Skip to main content

Advertisement

Log in

miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in cancer

  • Review Artilce
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Angiogenesis is an important biological process associated with plethora of physiological and patho-physiological conditions. Recent data suggests that fine balance between anti-angiogenic microRNA (miRNA) and pro-angiogenicmiRNA drive the process of neovascularization. Many of these miRNAs act via G-protein coupled receptor (GPCR) which regulates diverse physiological processes including angiogenesis. Aberrant GPCR expression and signaling through G-protein often results into uncontrolled angiogenesis, tumor development and metastasis. In this review, we discuss the new emerging insights of GPCR-miRNA network and their interaction in angiogenic pathways leading to the cancer progression. Alongside we have focused on the GPCR mediated angiogenic processes which are controlled by anti-angiogenicmiRNAs and the influence of deregulation of these miRNAs on cancer angiogenesis. Through an extensive literature survey, we identified 7 distinct miRNAs, which are playing important role in regulating angiogenesis. Through network analysis with predicted targets for reported miRNAs and pathway enrichment, 25 major cell signaling pathways associated with tumor-angiogenesis could be identified, further reinforcing the relevance of the miRNAs in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Adair TH, Montani JP. Angiogenesis, Integrated Systems Physiology: from Molecule to Function to Disease. San Rafael, CA: Morgan & Claypool Life Sciences; 2010.

    Google Scholar 

  2. Adams D, Koike H, Slama M, Coelho T. Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease. Nat Rev Neurol. 2019;15:387–404.

    Article  CAS  PubMed  Google Scholar 

  3. Allen AM. Role of angiotensin in the rostral ventrolateral medulla in the development and maintenance of hypertension. Curr Opin Pharmacol. 2011;11:117–23.

    Article  CAS  PubMed  Google Scholar 

  4. Allen AM, Zhuo J, Mendelsohn FA. Localization and function of angiotensin AT1 receptors. Am J Hypertens. 2000;13:31S-S38.

    Article  CAS  PubMed  Google Scholar 

  5. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 2009;125:2737–43.

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  7. Bockenhauer S, Furstenberg A, Yao XJ, Kobilka BK, Moerner WE. Conformational dynamics of single G protein-coupled receptors in solution. J Phys Chem B. 2011;115:13328–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brusevold IJ, Tveteraas IH, Aasrum M, Odegard J, Sandnes DL, Christoffersen T. Role of LPAR3, PKC and EGFR in LPA-induced cell migration in oral squamous carcinoma cells. BMC Cancer. 2014;14:432.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burger JA, Kipps TJ. Chemokine receptors and stromal cells in the homing and homeostasis of chronic lymphocytic leukemia B cells. Leuk Lymphoma. 2002;43:461–6.

    Article  CAS  PubMed  Google Scholar 

  10. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    Article  CAS  PubMed  Google Scholar 

  11. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–6.

    Article  CAS  PubMed  Google Scholar 

  12. Chen DB, Zheng J. Regulation of placental angiogenesis. Microcirculation. 2014;21:15–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen Q, Zhong T. The association of CXCR4 expression with clinicopathological significance and potential drug target in prostate cancer: a meta-analysis and literature review. Drug Des Devel Ther. 2015;9:5115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen SU, Lee H, Chang DY, Chou CH, Chang CY, et al. Lysophosphatidic acid mediates interleukin-8 expression in human endometrial stromal cells through its receptor and nuclear factor-kappaB-dependent pathway: a possible role in angiogenesis of endometrium and placenta. Endocrinology. 2008;149:5888–96.

    Article  CAS  PubMed  Google Scholar 

  15. Chen T, Yang YJ, Li YK, Liu J, Wu PF, et al. Chronic administration tetrahydroxystilbene glucoside promotes hippocampal memory and synaptic plasticity and activates ERKs, CaMKII and SIRT1/miR-134 in vivo. J Ethnopharmacol. 2016;190:74–82.

    Article  CAS  PubMed  Google Scholar 

  16. Chiang YY, Chen KB, Tsai TH, Tsai WC. Lowered cancer risk with ACE inhibitors/ARBs: a population-based cohort study. J Clin Hypertens (Greenwich). 2014;16:27–33.

    Article  CAS  Google Scholar 

  17. Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563–84.

    Article  CAS  PubMed  Google Scholar 

  18. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.

    Article  CAS  PubMed  Google Scholar 

  19. Cunningham SA, Waxham MN, Arrate PM, Brock TA. Interaction of the Flt-1 tyrosine kinase receptor with the p85 subunit of phosphatidylinositol 3-kinase. Mapping of a novel site involved in binding. J Biol Chem. 1995;270:20254–7.

    Article  CAS  PubMed  Google Scholar 

  20. De Francesco EM, Sotgia F, Clarke RB, Lisanti MP, Maggiolini M. G protein-coupled receptors at the crossroad between physiologic and pathologic angiogenesis: old paradigms and emerging concepts. Int J Mol Sci. 2017;18(12):2713.

    Article  PubMed Central  Google Scholar 

  21. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII The angiotensin II receptors. Pharmacol Rev. 2000;52:415–72.

    PubMed  Google Scholar 

  22. Deshayes F, Nahmias C. Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab. 2005;16:293–9.

    Article  CAS  PubMed  Google Scholar 

  23. Di Liberto V, Mudo G, Belluardo N. Crosstalk between receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCR) in the brain: Focus on heteroreceptor complexes and related functional neurotrophic effects. Neuropharmacology. 2019;152:67–77.

    Article  PubMed  Google Scholar 

  24. Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, et al. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 2011;39:W13–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Edward Zhou X, Melcher K, Eric XuH. Structural biology of G protein-coupled receptor signaling complexes. Protein Sci. 2019;28:487–501.

    CAS  PubMed  Google Scholar 

  26. Egami K, Murohara T, Shimada T, Sasaki K, Shintani S, et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest. 2003;112:67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  28. Ferrara N. The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS. 2005;94:209–31.

    Google Scholar 

  29. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  CAS  PubMed  Google Scholar 

  31. Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, et al. The druggable genome and support for target identification and validation in drug development. Sci Transl Med. 2017;9(383):eaag1166.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fu HL, Wu DP, Wang XF, Wang JG, Jiao F, et al. Altered miRNA expression is associated with differentiation, invasion, and metastasis of esophageal squamous cell carcinoma (ESCC) in patients from Huaian, China. Cell Biochem Biophys. 2013;67:657–68.

    Article  CAS  PubMed  Google Scholar 

  33. Fujita M, Hayashi I, Yamashina S, Itoman M, Majima M. Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun. 2002;294:441–7.

    Article  CAS  PubMed  Google Scholar 

  34. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223–34.

    Article  CAS  PubMed  Google Scholar 

  35. Ge YZ, Xu LW, Xu Z, Wu R, Xin H, et al. Expression profiles and clinical significance of microRNAs in papillary renal cell carcinoma: a STROBE-compliant observational study. Medicine (Baltimore). 2015;94:e767.

    Article  CAS  Google Scholar 

  36. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 1998;273:30336–43.

    Article  CAS  PubMed  Google Scholar 

  37. Giray BG, Emekdas G, Tezcan S, Ulger M, Serin MS, et al. Profiles of serum microRNAs; miR-125b-5p and miR223-3p serve as novel biomarkers for HBV-positive hepatocellular carcinoma. Mol Biol Rep. 2014;41:4513–9.

    Article  CAS  PubMed  Google Scholar 

  38. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–8.

    Article  CAS  PubMed  Google Scholar 

  39. Grisshammer R. New approaches towards the understanding of integral membrane proteins: a structural perspective on G protein-coupled receptors. Protein Sci. 2017;26:1493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haller F, von Heydebreck A, Zhang JD, Gunawan B, Langer C, et al. Localization- and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31. J Pathol. 2010;220:71–86.

    Article  CAS  PubMed  Google Scholar 

  41. Hallersund P, Elfvin A, Helander HF, Fandriks L. The expression of renin-angiotensin system components in the human gastric mucosa. J Renin Angiotensin Aldosterone Syst. 2011;12:54–64.

    Article  CAS  PubMed  Google Scholar 

  42. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445:776–80.

    Article  PubMed  Google Scholar 

  43. Hersi HM, Raulf N, Gaken J, Folarin N, Tavassoli M. MicroRNA-9 inhibits growth and invasion of head and neck cancer cells and is a predictive biomarker of response to plerixafor, an inhibitor of its target CXCR4. Mol Oncol. 2018;12:2023–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirota T, Date Y, Nishibatake Y, Takane H, Fukuoka Y, et al. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer. 2012;77:16–23.

    Article  PubMed  Google Scholar 

  45. Hooper AJ, Burnett JR. Anti-PCSK9 therapies for the treatment of hypercholesterolemia. Expert Opin Biol Ther. 2013;13:429–35.

    Article  CAS  PubMed  Google Scholar 

  46. Huang W, Masureel M, Qu Q, Janetzko J, Inoue A, et al. Structure of the neurotensin receptor 1 in complex with beta-arrestin 1. Nature. 2020;579:303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hui Y, Li Y, Jing Y, Feng JQ, Ding Y. miRNA-101 acts as a tumor suppressor in oral squamous cell carcinoma by targeting CX chemokine receptor 7. Am J Transl Res. 2016;8:4902–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Insel PA, Tang CM, Hahntow I, Michel MC. Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim Biophys Acta. 2007;1768:994–1005.

    Article  CAS  PubMed  Google Scholar 

  49. Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: signaling and biology. Annu Rev Biochem. 2004;73:321–54.

    Article  CAS  PubMed  Google Scholar 

  50. Jiang X, Du L, Wang L, Li J, Liu Y, et al. Serum microRNA expression signatures identified from genome-wide microRNA profiling serve as novel noninvasive biomarkers for diagnosis and recurrence of bladder cancer. Int J Cancer. 2015;136:854–62.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang X, Wang J, Deng X, Xiong F, Zhang S, et al. The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res. 2020;39:204.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kamat AA, Merritt WM, Coffey D, Lin YG, Patel PR, et al. Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clin Cancer Res. 2007;13:7487–95.

    Article  CAS  PubMed  Google Scholar 

  53. Kang Y, Zhou XE, Gao X, He Y, Liu W, et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature. 2015;523:561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaur H, Carvalho J, Looso M, Singh P, Chennupati R, et al. Single-cell profiling reveals heterogeneity and functional patterning of GPCR expression in the vascular system. Nat Commun. 2017;8:15700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Komatsu S, Ichikawa D, Hirajima S, Kawaguchi T, Miyamae M, et al. Plasma microRNA profiles: identification of miR-25 as a novel diagnostic and monitoring biomarker in oesophageal squamous cell carcinoma. Br J Cancer. 2014;111:1614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kryczek I, Lange A, Mottram P, Alvarez X, Cheng P, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 2005;65:465–72.

    Article  CAS  PubMed  Google Scholar 

  57. Lages E, Guttin A, El Atifi M, Ramus C, Ipas H, et al. MicroRNA and target protein patterns reveal physiopathological features of glioma subtypes. PLoS ONE. 2011;6:e20600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lappano R, Rigiracciolo D, De Marco P, Avino S, Cappello AR, et al. Recent advances on the role of G protein-coupled receptors in hypoxia-mediated signaling. AAPS J. 2016;18:305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Law IKM, Padua DM, Iliopoulos D, Pothoulakis C. Role of G protein-coupled receptors-microRNA interactions in gastrointestinal pathophysiology. Am J Physiol Gastrointest Liver Physiol. 2017;313:G361–72.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999;99:301–12.

    Article  CAS  PubMed  Google Scholar 

  61. Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 1998;279:1552–5.

    Article  CAS  PubMed  Google Scholar 

  62. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  63. Li GC, Qin XL, Song HH, Li YN, Qiu YY, et al. Upregulated microRNA-15b alleviates ovarian cancer through inhitbition of the PI3K/Akt pathway by targeting LPAR3. J Cell Physiol. 2019;234:22331–42.

    Article  CAS  PubMed  Google Scholar 

  64. Li J, Wang Y, Luo J, Fu Z, Ying J, et al. miR-134 inhibits epithelial to mesenchymal transition by targeting FOXM1 in non-small cell lung cancer cells. FEBS Lett. 2012;586:3761–5.

    Article  CAS  PubMed  Google Scholar 

  65. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A. 2007;104:3219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105:13556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ma Z, Yu YR, Badea CT, Kovacs JJ, Xiong X, et al. Vascular endothelial growth factor receptor 3 regulates endothelial function through beta-arrestin 1. Circulation. 2019;139:1629–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Madden SL, Cook BP, Nacht M, Weber WD, Callahan MR, et al. Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol. 2004;165:601–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Maehama T, Taylor GS, Dixon JE. PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001;70:247–79.

    Article  CAS  PubMed  Google Scholar 

  70. McCusker EC, Bane SE, O’Malley MA, Robinson AS. Heterologous GPCR expression: a bottleneck to obtaining crystal structures. Biotechnol Prog. 2007;23:540–7.

    Article  CAS  PubMed  Google Scholar 

  71. Medina PP, Slack FJ. microRNAs and cancer: an overview. Cell Cycle. 2008;7:2485–92.

    Article  CAS  PubMed  Google Scholar 

  72. Miao Z, Luker KE, Summers BC, Berahovich R, Bhojani MS, et al. CXCR7 (RDC1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proc Natl Acad Sci U S A. 2007;104:15735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mooers BH. Simplifying and enhancing the use of PyMOL with horizontal scripts. Protein Sci. 2016;25:1873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, et al. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res. 2012;72:726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Natarajan K, Berk BC. Crosstalk coregulation mechanisms of G protein-coupled receptors and receptor tyrosine kinases. Methods Mol Biol. 2006;332:51–77.

    CAS  PubMed  Google Scholar 

  76. Noguchi R, Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, et al. Combination of interferon-beta and the angiotensin-converting enzyme inhibitor, perindopril, attenuates murine hepatocellular carcinoma development and angiogenesis. Clin Cancer Res. 2003;9:6038–45.

    CAS  PubMed  Google Scholar 

  77. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007;21:1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. O’Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer. 2013;13:412–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell. 2009;16:70–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3:639–50.

    Article  CAS  PubMed  Google Scholar 

  81. Ping YF, Yao XH, Jiang JY, Zhao LT, Yu SC, et al. The chemokine CXCL12 and its receptor CXCR4 promote glioma stem cell-mediated VEGF production and tumour angiogenesis via PI3K/AKT signalling. J Pathol. 2011;224:344–54.

    Article  CAS  PubMed  Google Scholar 

  82. Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012;40:e112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Popnikolov NK, Dalwadi BH, Thomas JD, Johannes GJ, Imagawa WT. Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma. Tumour Biol. 2012;33:2237–43.

    Article  CAS  PubMed  Google Scholar 

  84. Proctor JR, Meyer IM. COFOLD: an RNA secondary structure prediction method that takes co-transcriptional folding into account. Nucleic Acids Res. 2013;41:e102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qin C, Huang RY, Wang ZX. Potential role of miR-100 in cancer diagnosis, prognosis, and therapy. Tumour Biol. 2015;36:1403–9.

    Article  CAS  PubMed  Google Scholar 

  86. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature. 2011;477:549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rhodes DR, Ateeq B, Cao Q, Tomlins SA, Mehra R, et al. AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc Natl Acad Sci U S A. 2009;106:10284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Richard DE, Vouret-Craviari V, Pouyssegur J. Angiogenesis and G-protein-coupled receptors: signals that bridge the gap. Oncogene. 2001;20:1556–62.

    Article  CAS  PubMed  Google Scholar 

  89. Rodriguez S, Huynh-Do U. The role of PTEN in tumor angiogenesis. J Oncol. 2012;2012:141236.

    Article  PubMed  Google Scholar 

  90. Roehr B. Fomivirsen approved for CMV retinitis. J Int Assoc Physicians AIDS Care. 1998;4:14–6.

    CAS  PubMed  Google Scholar 

  91. Rosenbaum DM, Rasmussen SG, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol. 2007;62:179–213.

    Article  PubMed  Google Scholar 

  93. Rupertus K, Sinistra J, Scheuer C, Nickels RM, Schilling MK, et al. Interaction of the chemokines I-TAC (CXCL11) and SDF-1 (CXCL12) in the regulation of tumor angiogenesis of colorectal cancer. Clin Exp Metastasis. 2014;31:447–59.

    Article  CAS  PubMed  Google Scholar 

  94. Sardh E, Harper P, Balwani M, Stein P, Rees D, et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med. 2019;380:549–58.

    Article  PubMed  Google Scholar 

  95. Sarramegna V, Talmont F, Demange P, Milon A. Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci. 2003;60:1529–46.

    Article  CAS  PubMed  Google Scholar 

  96. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439:283–9.

    Article  CAS  PubMed  Google Scholar 

  97. Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 2004;14:1741–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shukla AK, Xiao K, Lefkowitz RJ. Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci. 2011;36:457–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Siekmann AF, Covassin L, Lawson ND. Modulation of VEGF signalling output by the Notch pathway. BioEssays. 2008;30:303–13.

    Article  CAS  PubMed  Google Scholar 

  101. Song Y, Wu J, Oyesanya RA, Lee Z, Mukherjee A, Fang X. Sp-1 and c-Myc mediate lysophosphatidic acid-induced expression of vascular endothelial growth factor in ovarian cancer cells via a hypoxia-inducible factor-1-independent mechanism. Clin Cancer Res. 2009;15:492–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Strange PG. Signaling mechanisms of GPCR ligands. Curr Opin Drug Discov Devel. 2008;11:196–202.

    CAS  PubMed  Google Scholar 

  103. Sun X, Cheng G, Hao M, Zheng J, Zhou X, et al. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010;29:709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tachezy M, Zander H, Gebauer F, von Loga K, Pantel K, et al. CXCR7 expression in esophageal cancer. J Transl Med. 2013;11:238.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tahiri A, Leivonen SK, Luders T, Steinfeld I, Ragle Aure M, et al. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. Carcinogenesis. 2014;35:76–85.

    Article  CAS  PubMed  Google Scholar 

  106. Takuwa Y, Du W, Qi X, Okamoto Y, Takuwa N, Yoshioka K. Roles of sphingosine-1-phosphate signaling in angiogenesis. World J Biol Chem. 2010;1:298–306.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Takuwa Y, Takuwa N, Sugimoto N. The Edg family G protein-coupled receptors for lysophospholipids: their signaling properties and biological activities. J Biochem. 2002;131:767–71.

    Article  CAS  PubMed  Google Scholar 

  108. Thurston G, Noguera-Troise I, Yancopoulos GD. The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer. 2007;7:327–31.

    Article  CAS  PubMed  Google Scholar 

  109. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 1997;22:267–72.

    Article  CAS  PubMed  Google Scholar 

  110. Wacker D, Stevens RC, Roth BL. How ligands illuminate GPCR molecular pharmacology. Cell. 2017;170:414–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang J, Shiozawa Y, Wang J, Wang Y, Jung Y, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2008;283:4283–94.

    Article  CAS  PubMed  Google Scholar 

  112. Wang Y, Cho SG, Wu X, Siwko S, Liu M. G-protein coupled receptor 124 (GPR124) in endothelial cells regulates vascular endothelial growth factor (VEGF)-induced tumor angiogenesis. Curr Mol Med. 2014;14:543–54.

    Article  PubMed  Google Scholar 

  113. Wang Z. Transactivation of epidermal growth factor receptor by G protein-coupled receptors: recent progress, challenges and future research. Int J Mol Sci. 2016;17(1):95.

    Article  PubMed Central  Google Scholar 

  114. Xia H, Qi Y, Ng SS, Chen X, Chen S, et al. MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochem Biophys Res Commun. 2009;380:205–10.

    Article  CAS  PubMed  Google Scholar 

  115. Xia J, Wang J, Chen N, Dai Y, Hong Y, et al. Expressions of CXCR7/ligands may be involved in oral carcinogenesis. J Mol Histol. 2011;42:175–80.

    Article  CAS  PubMed  Google Scholar 

  116. Xia L, Zhang D, Du R, Pan Y, Zhao L, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer. 2008;123:372–9.

    Article  CAS  PubMed  Google Scholar 

  117. Xie Y, Song J, Zong Q, Wang A, Yang Y, et al. Decreased expression of MIR-134 and its clinical significance in human colorectal cancer. Hepatogastroenterology. 2015;62:615–9.

    PubMed  Google Scholar 

  118. Xu Y, Fang XJ, Casey G, Mills GB. Lysophospholipids activate ovarian and breast cancer cells. Biochem J. 1995;309(Pt 3):933–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xue LJ, Mao XB, Ren LL, Chu XY. Inhibition of CXCL12/CXCR4 axis as a potential targeted therapy of advanced gastric carcinoma. Cancer Med. 2017;6:1424–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yanagida K, Ishii S. Non-Edg family LPA receptors: the cutting edge of LPA research. J Biochem. 2011;150:223–32.

    Article  CAS  PubMed  Google Scholar 

  121. Yang S, Zhang L, Purohit V, Shukla SK, Chen X, et al. Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3. Oncotarget. 2015;6:36019–31.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yin W, Li Z, Jin M, Yin YL, de Waal PW, et al. A complex structure of arrestin-2 bound to a G protein-coupled receptor. Cell Res. 2019;29:971–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Young D, Waitches G, Birchmeier C, Fasano O, Wigler M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell. 1986;45:711–9.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang C, Wang C, Chen X, Yang C, Li K, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem. 2010;56:1871–9.

    Article  CAS  PubMed  Google Scholar 

  125. Zhang SL, Liu L. microRNA-148a inhibits hepatocellular carcinoma cell invasion by targeting sphingosine-1-phosphate receptor 1. Exp Ther Med. 2015;9:579–84.

    Article  CAS  PubMed  Google Scholar 

  126. Zheng M, Jiang YP, Chen W, Li KD, Liu X, et al. Snail and Slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma. Oncotarget. 2015;6:6797–810.

    Article  PubMed  Google Scholar 

  127. Zhou SM, Zhang F, Chen XB, Jun CM, Jing X, et al. miR-100 suppresses the proliferation and tumor growth of esophageal squamous cancer cells via targeting CXCR7. Oncol Rep. 2016;35:3453–9.

    Article  CAS  PubMed  Google Scholar 

  128. Zhou XE, Melcher K, Xu HE. Understanding the GPCR biased signaling through G protein and arrestin complex structures. Curr Opin Struct Biol. 2017;45:150–9.

    Article  CAS  PubMed  Google Scholar 

  129. Zhou Y, Nathans J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell. 2014;31:248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zuckerman V, Sokolov E, Swet JH, Ahrens WA, Showlater V, et al. Expression and function of lysophosphatidic acid receptors (LPARs) 1 and 3 in human hepatic cancer progenitor cells. Oncotarget. 2016;7:2951–67.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and technology (DST)-SERB grant (File Number: SRG/2020/002215) awarded to KP and Seed Grant, Adamas University awarded to AB and SH (Ref No. AU/REG/2019-20/12/008).

Author information

Authors and Affiliations

Authors

Contributions

SM: Processed the experimental data, and performed the analysis under guidance of AB. DC: Performed the Literature survey. AB: Involved in planning, processed the experimental data performed the analysis. JP: Conceived of the presented idea, performed the Literature survey,and processed the experimental data, involved in planning. Drafted the manuscript and designed the figures. SH: Conceived of the presented idea, performed the Literature survey, processed the experimental data, involved in planning, drafted the manuscript and designed the figures, supervised this work. KP: Conceived of the presented idea, performed the Literature survey, processed the experimental data, involved in planning, drafted the manuscript and designed the figures, supervised this work.

Corresponding authors

Correspondence to Srijan Haldar or Kuntal Pal.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Somnath Paul; Reviewers: Kasturi Pal, Anisuzzaman Anisuzzaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Chakrabarty, D., Bhattacharya, A. et al. miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in cancer. Nucleus 64, 303–315 (2021). https://doi.org/10.1007/s13237-021-00365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-021-00365-0

Keywords

Navigation