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Abstract
Atractylodes chinensis (fam. Asteraceae) is an important medicinal plant due to its unique pharmacological activity. The 
species is widely distributed in most areas of northern China. It is difficult to identify different populations of A. chinensis 
due to their similarity in characteristics. This study was the first investigation to date that assessed the genetic diversity of 
A. chinensis from different geographical counties of northern China using simple sequence repeat (SSR) markers. Of the 
106 SSR primers in the clusters classified in the sesquiterpenoid biosynthesis pathway in the transcriptomic database of 
A. chinensis, ten with high polymorphism were used to analyze the inter-populations genetic diversity and construct DNA 
fingerprinting of 19 A. chinensis populations. A total of 78 alleles were detected, with an average number of 6.5 alleles per 
primer. The PIC value ranged from 0.4748 to 0.8918 with a mean of 0.6265. The neighbor-joining tree was used to classify 
19 populations of A. chinensis into three clusters. DNA fingerprinting was performed according to these ten SSR markers. 
The results revealed that geographic origin is not exactly related to genetic diversity, as populations belonging to different 
provinces are grouped in the same cluster. The results of this study confirm that SSR markers are effective for genetic diversity 
analysis. The inter-populations genetic diversity and fingerprinting of A. chinensis in this study could provide a scientific 
basis for species identification and selective breeding.
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Abbreviations
SSR  Simple sequence repeats
HPLC  High-performance liquid chromatography
UPGMA  Unweighted pair group method with arithmetic 

average
h  Gene diversity
I  Shannon's information index
PIC  Polymorphism information content

Introduction

Atractylodes chinensis (DC.) Koidz (typically referred to 
as “Bei Cang Zhu” in Chinese) is a major medicinal plant 
known as rhizome atractylodes, which are used to treat 
digestive disorders, rheumatic diseases and night blindness 
[5]. Modern pharmacological studies have reported that rhi-
zome atractylodes was also used for anti-inflammatory, anti-
bacterial [10, 17] and anti-tumor properties [11]. A. chinen-
sis is widely distributed throughout most areas of northern 
China and is mainly produced in Hebei, Inner Mongolia, 
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Liaoning and other provinces of China [35]. The contents of 
atractylodin in rhizome atractylodes, an important standard 
of quality assessment in the Chinese pharmacopeia, vary 
among provinces and even counties [13], but are similar in 
characteristics. The utilization of and research on A. chin-
ensis have received less attention worldwide. Additionally, 
A. chinensis faces an unprecedented threat of even extinc-
tion due to its sharp reduction in wild resources as well as 
increasing medicinal demand. Although cultivation relieved 
some of this pressure over the past ten years, species of sta-
ble and consistent quality have not yet been cultivated due to 
unclear genetic basis. China is very rich in genetic variability 
of A. chinensis. Therefore, it is critical to adopt an effective 
methodology to assess the interpopulations genetic diversity 
of wild A. chinensis populations.

High-performance liquid chromatography (HPLC) fin-
gerprinting [13], ITS [9, 12] and trnL-F [8, 22] sequences 
and chloroplast genome variation [30, 33] have been used to 
analyze interspecific phylogenetic relationships of Atracty-
lodes species. However, these methods are not effective for 
intraspecific diversity analysis [34]. Simple sequence repeats 
(SSRs) are the ideal markers due to their high polymor-
phism, codominance and low cost. SSR markers have been 
widely used in variety identification, fingerprinting construc-
tion and intraspecific genetic diversity analysis [14, 25, 34]. 
The selection of a set of core SSR primers for germplasm 
identification and genetic diversity have been conducted 
for many medicinal plants, such as Glehnia littoralis [27], 
Glycyrrhiza [16], and Euryale ferox [15]. However, such 
a marker toolkit is not presently available for A. chinensis 
genetic diversity analysis.

In this paper, we screened SSR loci in clusters classified 
into the sesquiterpenoid biosynthesis pathway based on the 
transcriptomic database of A. chinensis. Ten SSRs with high 
polymorphism were used to analyze the interpopulations 
genetic diversity and fingerprinting of 19 A. chinensis popu-
lations. Interpopulation genetic diversity and fingerprinting 
will provide a scientific basis for species identification and 
selective breeding in A. chinensis.

Materials and methods

DNA extraction and PCR amplification

A. chinensis rhizomes were collected from different coun-
ties of northern China (Table 1), including Hebei, Shan-
dong, Inner Mongolia and Jilin Provinces. No permission 
was required to collect wild resources of A. chinensis. All 

of the samples used in this study were identified as A. chin-
ensis by Professor Qiaosheng Guo who works at Nanjing 
Agriculture University (Nanjing, Jiangsu Province, China). 
Professor Guo identified the experimental species through 
comparison with specimens inform the institute of botany 
Jiangsu Province, and the Chinese Academy of Sciences. 
All the samples were planted in the experimental farm of 
Hebei Normal University of Science & Technology (Qin-
huangdao, Hebei, China). The quality and price of rhizome 
atractylodes were established according to the counties in 
the Chinese herbal medicine market. Young leaves of ten 
randomly selected plants from each population were mixed 
as one sample, immediately frozen in liquid nitrogen and 
stored at − 80 °C prior to DNA extraction.

The total DNA of A. chinensis was extracted through the 
improved CTAB method using plant genomic extraction kits 
(Cat.No.0419-50 CB, Huayueyang, Beijing, China, http:// 
www. huayu eyang. com. cn/ produ ct/ 27678 2043). The purities 
of extracted DNA samples were tested in a 2.0% agarose gel 
with electrophoresis on a horizontal electrophoresis DYCP-
31DN apparatus (Liuyi, Beijing, China) and a gel-imaging 
system (GBOX-HR, Syn-gene, UK). The OD260/280 ratios 
of DNA were measured by a spectrophotometer (Synergy 
HT, Gene Company Limited, Hong Kong, China).

For SSR amplification, a 10 μL volume of reaction mix-
ture included 50 ng/μL DNA, 2.5 mM dNTPs, 10 × buffer 
 (Mg2+ included), 5.0 U/μL Taq enzyme, 10 μM of each 
primer, and  ddH2O. Procedures for SSR amplification were 
carried out in a thermal cycler (BIO-RAD S1000 PCR, 
California, USA) by the following cycles: an initial 4 min 
pre denaturation at 94 °C, followed by 35 cycles of a 30-s 
denaturation at 94 °C, a 30-s annealing phase at 55 °C, and 
a 1 min extension at 72 °C, and a final extension at 72 °C 
for 10 min. The PCR products were preserved at 4 °C. PCR 
products were separated by polyacrylamide gel electropho-
resis (6%) at a constant voltage (130 V) for 3 h. A 1000 bp 
DNA marker (TaKaRa, Japan) was used to determine allele 
size.

RNA sequencing and core SSR marker screening

RNA extraction and sequencing were performed as 
described by Zhao et al. (2021) [36]. RNA of A. chinen-
sis was extracted using TRIzol Reagent (Invitrogen). Tran-
scriptome data of A. chinensis were acquired based on the 
Illumina Hiseq Xten PE150 platform, by Novogene Co. 
(Beijing, China). All SSR primers used in this study were 
designed from the transcriptomic database as reported by 
Zhao et al. 2021 [36], and they are available in the SRA 
(BioProject ID PRJNA698794, https:// www. ncbi. nlm. nih. 

http://www.huayueyang.com.cn/product/276782043
http://www.huayueyang.com.cn/product/276782043
https://www.ncbi.nlm.nih.gov/sra/PRJNA698794
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gov/ sra/ PRJNA 698794). SSR marker detection, identifica-
tion and primer design were performed as described by Wu 
et al. (2021) [31].

This study was carried out to analyze the inter-popu-
lations genetic diversity based on those markers in clus-
ters classified into sesquiterpenoid biosynthesis pathway. 
Twenty-five SSR primers in clusters annotated as terpene 
skeleton biosynthesis and eighty-one primers in clusters 
annotated as the sesquiterpenoid biosynthesis pathway 
were screened for polymorphism testing (Supplementary 
Table S1). SSR primers were constructed by Shanghai Invit-
rogen Biotechnology Company (Shanghai, China). The core 
primers, with high allelic frequencies (> 2), were screened 
by amplification with DNA extracted from 8 A. chinensis 
populations from different counties. Only ten SSR prim-
ers with distinct bands and high polymorphism were used 
to analyze interpopulations genetic diversity in this study 
(Table 3).

Data analysis

The amplified bands with good resolution from 10 SSR 
primers were counted and scored as 1 (present) or 0 
(absence). Several genetic diversity assessment parameters 
such as the observed number of alleles, effective number of 
alleles, Nei's (1973) gene diversity (h) and Shannon's infor-
mation index (I) were determined using software POPGENE 

version 1.32 [19]. The polymorphism information content 
(PIC) was calculated as described by Botstein et al. (1980) 
[3]. Similarity coefficients were calculated using the similar-
ity program in PopGene version 1.32.

The clustering of 19 A chinensis populations was per-
formed based on a similarity matrix using an unweighted 
pair group method with arithmetic average (UPGMA) algo-
rithm following SAHN module of NTSYS version 2.10. The 
phylogenetic tree was constructed using the neighbor-joining 
method by MEGA version 7.0.21.

Results and discussion

SSR polymorphism

A total of 89,005 SSRs with 3 or more mono, di-, tri-, tetra-, 
penta-, and hexanucleotide repeat units were identified in 
the A. chinensis transcriptome. Among the SSRs, 46,188 
(51.89%), 30,675 (34.46%), 9,791 (11.00%), 904 (1.02%), 
886 (1.00%), and 561 (0.63%) were mono-, di-, tri-, tetra-, 
penta-, and hexanucleotides SSRs, respectively (Table 2). 
A/T (18,572, 20.87%), AG/CT (3,274, 3.68%) and ACC/
GGT (1,303, 1.46%) were the most abundant of the mononu-
cleotide, dinucleotide and trinucleotide motifs, respectively. 
Of the tetra-, penta- and hexanucleotide motifs, AAAT/
ATTT (151, 0.17%), AAACC/GGTTT (339, 0.38%), and 

Table 1  Details of 19 A. chinensis populations with location in the present study

Code Sample no. Location Latitude Longitude

1 C1 Shihuiyao Township, Chengde County, Chengde City, Hebei 
Province

40° 88′ 118° 24′

2 C2 Heilihe Township, Ningcheng County, Inner Mongolia 
Province

41° 59′ 119° 34′

3 C3 Kuancheng County, Chengde City, Hebei Province 40° 61′ 118° 48′
4 C4 Sanjia Township, Chengde County, Chengde City, Hebei 

Province
40° 76′ 118° 17′

5 C5 Linqu County, Weifang City, Shandong Province 36° 51′ 118° 54′
6 C6 Changli County, Qinhuangdao City, Hebei Province 39° 70′ 119° 16′
7 C7 Weichang County, Chengde City, Hebei Province 41° 57′ 117° 49′
8 C8 Qinglong County, Qinhuangdao City, Hebei Province 40° 40′ 118° 95′
9 C9 Qinglong County, Qinhuangdao City, Hebei Province 40° 38′ 118° 62′
10 C10 Longhua County, Chengde City, Hebei Province 41° 31′ 117° 73′
11 C11 Luanping County, Chengde City, Hebei Province 40° 95′ 117° 96′
12 C12 Xinglong County, Chengde City, Hebei Province 40° 41′ 117° 50′
13 C13 Fengning County, Chengde City, Hebei Province 41° 20′ 116° 64′
14 C14 Pingquan County, Chengde City, Hebei Province 41° 22′ 118° 77′
15 C15 Keshiketeng County, Chifeng city, Inner Mongolia 43° 26′ 117° 54′
16 C16 Zunhua County, Tangshan City, Hebei Province 40° 18′ 117° 96′
17 C17 Longhua County, Chengde City, Hebei Province 41° 52′ 118° 12′
18 C18 Anguo County, Baoding City, Hebei Province 38° 41′ 115° 32′
19 C19 Fusong County, Baishan City, Jilin Province 42° 22′ 127° 44′

https://www.ncbi.nlm.nih.gov/sra/PRJNA698794
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AAC CCT /AGG GTT  (15, 0.02%) were the most abundant, 
respectively (Table 2).

For medicinal plants without a reference genome, SSR 
molecular marker technology may not be directly used for 
genetic diversity analysis. High-throughput RNA sequenc-
ing effectively provides SSR markers. This is the first time 
that genetic diversity analysis of A. chinensis populations 
has been reported using SSR markers. In this paper, among 
the 106 SSR markers (Supplementary Table S1) screened 
on 8 randomly selected A. chinensis populations (data 
not shown), ten SSR markers generated polymorphisms 
(Table 3, Supplementary Fig S1). These ten SSR markers 
were used for DNA fingerprinting and genetic diversity 
analysis of 19 A. chinensis populations.

The size of the amplified fragments was estimated by 
using the DNA ladder that produced the expected size 
(100–1000 bp). SSR locus diversity data from ten SSR 
primers are summarized in Table 4. The overall size of the 
amplified fragments varied from 200 to 1000 bp. A total 
of 65 loci in 78 alleles (80.33%) were detected revealing 
the presence of a large difference. The number of polymor-
phic alleles per SSR locus ranged from 2 (S4) to 13 (S2) 
with an average of 6.5 alleles per locus (Table 4), showing 
that 19 A. chinensis populations exhibited a high level of 
genetic diversity. The average number of allelic genes in 
this study was more than that of many other crop species, 
namely, 3.7 in Euryale ferox [15], 5.1 in Lactuca sativa var 
capitata [37] and 4.5 in Sesamum indicum [2].

SSRs with PIC values > 0.5 were considered highly 
informative markers [24]. The PIC values among the 19 A. 
chinensis populations varied from 0.4908 (S54) to 0.8918 
(S2) with an average of 0.6265 (Table 4), which was much 
higher than 0.5. The calculated average PIC value (0.6265) 
in A. chinensis was higher than that in some crops, namely, 
0.495 in Camellia sinensis [7], 0.32 in Gossypium hirsu-
tum [23], 0.5619 in Sorghum bicolor ssp. bicolor [21], 
which indicated their high informativeness. The value 
of PIC related to the relative frequency and number of 
alleles [24] was proportional to the polymorphic locus. 

The highest number of polymorphic alleles and PIC value 
were 13 and 0.8918, respectively, in primer S2. Eight out 
of ten (80.00%) markers had a PIC value > 0.5, except for 
S4 (0.4908) and S54 (0.4748), indicating that they were 
suitable for genetic diversity and fingerprinting studies.

Genetic diversity and relatedness

A dendrogram elucidating the genetic relationships among 
the 19 A. chinensis populations was constructed using the 
neighbor-joining method by MEGA version 7.0.21. To better 
understand their relationships, we divided the tested 19 A. 
chinensis populations into three clusters (Fig. 1). Populations 
P11 were grouped into Cluster I. Cluster II consisted of 9 
populations distributed into two subgroups. One population, 
P6, was grouped into the subgroup. The remaining 8 popula-
tions were grouped into the second subgroup. Populations 
belonging to different provinces constituted cluster II. For 
example, P5 (Shandong Province) and P19 (Jilin Province) 
were grouped into the Hebei Province cluster. Similarly, 
cluster III consisted of 9 populations derived from differ-
ent provinces. Populations P2 and P15 from Inner Mongolia 
Province were grouped into Hebei Province.

The 15 populations from Hebei Province were divided 
into two clusters, and grouped with Shandong and Jilin 
Provinces or with Inner Mongolia Province. The three clus-
ters formed in the dendrogram revealed that the geographic 
origin does not exactly corroborate genetic diversity. This 
phenomenon appeared in many SSR marker-based genetic 
diversities, such as Sesamum indicum [2, 20], Camellia 
oleifera [4], Vicia amoena [31] and Trifolium repens [32]. 
Wu et al. carried out genetic diversity analysis of Trifolium 
repens using PCoA, UPGMA and STRU CTU RE, and indi-
cated that UPGMA analysis was implemented based on 
genetic distance, which provided more detailed relationships 
[32]. In this study, we used MEGA software to determine 
the genetic diversity of A. chinensis based on UPGMA. 
Weak genetic differentiation was observed in Pennisetum 
glaucum among the geographical regions, suggesting high 

Table 2  Repetition times and distribution frequency of mono-, di-, tri-, tetra-, penta-, and hexa-nucleotide repeat units in A. chinensis transcrip-
tomic database

Nucleo-
tides

Repeating units Total Percentage 
(%)

5 6 7 8 9 10 11 12 13 14  ≥ 15

Mono- 0 0 0 0 0 19,051 8270 4463 2829 2134 9441 46,188 51.89
Di- 0 6665 4387 3177 2233 1557 1818 2174 1029 898 6737 30,675 34.46
Tri- 5642 2098 984 505 150 107 96 63 44 27 75 9791 11.00
Tetra- 651 201 22 16 10 0 0 1 1 1 1 904 1.02
Penta- 676 81 60 16 25 22 5 0 0 0 1 886 1.00
Dexa- 276 140 78 40 9 11 2 0 1 0 4 561 0.63
Total 7245 9185 5531 3754 2427 20,748 10,191 6701 3904 3060 16,259 89,005 100.00
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seed and pollen-mediated gene flow among the regions [1]. 
A. chinensis is an often cross-pollinated plant, and 90% of 
the plants had only female flowers in our investigation (data 
not shown). Mixed samples for genetic diversity analysis 
may have resulted in the elimination of genetic variation; 
moreover, the complex genetic structure in wild resources 
of A. chinensis decreased the regional differentiation among 
populations. Additionally, the use of different SSR markers 
leads to the different dendrograms. Thus, the dendrogram 
constructed in the present study may not reflect the geo-
graphic origins of 19 A. chinensis populations.

Nei's unbiased measures of genetic similarity are shown 
in Table 5. The similarity coefficient ranged from 0.46 to 
0.90 among 19 A. chinensis populations based on ten SSR 
primer amplification results. P8 and P10 showed the high-
est similarity (0.90), and the lowest similarity (0.46) was 
estimated between P2 and P11.

SSR marker analysis is an effective method for genetic 
diversity analysis and molecular marker-assisted selection 

breeding [6, 28]. In the present study, we used ten well-
chosen SSR markers in clusters annotated as sesquiterpe-
noid biosynthesis to analyze 19 A. chinensis populations in 
northern China. The results showed that these markers were 
highly polymorphic. The SSR marker analyses revealed the 
presence of genetic diversity among 19 A. chinensis popu-
lations which could be helpful for selective breeding in the 
future.

Establishment of DNA fingerprinting

According to the amplification results, the set of SSR mark-
ers used here provided a discernible assessment of the abil-
ity of SSR primers to produce unique DNA profiles of A. 
chinensis populations. The ten SSR markers were able to 
differentiate 19 A. chinensis populations. DNA fingerprints 
of the 19 A. chinensis populations were constructed accord-
ing to the original data matrix of amplification results (Sup-
plementary Table S2).

Table 3  List of primers used for 
genetic diversity analysis in the 
present study

SSR no. Primers SSR repeats Forward primer (5′–3′) Reverse primer (5′–3′)

1 S 2 (TC)12 TGC CGA GTC TTA CTC ATG CTC AGC AAA GCC AAA AAC GGT GG
2 S 4 (T)10 ATC ATG CAT AGC CAG ACG CA TGG GCA CTT GGG GAA TAT CG
3 S 52 (AG)6 TCC GCC CCT GAG CTA CTA TC TGG CGA CAC ATT TTC GTG AA
4 S 53 (AG)6 CCG CCC CTG AGC TAC TAT CT TGG CGA CAC ATT TTC GTG AA
5 S 54 (AG)6 CCG CCC CTG AGC TAC TAT CT TTG GCG ACA CAT TTT CGT GA
6 S 63 (AG)6 CCG CCC CTG AGC TAC TAT CT TTG GCG ACA CAT TTT CGT GA
7 S 74 (AG)6 GGA AGC TCG AAC CCA CTA CC GCA GTG AGT CCA CCA TCC TC
8 S 77 (T)10 AAA CCG CTC CAG CAG AAG AA TGG GCA CTT GGG GAA TAT CG
9 S 87 (T)11 TGA CAC AAC CCC ATC GTC AG ACC CTC CAA CAG TTT CTG CC
10 S 99 (AGA)5 TGC GAC CCA CTG CAT TTA GT CCC ATC CCC TCC ACA ACT TC

Table 4  Characteristics of each ten polymorphism SSR markers in genetic information

Primers No. of alleles No. of polymor-
phic alleles

Percentage of poly-
morphic loci (%)

Range of alleles (bp) h I PIC

S 2 13 13 100.00 220–500 0.3737 0.5574 0.8918
S 4 4 2 50.00 280–370 0.0873 0.1585 0.4908
S 52 7 6 85.71 300–1000 0.1510 0.2567 0.5541
S 53 6 5 83.33 300–500 0.2014 0.3213 0.5911
S 54 6 5 83.33 300–500 0.1358 0.2337 0.4748
S 63 6 5 83.33 230–500 0.1793 0.2862 0.5567
S 74 14 12 85.71 200–750 0.1840 0.2959 0.8295
S 77 4 3 75.00 200–260 0.2644 0.3878 0.5578
S 87 5 4 80.00 300–500 0.2035 0.3293 0.5420
S 99 13 10 76.92 220–1000 0.1314 0.2309 0.7760
Total 78 65
Average 7.8 6.5 80.33 0.1912 0.3058 0.6265
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DNA fingerprinting is a popular technique for identify-
ing species. The genus Atractylodes comprises species of 
perennial herbs used as important crude drugs prescribed in 
Chinese, Japanese, Korean and Thai traditional medicine, 
including Atractylodes lancea, A. chinensis, Atractylodes 
japonica and Atractylodes macrocephala [35]. A. lancea and 

A. chinensis are known as Cangzhu in Chinese and Sojutsu 
in Japanese. A. japonica is recorded in the Japanese and 
Korean Pharmacopoeias but not in the Chinese pharmaco-
peia. The plants of the genus Atractylodes showed similar 
morphological features of stems, leaves and rhizomes, lead-
ing to disagreement regarding whether they are unique spe-
cies and to their frequent misuses in medical products [29]. 
DNA fingerprinting is immensely helpful in detecting popu-
lations with high similarity. The results of the present study 
revealed that SSR marker-based fingerprinting databases 
are useful to detect genetic polymorphisms representing 
a method for analyzing unique populations. Marker-based 
fingerprinting provides a desirable reference for species and 
germplasm identification in the genus Atractylodes.

Unique alleles

SSR markers, in contrast to morphological markers, have 
strong species specificity [26]. Seventeen populations pro-
duced unique bands with certain SSR markers (Table 6). For 
P11, five SSR markers generated unique bands, and three 
markers generated unique bands for P14. Four SSR markers 
received unique bands for P6, and three markers received 
unique bands for P7.

Among the ten SSR primers used in the present study, 
seven were detected to generate unique fragments in certain 
populations (Table 7). Numerous specific SSR loci enabled 
us to select markers that yield highly specific amplifica-
tions independently (Supplementary Fig. S1, Table 7). S54 

Fig. 1  Neighbor-joining tree of 19 A. chenesis populations using 
MEGA

Table 5  Simple matching similarity matrix among 19 A. chinensis populations calculated from ten SSR markers

Populations P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19

P1 1
P2 0.67 1
P3 0.81 0.66 1
P4 0.76 0.74 0.86 1
P5 0.84 0.71 0.89 0.86 1
P6 0.73 0.66 0.77 0.77 0.76 1
P7 0.69 0.73 0.73 0.76 0.78 0.70 1
P8 0.77 0.76 0.76 0.84 0.78 0.79 0.74 1
P9 0.80 0.73 0.81 0.79 0.88 0.79 0.69 0.86 1
P10 0.76 0.74 0.74 0.80 0.76 0.80 0.76 0.90 0.79 1
P11 0.56 0.46 0.63 0.66 0.63 0.57 0.58 0.53 0.61 0.54 1
P12 0.77 0.61 0.84 0.81 0.86 0.79 0.80 0.80 0.86 0.76 0.64 1
P13 0.70 0.77 0.74 0.80 0.74 0.66 0.79 0.79 0.64 0.80 0.53 0.70 1
P14 0.73 0.69 0.63 0.69 0.64 0.66 0.59 0.81 0.76 0.80 0.62 0.61 0.66 1
P15 0.70 0.80 0.71 0.80 0.82 0.74 0.81 0.87 0.79 0.89 0.55 0.73 0.77 0.78 1
P16 0.77 0.73 0.73 0.81 0.75 0.70 0.74 0.86 0.74 0.87 0.54 0.74 0.79 0.79 0.79 1
P17 0.87 0.71 0.86 0.83 0.88 0.74 0.73 0.84 0.84 0.83 0.57 0.81 0.77 0.77 0.77 0.87 1
P18 0.80 0.84 0.76 0.84 0.83 0.76 0.74 0.89 0.80 0.87 0.57 0.74 0.84 0.79 0.84 0.89 0.87 1
P19 0.79 0.71 0.83 0.77 0.83 0.74 0.73 0.79 0.81 0.74 0.54 0.81 0.77 0.63 0.71 0.73 0.86 0.79 1
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generated unique fragments of 320 and 350 bp specific to P6. 
Similarly, S99 produced bands sizes of 200, 750 and 1000 bp 
in P1. The specific bands were generated from S53 (320 
and 350 bp) in P6, S52 (750 bp) and S63 (380 and 500 bp) 
in P11. S74 generated unique fragments 420 and 850 bp in 
P2, 480 bp in P3 and 650 bp in P11. The unique fragment 
generated through natural selection [18] was utilized for the 
evaluation of germplasm resources and molecular marker-
assisted selection breeding.

Conclusion

The selection of set of core SSR primers is a crucial step 
for genetic diversity, DNA fingerprinting and germplasm 
identification. The ten SSR markers used in this study enable 
conclusions regarding the overall polymorphism and number 
of alleles observed in the 19 studied A. chinensis populations 
but do not relate explicitly to functional diversity and spe-
cific traits. The genetic diversity combination of agronomic 
traits (such as yield and quality traits) and SSR markers can 

be a key source of information to exploit superior A. chinen-
sis germplasm resources for selective breeding.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13237- 022- 00398-z.
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