regulation

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Cotton is a global source of natural fiber and edible oil. Plant architecture and flowering time are key factors in determining the cotton yield and efficiency of mechanical harvesting. The molecular functions of plant architecture and flowering time-related genes are well-studied in Arabidopsis (a long-day plant), tomato (a day-neutral plant), and rice (a short-day plant). It has improved our general understanding of flowering mechanisms in plants. The upland (Gossypium hirsutum L.) and Sea Island (Gossypium barbadense L.) cotton are intrinsically perennial and exhibit indeterminate growth habit and a complex branching pattern. In this paper, we review the progress on gene identification for plant architecture (including branching patterns, branch angle, fruit branch length, and plant height) and floral induction in cotton. However, attention is given to the genes involved in plant hormone perception and signal transduction, especially the phosphatidyl ethanolamine-binding protein gene family in cotton, i.e., the FT/SFT and SP genes or the florigen and anti-florigen system. Furthermore, we identify areas that need further research. These findings lay the groundwork for engineering cotton cultivars with desirable plant architecture, flowering time, growth habit, and improved yield with suitability for mechanized cotton production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2

Similar content being viewed by others

References

  1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science. 2005;309:1052–6. https://doi.org/10.1126/science.1115983.

    Article  PubMed  CAS  Google Scholar 

  2. Adrian J, Torti S, Turck F. From decision to commitment: the molecular memory of flowering. Mol Plant. 2009;2(4):628–42. https://doi.org/10.1093/mp/ssp031.

    Article  PubMed  CAS  Google Scholar 

  3. Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 2006;25(3):605–14. https://doi.org/10.1038/sj.emboj.7600950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Barton MK. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol. 2010;341:95–113. https://doi.org/10.1016/j.ydbio.2009.11.029.

    Article  PubMed  CAS  Google Scholar 

  5. Bowman JL, Eshed Y. Formation and maintenance of the shoot apical meristem. Trends Plant Sci. 2000;5:110–5. https://doi.org/10.1016/s1360-1385(00)01569-7.

    Article  PubMed  CAS  Google Scholar 

  6. Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E. Control of inflorescence architecture in Antirrhinum. Nature. 1996;379(6568):791–7. https://doi.org/10.1038/379791a0. (PMID: 8587601).

    Article  PubMed  CAS  Google Scholar 

  7. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997;275(5296):80–3. https://doi.org/10.1126/science.275.5296.80. (PMID: 8974397).

    Article  PubMed  CAS  Google Scholar 

  8. Byrd S. Plant growth regulators in cotton. Oklahoma Cooperative Extension Service PSS-2189. 2019.

  9. Chen W, Yao J, Li Y, Zhao L, Liu J, Guo Y, Wang J, Yuan L, Liu Z, Lu Y, Zhang Y. Nulliplex-branch, a TERMINAL FLOWER 1 ortholog, controls plant growth habit in cotton. Theor Appl Genet. 2019;132(1):97–112. https://doi.org/10.1007/s00122-018-3197-0.

    Article  PubMed  CAS  Google Scholar 

  10. Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell. 2014;26(3):1134–50. https://doi.org/10.1105/tpc.114.122903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Collani S, Neumann M, Yant L, Schmid M. FT modulates genome-wide DNA-binding of the bZIP transcription factor FD. Plant Physiol. 2019;180(1):367–80. https://doi.org/10.1104/pp.18.01505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Diao Y, Zhan J, Zhao Y, Liu L, Liu P, Wei X, Ding Y, Sajjad M, Hu W, Wang P, Ge X. GhTIE1 regulates branching through modulating the transcriptional activity of TCPs in cotton and Arabidopsis. Front Plant Sci. 2019;10:1348. https://doi.org/10.3389/fpls.2019.01348.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science. 2019;366(6466):eaax0025. https://doi.org/10.1126/science.aax0025.

    Article  PubMed  CAS  Google Scholar 

  14. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF. Strigolactone inhibition of shoot branching. Nature. 2008;455(7210):189–94. https://doi.org/10.1038/nature07271.

    Article  PubMed  CAS  Google Scholar 

  15. González-Grandío E, Poza-Carrión C, Sorzano CO, Cubas P. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell. 2013;25(3):834–50. https://doi.org/10.1105/tpc.112.108480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gore UR. Morphogenic studies of the inflorescence of cotton. Bot Gaz. 1935;97(1):118–38. https://doi.org/10.1086/334540.

    Article  Google Scholar 

  17. Goretti D, Silvestre M, Collani S, Langenecker T, Méndez C, Madueño F, Schmid M. TERMINAL FLOWER1 functions as a mobile transcriptional cofactor in the shoot apical meristem. Plant Physiol. 2020;182(4):2081–95. https://doi.org/10.1104/pp.19.00867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Guo D, Li C, Dong R, Li X, Xiao X, Huang X. Molecular cloning and functional analysis of the FLOWERING LOCUS T (FT) homolog GhFT1 from Gossypium hirsutum. J Integr Plant Biol. 2015;57(6):522–33. https://doi.org/10.1111/jipb.12316.

    Article  PubMed  CAS  Google Scholar 

  19. He X, Wang T, Zhu W, Wang Y, Zhu L. GhHB12, a HD-ZIP I transcription factor, negatively regulates the cotton resistance to Verticillium dahliae. Int J Mol Sci. 2018;19(12):3997. https://doi.org/10.3390/ijms19123997.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet. 2019;51(4):739–48. https://doi.org/10.1038/s41588-019-0371-5.

    Article  PubMed  CAS  Google Scholar 

  21. Huang G, Wu Z, Percy RG, Bai M, Li Y, Frelichowski JE, Hu J, Wang K, Yu JZ, Zhu Y. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet. 2020;52(5):516–24. https://doi.org/10.1038/s41588-020-0607-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hubbard L, McSteen P, Doebley J, Hake S. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics. 2002;162(4):1927–35. https://doi.org/10.1093/genetics/162.4.1927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hutmacher RB, Vargas RN, Wright SD, Roberts BA, Marsh BH, Munk DS, Weir BL, Klonsky KM, DeMoura RL. Sample costs to produce cotton (Acala variety) 40-inch row, San Joaquin Valley. Davis: University of California Cooperative Extension; 2003.

    Google Scholar 

  24. Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell. 2013;25(3):820–33. https://doi.org/10.1105/tpc.113.109355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ji G, Liang C, Cai Y, Pan Z, Meng Z, Li Y, Jia Y, Miao Y, Pei X, Gong W, Wang X, Gao Q, Peng Z, Wang L, Sun J, Geng X, Wang P, Chen B, Wang P, Zhu T, He S, Zhang R, Du X. A copy number variant at the HPDA-D12 locus confers compact plant architecture in cotton. New Phytol. 2021;229(4):2091–103. https://doi.org/10.1111/nph.17059.

    Article  PubMed  CAS  Google Scholar 

  26. Jia X, Wang S, Zhao H, Zhu J, Li M, Wang G. QTL mapping and BSA-seq map a major QTL for the node of the first fruiting branch in cotton. Front Plant Sci. 2023;14:1113059. https://doi.org/10.3389/fpls.2023.1113059.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jin S, Nasim Z, Susila H, Ahn JH. Evolution and functional diversification of FLOWERING LOCUS T/TERMINAL FLOWER 1 family genes in plants. Semin Cell Dev Biol. 2021;109:20–30. https://doi.org/10.1016/j.semcdb.2020.05.007.

    Article  PubMed  CAS  Google Scholar 

  28. Jin Y, Li J, Zhu Q, Du X, Liu F, Li Y, Ahmar S, Zhang X, Sun J, Xue F. GhAPC8 regulates leaf blade angle by modulating multiple hormones in cotton (Gossypium hirsutum L.). Int J Biol Macromol. 2022;195:217–28. https://doi.org/10.1016/j.ijbiomac.2021.11.205.

    Article  PubMed  CAS  Google Scholar 

  29. Ju F, Liu S, Zhang S, Ma H, Chen J, Ge C, Shen Q, Zhang X, Zhao X, Zhang Y, Pang C. Transcriptome analysis and identification of genes associated with fruiting branch internode elongation in upland cotton. BMC Plant Biol. 2019;19(1):415. https://doi.org/10.1186/s12870-019-2011-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, Lascoux M, Lagercrantz U. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol. 2011;156(4):1967–77. https://doi.org/10.1104/pp.111.176206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kelly JH, Tucker MR, Brewer PB. The strigolactone pathway is a target for modifying crop shoot architecture and yield. Biology. 2023;12(1):95. https://doi.org/10.3390/biology12010095.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lang A, Chailakhyan MK, Frolova IA. Promotion and inhibition of flower formation in a day neutral plant in grafts with a short-day plant and a long-day plant. Proc Natl Acad Sci USA. 1977;74:2412–6. https://doi.org/10.1073/pnas.74.6.2412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li C, Zhang Y, Zhang K, Guo D, Cui B, Wang X, Huang X. Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1. Front Plant Sci. 2015;6:454. https://doi.org/10.3389/fpls.2015.00454.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li J, Fan SL, Song MZ, Pang CY, Wei HL, Li W, Ma JH, Wei JH, Jing JG, Yu SX. Cloning and characterization of a FLO/LFY ortholog in Gossypium hirsutum L. Plant Cell Rep. 2013;32(11):1675–86. https://doi.org/10.1007/s00299-013-1479-1.

    Article  PubMed  CAS  Google Scholar 

  35. Lifschitz E, Ayre BG, Eshed Y. Florigen and anti-florigen—a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci. 2014;5:465. https://doi.org/10.3389/fpls.2014.00465.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu D, Teng Z, Kong J, Liu X, Wang W, Zhang X, Zhai T, Deng X, Wang J, Zeng J, Xiao Y, Guo K, Zhang J, Liu D, Wang W, Zhang Z. Natural variation in a CENTRORADIALIS homolog contributed to cluster fruiting and early maturity in cotton. BMC Plant Biol. 2018;18(1):286. https://doi.org/10.1186/s12870-018-1518-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liu H, Huang X, Ma B, Zhang T, Sang N, Zhuo L, Zhu J. Components and functional diversification of florigen activation complexes in cotton. Plant Cell Physiol. 2021;62(10):1542–55. https://doi.org/10.1093/pcp/pcab107.

    Article  PubMed  CAS  Google Scholar 

  38. Lu M, Keke Y, Zexin W, Kexin L, Jianlong D, Fang L, Haikun Q, Lu S, Lizhen Z, Hezhong D, Zhengying L, Dongyong X, Mingcai Z, Mingwei D, Xiaoli T, Zhaohu L. High dosage of mepiquat chloride delays defoliation of harvest aids in cotton. Ind Crops Prod. 2023;202:116998. https://doi.org/10.1016/j.indcrop.2023.116998.

    Article  CAS  Google Scholar 

  39. Manghwar H, Hussain A, Ali Q, Liu F. Brassinosteroids (BRs) role in plant development and coping with different stresses. Int J Mol Sci. 2022;23(3):1012. https://doi.org/10.3390/ijms23031012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. McGarry RC, Ayre BG. Cotton architecture: examining the roles of SINGLE FLOWER TRUSS and SELF-PRUNING in regulating growth habits of a woody perennial crop. Curr Opin Plant Biol. 2021;59:101968. https://doi.org/10.1016/j.pbi.2020.10.001.

    Article  PubMed  CAS  Google Scholar 

  41. McGarry RC, Ayre BG. Geminivirus-mediated delivery of florigen promotes determinate growth in aerial organs and uncouples flowering from photoperiod in cotton. PLoS One. 2012;7(5):e36746. https://doi.org/10.1371/journal.pone.0036746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. McGarry RC, Ayre BG. Manipulating plant architecture with members of the CETS gene family. Plant Sci. 2012;188–189:71–81. https://doi.org/10.1016/j.plantsci.2012.03.002.

    Article  PubMed  CAS  Google Scholar 

  43. McGarry RC, Prewitt S, Ayre BG. Overexpression of FT in cotton affects architecture but not floral organogenesis. Plant Signal Behav. 2013;8(4):e23602. https://doi.org/10.4161/psb.23602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. McGarry RC, Prewitt SF, Culpepper S, Eshed Y, Lifschitz E, Ayre BG. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs. New Phytol. 2016;212(1):244–58. https://doi.org/10.1111/nph.14037.

    Article  PubMed  CAS  Google Scholar 

  45. Moraes TS, Dornelas MC, Martinelli AP. FT/TFL1: Calibrating plant architecture. Front Plant Sci. 2019;10:97. https://doi.org/10.3389/fpls.2019.00097.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Müller D, Leyser O. Auxin, cytokinin and the control of shoot branching. Ann Bot. 2011;107(7):1203–12. https://doi.org/10.1093/aob/mcr069.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science. 2003;302:81–4. https://doi.org/10.1126/science.1086072.

    Article  PubMed  CAS  Google Scholar 

  48. Naveed S, Gandhi N, Billings G, Jones Z, Campbell BT, Jones M, Rustgi S. Alterations in growth habit to channel end-of-season perennial reserves towards increased yield and reduced regrowth after defoliation in upland cotton (Gossypium hirsutum L.). Int J Mol Sci. 2023;24(18):14174. https://doi.org/10.3390/ijms241814174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Naveed S, Rustgi S. Functional characterization of candidate genes, Gohir.D05G103700 and Gohir.5D12G153600, identified through expression QTL analysis using virus-induced gene silencing in upland cotton (Gossypium hirsutum L.). Agriculture. 2023;13(5):1007. https://doi.org/10.3390/agriculture13051007.

    Article  CAS  Google Scholar 

  50. Naveed S. Breeding cotton for determinate growth habit: Increasing cotton fiber yield by remobilization of end-of-season perennial reserves. All Dissertations. 2023; 3431. https://tigerprints.clemson.edu/all_dissertations/3431.

  51. Ongaro V, Leyser O. Hormonal control of shoot branching. J Exp Bot. 2008;59(1):67–74. https://doi.org/10.1093/jxb/erm134.

    Article  PubMed  CAS  Google Scholar 

  52. Park SJ, Eshed Y, Lippman ZB. Meristem maturation and inflorescence architecture–lessons from the Solanaceae. Curr Opin Plant Biol. 2014;17:70–7. https://doi.org/10.1016/j.pbi.2013.11.006.

    Article  PubMed  Google Scholar 

  53. Pei X, Wang X, Fu G, Chen B, Nazir MF, Pan Z, He S, Du X. Identification and functional analysis of 9-cis-epoxy carotenoid dioxygenase (NCED) homologs in G. hirsutum. Int J Biol Macromol. 2021;182:298–310. https://doi.org/10.1016/j.ijbiomac.2021.03.154.

    Article  PubMed  CAS  Google Scholar 

  54. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP. “Green revolution” genes encode mutant gibberellin response modulators. Nature. 1999;400:256–61. https://doi.org/10.1038/22307.

    Article  PubMed  CAS  Google Scholar 

  55. Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development. 1998;125(11):1979–89. https://doi.org/10.1242/dev.125.11.1979.

    Article  PubMed  CAS  Google Scholar 

  56. Prewitt SF, Ayre BG, McGarry RC. Cotton CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING genes functionally diverged to differentially impact plant architecture. J Exp Bot. 2018;69(22):5403–17. https://doi.org/10.1093/jxb/ery324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Qanmber G, Lu L, Liu Z, Yu D, Zhou K, Huo P, Li F, Yang Z. Genome-wide identification of GhAAI genes reveals that GhAAI66 triggers a phase transition to induce early flowering. J Exp Bot. 2019;70(18):4721–36. https://doi.org/10.1093/jxb/erz239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Reinhardt D, Kuhlemeier C. Plant architecture. EMBO Rep. 2002;3:846–51. https://doi.org/10.1093/embo-reports/kvf177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Romera-Branchat M, Severing E, Pocard C, Ohr H, Vincent C, Née G, Martinez-Gallegos R, Jang S, Andrés F, Madrigal P, Coupland G. Functional divergence of the Arabidopsis Florigen-Interacting bZIP Transcription Factors FD and FDP. Cell Rep. 2020;31(9):107717. https://doi.org/10.1016/j.celrep.2020.107717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sang N, Cai D, Li C, Sun Y, Huang X. Characterization and activity analyses of the FLOWERING LOCUS T promoter in Gossypium hirsutum. Int J Mol Sci. 2019;20(19):4769. https://doi.org/10.3390/ijms20194769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sang N, Liu H, Ma B, Huang X, Zhuo L, Sun Y. Roles of the 14-3-3 gene family in cotton flowering. BMC Plant Biol. 2021;21(1):162. https://doi.org/10.1186/s12870-021-02923-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Si Z, Liu H, Zhu J, Chen J, Wang Q, Fang L, Gao F, Tian Y, Chen Y, Chang L, Liu B, Han Z, Zhou B, Hu Y, Huang X, Zhang T. Mutation of SELF-PRUNING homologs in cotton promotes short-branching plant architecture. J Exp Bot. 2018;69(10):2543–53. https://doi.org/10.1093/jxb/ery093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA. 2002;99:9043–8. https://doi.org/10.1073/pnas.132266399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Sun Q, Xie Y, Li H, Liu J, Geng R, Wang P, Chu Z, Chang Y, Li G, Zhang X, Yuan C, Cai Y. Cotton GhBRC1 regulates branching, flowering, and growth by integrating multiple hormone pathways. Crop J. 2022;10:75–87. https://doi.org/10.1016/j.cj.2021.01.007.

    Article  Google Scholar 

  65. Susila H, Jurić S, Liu L, Gawarecka K, Chung KS, Jin S, Kim SJ, Nasim Z, Youn G, Suh MC, Yu H, Ahn JH. Florigen sequestration in cellular membranes modulates temperature-responsive flowering. Science. 2021;373(6559):1137–42. https://doi.org/10.1126/science.abh4054.

    Article  PubMed  CAS  Google Scholar 

  66. Tao Q, Guo D, Wei B, Zhang F, Pang C, Jiang H, Zhang J, Wei T, Gu H, Qu LJ, Qin G. The TIE1 transcriptional repressor links TCP transcription factors with TOPLESS/TOPLESS-RELATED corepressors and modulates leaf development in Arabidopsis. Plant Cell. 2013;25(2):421–37. https://doi.org/10.1105/tpc.113.109223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K. 14–3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature. 2011;476(7360):332–5. https://doi.org/10.1038/nature10272.

    Article  PubMed  CAS  Google Scholar 

  68. Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J. Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA. 2010;107(19):8563–8. https://doi.org/10.1073/pnas.1000088107.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wen T, Baosheng D, Tao W, Xinxin L, Chunyuan Y, Zhongxu L. Genetic variations in plant architecture traits in cotton (Gossypium hirsutum) revealed by a genome-wide association study. Crop J. 2019;7(2):209–16. https://doi.org/10.1016/j.cj.2018.12.004.

    Article  Google Scholar 

  70. Wang B, Smith SM, Li J. Genetic regulation of shoot architecture. Annu Rev Plant Biol. 2018;69:437–68. https://doi.org/10.1146/annurev-arplant-042817-040422.

    Article  PubMed  CAS  Google Scholar 

  71. Wang BH, Wu YT, Huang NT, Zhu XF, Guo WZ, Zhang TZ. QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers. Yi Chuan Xue Bao. 2006;33(2):161–70. https://doi.org/10.1016/S0379-4172(06)60035-8.

    Article  PubMed  CAS  Google Scholar 

  72. Wang P, Zhang S, Qiao J, Sun Q, Shi Q, Cai C, Mo J, Chu Z, Yuan Y, Du X, Miao Y, Zhang X, Cai Y. Functional analysis of the GbDWARF14 gene associated with branching development in cotton. PeerJ. 2019;7:e6901. https://doi.org/10.7717/peerj.6901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science. 2005;309(5737):1056–9. https://doi.org/10.1126/science.1114358.

    Article  PubMed  CAS  Google Scholar 

  74. Wu H, Ren Z, Zheng L, Guo M, Yang J, Hou L, Qanmber G, Li F, Yang Z. The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton. Crop J. 2021;9(5):1049–59. https://doi.org/10.1016/j.cj.2020.10.014.

    Article  Google Scholar 

  75. Yang Z, Zhang C, Yang X, Liu K, Wu Z, Zhang X, Zheng W, Xun Q, Liu C, Lu L, Yang Z, Qian Y, Xu Z, Li C, Li J, Li F. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol. 2014;203(2):437–48. https://doi.org/10.1111/nph.12824.

    Article  PubMed  CAS  Google Scholar 

  76. Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, Li Y, Yan C, Miao D, Sun Z, Yan J, Sun Y, Wang L, Chu J, Fan S, He W, Deng H, Nan F, Li J, Rao Z, Lou Z, Xie D. DWARF14 is a non-canonical hormone receptor for strigolactone. Nature. 2016;536(7617):469–73. https://doi.org/10.1038/nature19073.

    Article  PubMed  CAS  Google Scholar 

  77. Yu JZ, Ulloa M, Hoffman SM, Kohel RJ, Pepper AE, Fang DD, Percy RG, Burke JJ. Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. × G. barbadense L.) RIL population. Mol Genet Genome. 2014;289(6):1347–67. https://doi.org/10.1007/s00438-014-0930-5.

    Article  CAS  Google Scholar 

  78. Zhan J, Chu Y, Wang Y, Diao Y, Zhao Y, Liu L, Wei X, Meng Y, Li F, Ge X. The miR164-GhCUC2-GhBRC1 module regulates plant architecture through abscisic acid in cotton. Plant Biotechnol J. 2021;19(9):1839–51. https://doi.org/10.1111/pbi.13599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Zhang B, Li C, Li Y, Yu H. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nat Plants. 2020;6(9):1146–57. https://doi.org/10.1038/s41477-020-0749-5.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang X, Wei J, Fan S, Song M, Pang C, Wei H, Wang C, Yu S. Functional characterization of GhSOC1 and GhMADS42 homologs from upland cotton (Gossypium hirsutum L.). Plant Sci. 2016;242:178–86. https://doi.org/10.1016/j.plantsci.2015.05.001.

    Article  PubMed  CAS  Google Scholar 

  81. Zhao D, Oosterhuis DM. Dynamics of non-structural carbohydrates in developing leaves, bracts and floral buds of cotton. Environ Exp Bot. 2000;43(3):185–95. https://doi.org/10.1016/s0098-8472(99)00059-3.

    Article  PubMed  CAS  Google Scholar 

  82. Zhu Y, Klasfeld S, Jeong CW, Jin R, Goto K, Yamaguchi N, Wagner D. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat Commun. 2020;11(1):5118. https://doi.org/10.1038/s41467-020-18782-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support for this work from SC Cotton Board and Cotton Incorporated.

Funding

SC Cotton Board and Cotton Incorporated (grant # 2015969).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, original draft writing and preparation, editing, and visualization: Salman Naveed. Review and editing: Michael Jones and Todd Campbell. Supervision, visualization, review, and editing: Sachin Rustgi. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sachin Rustgi.

Ethics declarations

Competing interests

The authors declare no competing or conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Amita Pal; Reviewers: Malay Das, Sujit Roy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveed, S., Jones, M., Campbell, T. et al. An insight into the gene-networks playing a crucial role in the cotton plant architecture regulation. Nucleus 66, 341–353 (2023). https://doi.org/10.1007/s13237-023-00446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-023-00446-2

Keywords

Navigation