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Abstract
We analyze asymptotic convergence properties of Newton’s method for a class of evolutive
MeanFieldGames systemswith non-separableHamiltonian arising inmeanfield typemodels
with congestion. We prove the well posedness of the Mean Field Game system with non-
separableHamiltonian andof the linear systemgiving theNewton iterations. Then, by forward
induction and assuming that the initial guess is sufficiently close to the solution of problem,
we show a quadratic rate of convergence for the approximation of the Mean Field Game
system by Newton’s method. We also consider the case of a nonlocal coupling, but with
separable Hamiltonian, and we show a similar rate of convergence.

Keywords Mean field games · Non-separable Hamiltonian · Newton method · Congestion
model · Numerical methods

Mathematics Subject Classification 49N70 · 91A13 · 35Q80 · 65M12

1 Introduction

Mean Field Games (MFG in short) theory, introduced in [25, 27], arises in the study of
differential games with an infinite number of rational agents. The corresponding literature is
now vast and concerns both theoretical and applicative aspects, see [4, 17, 30] and references
therein. In this regard, a significant part of it is dedicated to the study of numericalmethods and
algorithms for the computation of the solution to the MFG model, both in the formulation
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as a PDEs system and as an optimal control problem of a PDE. Such approaches, just to
mention a few, include finite differences, semi-Lagrangian methods and Fourier expansions
with regard to the approximation methods (see [1, 2, 6, 7, 11, 13, 14, 28, 29, 31, 33, 34]).
Many of these methods exploit the variational structure of the problem, concerns the case in
which the coupling term involving the distribution of the population is separated from the
Hamiltonian, while relatively few works have been dedicated to the so-called non-separable
case

⎧
⎪⎨

⎪⎩

(i) − ∂t u − �u + H(x,m, Du) = f (m) in Q,

(i i) ∂tm − �m − div
(
mHp(x,m, Du)

) = 0 in Q,

m(x, 0) = m0(x), u(x, T ) = uT (x) in T
d .

(1.1)

(Td is the unit torus and Q = T
d×(0, T )).Moreover, the non-separable case is very important

in applications to model congestion effects, i.e., situations in which the cost of displacement
of the agents increases in those regions where the density is large. MFGs models including
congestion were introduced in [30] and a typical Hamiltonian in such cases is

H(x,m, p) = h(x)|p|2
(1 + m)α

, α > 0.

Global in time weak solution to Eq. (1.1) has been considered in [5, 23], short time existence
and uniqueness of regular solution in [8, 19] and the stationary case in [22]. In general, MFGs
with non-separableHamiltoniandonot have avariational structure and this causes a restriction
on the choice of numerical methods. Moreover and in general, implicit schemes are preferred
as they enhance the stability and efficiency compared to explicit schemes. To design implicit
finite difference schemes, iterative methods are needed to reduce the problem to a sequence
of linear systems. Iterative methods employed in solving MFGs include Newton’s method
[6, 7, 9, 28], fixed point iteration, fictitious play, policy iteration [15, 29], smoothed policy
iteration [34], etc. In particular, numerical solution ofMFGswith non-separable Hamiltonian
have been discussed in, e.g., [6, 7, 23, 28, 29].

In this paper, we consider Newton’s method from a continuous standpoint, viewing it
as a linear system of partial differential equations (PDEs) which approximate the nonlinear
problem (1.1). Newton’smethod (also known as theNewtonKantorovichmethod) is effective
for convex optimization problems ( [10]) or for solving nonlinear functional equations in
Banach spaces, cf. [18]. The novelty and main contributions of this work are theoretical.
We rigorously establish a quadratic rate of convergence of the method in a neighborhood of
the solution of Eq. (1.1). In the study of Newton’s method to Eq. (1.1), a critical point is in
establishing thewell posedness of the linearizedMFG system. To address this, we broaden the
theoretical framework developed in [12, 16] for analyzing master equations. This extension
is applicable to MFGs with non-separable Hamiltonians, subject to certain Hessian-type
monotonicity conditions. Recently, the convergence analysis of Newton’s method has been
considered in [9] for stationary MFGs with separable Hamiltonian.

The Newton method for system Eq. (1.1) reads as follows. Writing the MFG system as
an operator equation F(u,m) = 0 and denoting by LF (ǔ,m̌) the linearized F at (ǔ, m̌) and
by LF−1

(ǔ,m̌)
the inverse of LF (ǔ,m̌), then we get

(un,mn) = (un−1,mn−1) − LF−1
(un−1,mn−1)

· F(un−1,mn−1),

or equivalently

LF (un−1,mn−1) · (
un − un−1,mn − mn−1) = −F(un−1,mn−1). (1.2)
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The previous identity in PDE form reads as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) − ∂t (u
n − un−1) − �(un − un−1) + Hp(x,m

n−1, Dun−1)D(un − un−1)

+ Hm(x,mn−1, Dun−1)(mn − mn−1) − f ′(mn−1)(mn − mn−1)

= ∂t u
n−1 + �un−1 − H(x,mn−1, Dun−1) + f (mn−1) in Q,

(i i) ∂t (m
n − mn−1) − �(mn − mn−1) − div

(
(mn − mn−1)Hp(x,m

n−1, Dun−1)
)

− div
(
mn−1Hpm(x,mn−1, Dun−1)(mn − mn−1)

)

− div
(
mn−1Hpp(x,m

n−1, Dun−1)(Dun − Dun−1)
)

= − ∂tm
n−1 + �mn−1 + div

(
mn−1Hp(x,m

n−1, Dun−1)
)

in Q,

mn(x, 0) = m0(x), un(x, T ) = uT (x) in T
d ,

(1.3)

and, after simplification, we get the coupled linear system in the unknown (un,mn)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) − ∂t u
n − �un + Hp(x,m

n−1, Dun−1)D(un − un−1)

+ Hm(x,mn−1, Dun−1)(mn − mn−1)

= − H(x,mn−1, Dun−1) + f (mn−1) + f ′(mn−1)(mn − mn−1) in Q,

(i i) ∂tm
n − �mn − div

(
mnHp(x,m

n−1, Dun−1)
)

= div
(
mn−1Hpp(x,m

n−1, Dun−1)(Dun − Dun−1)
)

+ div
(
mn−1Hpm(x,mn−1, Dun−1)(mn − mn−1)

)
in Q,

mn(x, 0) = m0(x), un(x, T ) = uT (x) in T
d .

(1.4)

Assuming that the Hamiltonian is regular and satisfies a classical monotonicity condition
(see [5, 30]), we obtain existence and uniqueness of a classical solution (u,m) to Eq. (1.1),
see Proposition 2.4. Then, we prove the well posedness of Eq. (1.4) at each iteration and
the quadratic rate of convergence of the Newton iteration to the solution of the MFG system
when the initial guess (u0,m0) is sufficiently close to (u,m). We remark that, even though
the algorithm is presented for evolutiveMFGs, the ideas extend naturally to stationaryMFGs
as well.

This paper primarily focuses on analyzing the convergence of the Newton method for
the MFG system at the level of PDEs. In the MFG literature, this iterative method has been
applied to solve the nonlinear finite dimensional system which results via a finite differences
approximation of Eq. (1.1), see [4, 7]. The algorithm is usually coupled with a continua-
tion method (typically with respect to the viscosity parameter). Indeed, it is important to
have a good initial guess of the solution and, for that, it is possible to take advantage of the
continuation method by choosing the initial guess as the solution obtained with the previ-
ous value of the parameter (see [28]). Alternatively, the Newton method may be selectively
employed to tackle the Hamilton-Jacobi equation at each iteration while using a fixed point
iterations for the MFG system (as in, e.g., [23, 31]). Another approach involves employing a
nonlinear discretized system, as presented in [1, 2], followed by the application of automatic
differentiation for Newton’s iteration. Within this context, a significant challenge involves
establishing a priori estimates for the finite difference scheme, ensuring the stability of the
region of attraction of the method with respect to the discretization parameters. Our conver-
gence result can be interpreted as an intermediate step in the proof of the convergence of
the Newton method for finite dimensional approximation to the MFG system. However, it
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is important to note that the convergence analysis presented in this work does not readily
extend to the discretized system, and addressing this is left for our future works.

The paper is organized as follows. In Sect. 2, we introduce some notations and preliminary
results. In Sect. 3, we discuss the convergence of the Newton method for a non-separable
Hamiltonian and local coupling, while in Sect. 4 the case of a separable Hamiltonian and
nonlocal coupling. Finally, the Appendix A is devoted to the proof of some basic results
necessary for the rest of the paper.

2 Preliminaries

In this section, we introduce the assumptions on the Hamiltonian, prove the well posedness of
(1.1) and some preliminary results necessary for the estimate of the rate in the next section.
Throughout the paper, we work in the d−dimensional torus T

d (i.e., periodic boundary
conditions). We consider the set P(Td) of Borel probability measures on T

d is endowed
with the Monge Kantorovich (Wasserstein) distance: for m,m′ ∈ P(Td), d1(m,m′) =
supφ

∫

Td φ(x)d(m−m′)(x)where the supremum is takenover all Lipschitzmapsφ : Td → R

with a Lipschitz constant bounded by 1. In particular, we have that d1(m,m′) ≤ ‖m −
m′‖C0(Td ) if m,m′ ∈ P(Td) ∩ C0(Td). Given a map f : T

d × P(Td) → R
d , we will

use the notation δ f
δm for the derivative of f w.r.t m, as introduced in [16, Section 2.2]. δ f

δm :
T
d × P(Td) × T

d → R is a continuous map such that

f [m′](x) − f [m](x) =
∫ 1

0

∫

Td

δ f

δm
[(1 − s)m + sm′](x)(y)d(m′ − m)(y)ds.

The above relation defined themap δ f
δm only up to a constant.We always use the normalization

∫

Td

δ f

δm
[m](x)(y)dm(y) = 0.

Higher-order derivatives are defined similarly.
The set C1,0(Q) with the norm

‖u‖C1,0(Q) = ‖u‖C0(Q) + ‖Du‖C0(Q;Rd )

is the space of continuous functions on Q with continuous derivatives in the x−variable, up
to the parabolic boundary. We also recall the definition of parabolic Hölder spaces on the
torus (we refer to [26] for a more comprehensive discussion). For 0 < α < 1, we denote

[u]
Cα, α

2 (Q)
:= sup

(x1,t1),(x2,t2)∈Q
|u(x1, t1) − u(x2, t2)|

(d(x1, x2)2 + |t1 − t2|) α
2
, (2.1)

where d(x, y) stands for the geodesic distance from x to y in Td . The parabolic Hölder space
Cα, α

2 (Q) is the space of functions u ∈ L∞(Q) for which [u]
Cα, α

2 (Q)
< ∞. It is endowed

with the norm:

‖u‖Cα, α
2 (Q)

:= ‖u‖C0(Q) + [u]
Cα, α

2 (Q)
.

The space C1+α, 1+α
2 (Q) and C2+α,1+α/2(Q) are endowed with the norms

‖u‖
C1+α, 1+α

2 (Q)
: = ‖u‖C0(Q) +

d∑

i=1

‖∂xi u‖
Cα, α

2 (Q)
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+ sup
(x1,t1),(x2,t2)∈Q

|u(x1, t1) − u(x2, t2)|
|t1 − t2| 1+α

2

, (2.2)

‖u‖C2+α,1+α/2(Q) := ‖u‖C0(Q) +
d∑

i=1

‖ ∂u

∂xi
‖
C1+α, 1+α

2 (Q)
+ ‖∂u

∂t
‖Cα,α/2(Q).

(2.3)

We now introduce some useful anisotropic Sobolev spaces to handle time-dependent prob-
lems. First, given a Banach space X , L p(0, T ; X) denotes the usual vector-valued Lebesgue
space for p ∈ [1,∞]. For any r ≥ 1, we denote by W 2,1

r (Q) the space of functions u such
that ∂δ

t D
σ
x u ∈ Lr (Q) for all multi-indices σ and δ such that |σ | + 2δ ≤ 2, endowed with the

norm

‖u‖W 2,1
r (Q)

=
( ∫

Q

∑

|σ |+2δ≤2

|∂δ
t D

σ
x u|r dxdt

) 1
r
.

We recall that, by classical results in interpolation theory, the sharp space of initial (or

terminal) trace of W 2,1
r (Q) is given by the fractional Sobolev class W

2− 2
r

r (Td). We define
W 1,0

r (Q) as the space of functions on Q such that the norm

‖u‖W 1,0
r (Q)

:= ‖u‖Lr (Q) +
d∑

i=1

‖ ∂u

∂xi
‖Lr (Q)

is finite and we denote with H1
r (Q) the space of functions u ∈ W 1,0

r (Q) with ∂t u ∈
(W 1,0

r ′ (Q))′, equipped with the natural norm

‖u‖H1
r (Q) := ‖u‖W 1,0

r (Q)
+ ‖∂t u‖

(W 1,0
s′ (Q))′ .

From [32, Theorem A.3 (iii)] and [21, Proposition 2.1 (iii)], for r > d + 2 the spaceH1
r (Q)

is continuously embedded in Cα/2,α(Q), for some α ∈ (0, 1).
We consider the following set of assumptions for the non-separable case with local cou-

pling, while specific assumptions in the case of a nonlocal coupling will be discussed in
Sect. 4. The notation | · | both refers to the modulus of a vector and to the norm of a matrix
in the appropriate space.

(A1) m0 ∈ P(Td) ∩ C2+α(Td) and m0(x) ≥ ϑ > 0, uT ∈ C2+α(Td).
(A2) H ∈ C4(Td × R

+ × R
d) and for all x ∈ T

d , m ∈ R
+, p ∈ R

d and some C̄ > 0:

|Hpx (x,m, p)| ≤ C̄(|p| + 1), |Hxx (x,m, p)| + |Hxxm(x,m, p)| ≤ C̄(|p|2 + 1),

|Hmp(x,m, p)| ≤ C̄ |p|, |Hmm(x,m, p)| ≤ C̄ |p|2,
|Hpp(x,m, p)| + |Hppm(x,m, p)| ≤ C̄,

|Hppp(x,m, p)| + |Hpppm(x,m, p)| ≤ C̄ .

(2.4)

⎛

⎝
−Hm(x,m, p)

m

2
Hpm(x,m, p)T

m

2
Hpm(x,m, p) mHpp(x,m, p)

⎞

⎠ > 0, ∀m > 0.

(2.5)

(A3) f (·), f ′(·) and f ′′(·) are uniformly bounded mappings from R
+ to R. Moreover,

f ′(·) ≥ 0.
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Some remarks about these assumptions are in order.

Remark 2.1 Equation (2.5), first proposed by P. L. Lions in [30] and then exploited in [5, 6], is
a uniqueness condition for the MFG systems with non-separable Hamiltonian. In particular,
it implies that H is convex with respect to p and nonincreasing with respect to m and, when
H has a separate form H = H(x, p) − f (m), it reduces to Hpp > 0 and f

′
> 0. Besides

for uniqueness, we use this condition to prove the estimate in Lemma 2.6, which is crucial
for the rate of convergence.

Remark 2.2 A typical example of Hamiltonian which satisfies (A2) is

H(x,m, p) = h(x)|p|2
(1 + m)α

, (2.6)

where 0 < α ≤ 2, h(x) ∈ C2(Td) and h(x) > 0 for all x ∈ T
d . Existence and uniqueness

of a weak solutions to MFGs with such Hamiltonians, under some additional assumptions,
can be obtained from results in [5, 24]. In Proposition 2.4, under the stronger assumptions
(A1)–(A3), we prove existence and uniqueness of a classical solution to Eq. (1.1).

Remark 2.3 An example of f which satisfies (A3) is the sigmoid function

f (m) = 1

1 + e−m
.

In fact, the uniformly boundedness of f is included in (A3) only to obtain a relatively
simple proof of existence of a solution in the non-separable case, see Proposition 2.4, but
one can obtain small time existence and uniqueness results with less restrictions on H and
f , see [19]. If we assume a priori that Eq. (1.1) has a classical solution, independently of
assuming (A1)–(A3), the key assumption for proving the convergence of Newton method is
the uniform boundedness of f ′′(·), see also Remark 3.3. In this case, we can also include
examples such as

• f (m) = m.
• f (m) = (1 + m)α , 0 < α < 2.

Therefore, in some practical applications, we can apply theNewtonmethodwithout requiring
all the assumptions in this paper to be satisfied. In any case, restrictions on the uniform
boundedness of Hppp(x,m, p) and f ′′(m) are very typical for Newton iterations, c.f. S.
Boyd [10, Section 9.5.3]. Some possible generalizations to the coupling f (m) = mα , α ≥ 2,
will be discussed later in the paper, see Remark 3.4. It is also possible to include, under
appropriate assumptions, a dependence of f on t , but for simplicity we omit it.

We will consider classical solutions to the MFG system. Recall that a classical solution
of (1.1) is a couple (u,m) such that u and m belong to C2,α(Q) for some α ∈ (0, 1) and
satisfies the problem in pointwise sense. For the proof of the next result, see the Appendix.

Proposition 2.4 Under assumptions (A1), (A2) and (A3), the system (1.1) has a unique
classical solution.

The next two lemmas are devoted to prove an estimate for a perturbation of the linearized
MFG system. This result is the main ingredient in our analysis of the convergence of the
Newton algorithm.
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Lemma 2.5 Assume (A1), (A2) and (A3) and let (u,m) be the solution of Eq. (1.1). Then, the
unique weak solution (v, ρ) of the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) − ∂tv − �v + Hp(x,m, Du)Dv + Hm(x,m, Du)ρ = f ′(m)ρ in Q,

(i i) ∂tρ − �ρ − div
(
ρHp(x,m, Du)

) − div
(
mρHpm(x,m, Du)

)

= div
(
mHpp(x,m, Du)Dv

)
in Q,

ρ(x, 0) = 0, v(x, T ) = 0 in T
d

(2.7)

is the trivial solution (v, ρ) = (0, 0).

Proof Multiply by ρ on both sides of (i), integrate on Q and exploit (ii) to get
∫

Q
f ′(m)|ρ|2dxdt

=
∫

Q
Hm(x,m, Du)|ρ|2dxdt +

∫

Q
vdiv

(
mHpp(x,m, Du)Dv

)
dxdt

+
∫

Q
vdiv

(
mρHpm(x,m, Du)ρ

)
dxdt

=
∫

Q
Hm(x,m, Du)|ρ|2dxdt −

∫

Q
mHpp(x,m, Du)Dv · Dvdxdt

−
∫

Q
mHpm(x,m, Du)ρDv.

It follows from (A1) and parabolic maximum principle (c.f. [34]) that m > 0. Hence with
(A3), we obtain f ′(m) ≥ 0 and

∫

Q
f ′(m)|ρ|2dxdt ≥ 0.

Hence, from Eq. (2.5), we get that

(
ρ Dv

)
( −Hm(x,m, Du) mHpm(x,m, Du)/2
mHpm(x,m, Du)/2 mHpp(x,m, Du)

) (
ρ

Dv

)

= 0,

otherwise we obtain a contradiction. Therefore (ρ, Dv) ≡ (0, 0). From v(x, T ) = 0, it also
follows that v = 0. �

The estimate in the next lemma is similar to [12, Lemma 5.2], with the key differences that
we consider non-separable Hamiltonian and local couplings.

Lemma 2.6 Assume (A1), (A2) and (A3) and let (u,m) be the classical solution of Eq. (1.1).
Given a ∈ C0(Q) and a vector field b ∈ C0(Q;Rd), let (v, ρ) be a classical solution of the
perturbed linear system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) − ∂tv − �v + Hp(x,m, Du)Dv + Hm(x,m, Du)ρ = f ′(m)ρ + a(x, t) in Q,

(i i) ∂tρ − �ρ − div
(
ρHp(x,m, Du)

) − div
(
mρHpm(x,m, Du)

)

= div
(
mHpp(x,m, Du)Dv

) + div(b(x, t)) in Q,

ρ(x, 0) = 0, v(x, T ) = 0 in T
d .

(2.8)
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Then, there exists a constant C > 0, depending only on the coefficients of the problem, such
that

‖v‖C1,0 + ‖ρ‖C0 ≤ C
(
‖a‖C0 + ‖b‖C0

)
. (2.9)

Proof First observe that since the system (2.8) is linear, then (v, ρ)/(‖a‖C0 + ‖b‖C0) is the
solution of the problem corresponding to the perturbation (a, b)/(‖a‖C0 + ‖b‖C0). Hence,
(2.9) is equivalent to show that, for ‖a‖C0 + ‖b‖C0 ≤ 1, then ‖v‖C1,0 + ‖ρ‖C0 ≤ C for
some C > 0. We argue by contradiction and suppose that the estimate is not true. Hence, we
assume that there exists ak , bk and (vk, ρk) with

‖ak‖C0 + ‖bk‖C0 ≤ 1, θk := ‖vk‖C1,0 + ‖ρk‖C0 ≥ k. (2.10)

Set

ṽk := vk

θk
, ρ̃k := ρk

θk
.

By definition, ‖ṽk‖C1,0 + ‖ρ̃k‖C0 = 1 for all k and the pair (ṽk, ρ̃k) solves:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) − ∂t ṽ
k − �ṽk + Hp(x,m, Du)Dṽk + Hm(x,m, Du)ρ̃k = f ′(m)ρ̃k + ak(x, t)

θk
in Q,

(i i) ∂t ρ̃
k − �ρ̃k − div

(
ρ̃k Hp(x,m, Du)

) − div
(
mρ̃k Hpm(x,m, Du)

)

= div
(
mHpp(x,m, Du)Dṽk

) + div
(bk(x, t)

θk

)
in Q,

ρ(x, 0) = 0, v(x, T ) = 0 in T
d .

(2.11)

Observe that ṽk is a solution of a linear parabolic equation with bounded coefficients. Hence,
ṽk and Dṽk are bounded in Cα,α/2 for someα ∈ (0, 1). Similarly, ρ̃k , solution of a linear equa-
tion in divergence form, is bounded in Cβ,β/2 for some β ∈ (0, 1). By taking subsequences
we obtain a cluster point (v, ρ) of (ṽk, ρ̃k) such that

‖v‖C1,0 + ‖ρ‖C0 = lim
k→+∞(‖ṽk‖C1,0 + ‖ρ̃k‖C0) = 1. (2.12)

By Eq. (2.10), we know ak(x, t)/θk and div(bk(x, t)/θk) actually vanish for k → ∞ and
therefore (v, ρ) is a solution of (2.7). Hence by Lemma 2.5, we have (v, ρ) = (0, 0), a
contradiction to Eq. (2.12). �

3 The NewtonMethod for theMean Field Games Systemwith
Non-separable Hamiltonian and Local Coupling

In this section, we give an estimate for the rate of convergence of the Newton method to the
MFG system in the case of a non-separable Hamiltonian and local coupling. We first prove
the well posedness of the system (1.4) for each n.

Proposition 3.1 For any n ∈ N, there exists a unique solution (un,mn) ∈ C2+α,1+α/2(Q) ×
C2+α,1+α/2(Q) to the system (1.4).

Proof Assume to have proved the statement at step n − 1. Hence, given (un−1,mn−1) ∈
C2+α,1+α/2(Q) × C2+α,1+α/2(Q), Eq. (1.4) is a strongly coupled linear system for (un,mn).
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We first prove existence of a weak solution (un,mn) ∈ W 2,1
r (Q) × H1

r (Q), r > d +
2 by means of a fixed point argument. Define X := {� ∈ C0(Q) : � ≥ 0, �(x, 0) =
m0(x),

∫

Td �(x, t)dx = 1} and consider the compact mapping �̂ = T(�) : C0(Q) →
Cα,α/2(Q) defined by solving in sequence
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) − ∂t û − �û + Hp(x,m
n−1, Dun−1)Dû + Hm (x,mn−1, Dun−1)(� − mn−1)

= Hp(x,m
n−1, Dun−1)Dun−1 − H(x,mn−1, Dun−1) + f (mn−1) + f ′(mn−1)(� − mn−1) in Q,

û(x, T ) = uT (x) in T
d ,

(i i) ∂t �̂ − ��̂ − div
(
�Hp(x, Dun−1)

) − div
(
mn−1Hpm (x,mn−1, Dun−1)�

)

= div
(
mn−1Hpp(x,m

n−1, Dun−1)(Dû − Dun−1)
) − div

(
(mn−1)2Hpm (x,mn−1, Dun−1)

)
in Q,

�̂(x, 0) = m0(x) in T
d .

(3.1)

We rewrite equation (i) in Eq. (3.1) as

−∂t û − �û + Hp(x,m
n−1, Dun−1)Dû = f

with

f := Hp(x,m
n−1, Dun−1)Dun−1 − H(x,mn−1, Dun−1) + f (mn−1)

+ f ′(mn−1)(� − mn−1) − Hm(x,mn−1, Dun−1)(� − mn−1) ∈ L∞(Q).
(3.2)

By Proposition A.2, we obtain the existence of û ∈ W 2,1
r (Q) solving (i) in (3.1). By Sobolev

embedding Dû ∈ Cα,α/2(Q;Rd). Next we rewrite equation (ii) in Eq. (3.1) as

∂t �̂ − ��̂ − div(F) = 0

with

F := �Hp(x, Dun−1) + mn−1Hpm(x,mn−1, Dun−1)

+ mn−1Hpp(x,m
n−1, Dun−1)(Dû − Dun−1) − (mn−1)2Hpm(x,mn−1, Dun−1).

From Dû ∈ Cα,α/2(Q;Rd) and the assumptions on (un−1,mn−1), F ∈ L∞(Q;Rd) and,
by Proposition A.3, we obtain there exists a solution �̂ ∈ H1

r (Q) to (i) in (3.1), thus �̂ ∈
Cα,α/2(Q).

Set δ�̂ = �̂1 − �̂2, δû = û1 − û2. Then
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) − ∂t δû − �δû + Hp(x,m
n−1, Dun−1)Dδû + mn−1Hpm(x,mn−1, Dun−1)δ�

= f ′(mn−1)δ� in Q,

(i i) ∂t δ�̂ − �δ�̂ − div
(
δ�Hp(x,m

n−1, Dun−1)
) − div

(
mn−1Hpm(x,mn−1, Dun−1)δ�

)

= div
(
mn−1Hpp(x,m

n−1, Dun−1)Dδû
)

in Q,

δ�̂(x, 0) = 0, δû(x, T ) = 0 in T
d .

(3.3)

We obtain by Proposition A.2 that

‖δû‖W 2,1
r (Q)

≤ C‖δ�‖L∞(Q), ‖Dδû‖L∞(Q;Rd ) ≤ C‖δ�‖L∞(Q),

then by Proposition A.3

‖δ�̂‖Cα,α/2 ≤ C(‖δ�‖L∞(Q) + ‖Dδû‖L∞(Q;Rd )) ≤ C‖δ�‖L∞(Q).
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It then follows that T is a continuous map. We conclude, by Schauder fixed point theorem,
the existence of a solution to (1.4). It follows that (û, �̂) ∈ W 2,1

r (Q) × Cα,α/2(Q) is a fixed
point defined by Eq. (3.1), with f replaced by

f̂ := Hp(x,m
n−1, Dun−1)Dun−1 − H(x,mn−1, Dun−1) + f (mn−1)

+ f ′(mn−1)(�̂ − mn−1) − Hm(x,mn−1, Dun−1)(�̂ − mn−1).

Since f̂ ∈ Cα,α/2(Q), fromPropositionA.1 it follows that û ∈ C2+α,1+α/2(Q). By assumption
(A2), û ∈ C2+α,1+α/2(Q) and (un−1,mn−1) ∈ C2+α,1+α/2(Q) × C2+α,1+α/2(Q), we obtain
div(F) ∈ Cα,α/2(Q). Using Proposition A.1 again, we obtain ρ̂ ∈ C2+α,1+α/2(Q). We now
prove uniqueness. Assume that there are two solutions (û1, ρ̂1) and (û2, ρ̂2) to Eq. (3.1) and
set δû = û1 − û2, δ�̂ = �̂1 − �̂2. Clearly (δû, δρ̂) solves
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) − ∂t δû − �δû + Hp(x,m
n−1, Dun−1)Dδû + mn−1Hm(x,mn−1, Dun−1)δρ̂

= f ′(mn−1)δρ̂ in Q,

(i i) ∂t δ�̂ − �δ�̂ − div
(
δρ̂Hp(x,m

n−1, Dun−1)
) − div

(
mn−1Hpm(x,mn−1, Dun−1)δρ̂

)

= div
(
mn−1Hpp(x,m

n−1, Dun−1)Dδû
)

in Q,

δ�̂(x, 0) = 0, δû(x, T ) = 0 in T
d .

(3.4)

Testing the equation (i) with ρ̂, equation (ii) with û and subtracting the resulting identities,
an easy computation gives
∫

Q
f ′(mn−1)|δ�̂|2dxdt

=
∫

Q
Hm(x,mn−1, Dun−1)|δ�̂|2dxdt −

∫

Q
mn−1Hpp(x,m

n−1, Dun−1)Dδû · Dδûdxdt

−
∫

Q
mn−1Hpm(x,mn−1, Dun−1)δ�̂Dδû ≤ 0.

By (A2), Eq. (2.5), and (A3) we get (δ�̂, Dδû) = (0, 0). From δû(x, T ) = 0, it also follows
that δû = 0. �

Proposition 3.1 is concerned with the invertibility of the linear operator LF at each step n, as
defined in Eq. (1.2). Hence, it is not surprising that one needs some Hessian-type condition.
The constant C in Proposition 3.1 may depend on the previous step (un−1,mn−1). In the
discretized setting, invertibility of a linearized system similar to Eq. (3.4) has been discussed
in [3, Section 4.1] for solving a mean field planning problem with separable Hamiltonian.
We believe the ideas in [3, Section 4.1] can be extended also to MFGs with non-separable
Hamiltonian. However, solvability at each iteration is not enough for the convergence of the
Newton method since it is necessary to prove some a priori estimates independent of iteration
index n. In the next result, we obtain the local quadratic rate of convergence result.

Theorem 3.2 Let (u,m)be the solutionof system (1.1)and (un,mn) is the sequencegenerated
by Newton’s algorithm (1.4). Set vn = un − u, ρn = mn −m. There exists a constant η > 0
such that if ‖v0‖C1,0 + ‖ρ0‖C0 ≤ η then ‖vn‖C1,0 + ‖ρn‖C0 → 0 with a quadratic rate of
convergence.

Proof We emphasize that from here and for the rest of the proof, C denotes some generic
constant which may increase from line to line. This constant may depend on data of the
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problem and the solution (u,m), but it is always independent of n. We observe that vn solves
the equation

− ∂tv
n − �vn + Hp(x,m, Du) · Dvn

= f (mn−1) − f (m) + f ′(mn−1)(mn − mn−1) + H(x,m, Du) − H(x,mn−1, Dun−1)

− Hp(x,m
n−1, Dun−1)D(un − un−1) − Hm(x,mn−1, Dun−1)(mn − mn−1),

which can be rewritten as

−∂tv
n − �vn + Hp(x,m, Du) · Dvn + Hm(x,m, Du)ρn = f ′(m)ρn + a,

where

a := Hp(x,m, Du)(Dun − Du) + Hm(x,m, Du)(mn − m) + H(x,m, Du)

− H(x,mn−1, Dun−1)

− Hp(x,m
n−1, Dun−1)D(un − un−1) − Hm(x,mn−1, Dun−1)(mn − mn−1)

− f ′(m)(mn − m) + f (mn−1) − f (m) + f ′(mn−1)(mn − mn−1).

(3.5)

In order to apply Lemma 2.6, we need to estimate ‖a‖C0 . We rewrite the terms involving H
in Eq. (3.5) as

Hp(x,m, Du)(Dun − Du) + Hm(x,m, Du)(mn − m) + H(x,m, Du)

− H(x,mn−1, Dun−1)

− Hp(x,m
n−1, Dun−1)D(un − un−1) − Hm(x,mn−1, Dun−1)(mn − mn−1)

= H(x,m, Du) − H(x,mn−1, Dun−1) − Hp(x,m
n−1, Dun−1)D(u − un−1)

− Hm(x,mn−1, Dun−1)(m − mn−1) +
(
Hp(x,m, Du)

− Hp(x,m
n−1, Dun−1)

)
(Dun − Du)

+
(
Hm(x,m, Du) − Hm(x,mn−1, Dun−1)

)
(mn − m).

(3.6)

We now estimate the terms on the right hand side of the previous identity. It is clear from
(A2) that for any τ ∈ (0, 1),

sup
τ

∣
∣Hmm(x,m + τ(mn−1 − m), Du + τ(Dun−1 − Du))

∣
∣

≤ C |Du + τ(Dun−1 − Du)|2 ≤ C
(|Du| + |Dun−1 − Du|)2

≤ C
(
2|Du|2 + 2|Dun−1 − Du|2).

(3.7)

Likewise,

sup
τ

∣
∣Hmp(x,m + τ(mn−1 − m), Du + τ(Dun−1 − Du))

∣
∣ ≤ C |Du + τ(Dun−1 − Du)|
≤ C

(|Du| + |Dun−1 − Du|),
(3.8)

and

sup
τ

|Hpp(x,m + τ(mn−1 − m), Du + τ(Dun−1 − Du))| ≤ C̄ .
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Moreover, by the mean value theorem, we have

H(x,m, Du) − H(x,mn−1, Dun−1) − Hp(x,m
n−1, Dun−1)D(u − un−1)

− Hm(x,mn−1, Dun−1)(m − mn−1)

=
∫ 1

0

(
Hp

(
x,mn−1 + τ(m − mn−1), Dun−1 + τ(Du − Dun−1)

)

− Hp(x,m
n−1, Dun−1)

)
(Du − Dun−1)dτ

+
∫ 1

0

(
Hm

(
x,mn−1 + τ(m − mn−1), Dun−1 + τ(Du − Dun−1)

)

− Hp(x,m
n−1, Dun−1)

)
(m − mn−1)dτ.

(3.9)

By using mean value theorem again, we estimate the integrand in Eq. (3.9) by

Hp
(
x,mn−1 + τ(m − mn−1), Dun−1 + τ(Du − Dun−1)

)

− Hp(x,m
n−1, Dun−1)

=
∫ 1

0

(
Hpp

(
x,mn−1 + (1 − τ ′)τ (m − mn−1), Dun−1

+ (1 − τ ′)τ (Du − Dun−1)
)
τ(Dun−1 − Du)dτ ′

+
∫ 1

0

(
Hpm

(
x,mn−1 + (1 − τ ′)τ (m − mn−1), Dun−1 + (1 − τ ′)τ (Du − Dun−1)

)

− Hp(x,m
n−1, Dun−1)

)
τ(mn−1 − m)dτ

and therefore, as 0 < (1 − τ ′)τ < 1, 0 < τ < 1, we get

sup
τ

|Hp
(
x,mn−1 + τ(m − mn−1), Dun−1 + τ(Du − Dun−1)

) − Hp(x,m
n−1, Dun−1)|

≤ sup
τ

|Hpp
(
x,mn−1 + τ(m − mn−1), Dun−1 + τ(Du − Dun−1)||Du − Dun−1|

+ sup
τ

|Hpm
(
x,mn−1 + τ(m − mn−1), Dun−1 + τ(Du − Dun−1)||m − mn−1|

≤ C̄ |Du − Dun−1| + C(|Du| + |Du − Dun−1|)|m − mn−1|,

∣
∣
∣
∣

∫ 1

0

(
Hp

(
x,mn−1 + τ(m − mn−1), Dun−1 + τ(Du − Dun−1)

)

−Hp(x,m
n−1, Dun−1)

)
(Du − Dun−1)dτ

∣
∣
∣

≤
(∫ 1

0
τdτ

) (
C̄ |Du − Dun−1|+C(|Du| + |Du−Dun−1|)|m−mn−1|

)
|Du − Dun−1|.

In a similar way, we obtain
∣
∣
∣
∣

∫ 1

0

(
Hm

(
x,mn−1 + τ(m − mn−1), Dun−1 + τ(Du − Dun−1)

)

−Hm(x,mn−1, Dun−1)
)
(m − mn−1)dτ

∣
∣
∣
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≤ (

∫ 1

0
τdτ)

(
C(1 + |Du − Dun−1|2)|m − mn−1| + C(1 + |Du − Dun−1|)|Du

−Dun−1||
)
|m − mn−1|.

Therefore, replacing in Eq. (3.9), we have
∣
∣H(x,m, Du) − H(x,mn−1, Dun−1) − Hp(x,m

n−1, Dun−1)D(u − un−1)

−Hm(x,mn−1, Dun−1)(m − mn−1)
∣
∣

≤ C(|Dvn−1|2) + C(1 + |Dvn−1|)|Dvn−1||ρn−1| + C(1 + |Dvn−1|2)|ρn−1|2

≤ C
(
|Dvn−1|2 + |ρn−1|2 + |Dvn−1|4 + |ρn−1|4

)
.

(3.10)

For the other terms in Eq. (3.6), we first observe that by (A2) and Eq. (3.8) we get
∣
∣Hp(x,m, Du) − Hp(x,m

n−1, Dun−1)
∣
∣ ≤ sup

τ
|Hpm(x,m + τ(mn−1 − m), Du

+ τ(Dun−1 − Du))||ρn−1|
+ sup

τ
|Hpp(x,m + τ(mn−1 − m), Du + τ(Dun−1 − Du))||vn−1|

≤ C(|Du| + |Dvn−1|)|ρn−1| + C |Dvn−1|,
and, by Eqs. (3.7) and (3.8),

∣
∣Hm(x,m, Du) − Hm(x,mn−1, Dun−1)

∣
∣ ≤ sup

τ
|Hpm

(
x,m + τ(mn−1 − m), Du

+ τ(Dun−1 − Du)
)||vn−1|

+ sup
τ

|Hmm
(
x,m + τ(mn−1 − m), Du + τ(Dun−1 − Du)

)||ρn−1|
≤ C(|Du| + |Dvn−1|)|Dvn−1| + C(|Du|2 + |Dvn−1|2)|ρn−1|.

We then obtain
∣
∣
∣

(
Hp(x,m, Du) − Hp(x,m

n−1, Dun−1)
)
(Dun − Du) +

(
Hm(x,m, Du)

−Hm(x,mn−1, Dun−1)
)
(mn − m)

∣
∣
∣

≤ |Hp(x,m, Du) − Hp(x,m
n−1, Dun−1)||Dun − Du|

+ |Hm(x,m, Du) − Hm(x,mn−1, Dun−1)||mn − m|
≤

(
C(1 + |Dvn−1|)|ρn−1|

+ C |Dvn−1|
)
|Dvn | +

(
C(1 + |Dvn−1|2)|ρn−1|| + C(1 + |Dvn−1|)|Dvn−1|

)
|ρn |

≤ C
(
|Dvn−1| + |Dvn−1|2 + |Dvn−1||ρn−1| + |Dvn−1|2|ρn−1| + |ρn−1|

)
(|Dvn | + |ρn |)

≤ C
(
|Dvn−1| + |Dvn−1|2 + |Dvn−1|4 + |ρn−1| + |ρn−1|2

)(|Dvn | + |ρn |).

(3.11)

To estimate the terms containing f in Eq. (3.5), we observe that

− f ′(m)(mn − m) + f (mn−1) − f (m) + f ′(mn−1)(mn − mn−1)

= f (mn−1) − f (m) − f ′(m)(mn−1 − m) + ( f ′(mn−1) − f ′(m))(mn − mn−1).
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Exploiting that f ′(·) is globally Lipschitz, see (A3), we have

| f (mn−1) − f (m) − f ′(m)(mn−1 − m)| ≤ C |mn−1 − m|2, (3.12)

and
∣
∣
∣

(
f ′(mn−1) − f ′(m)

)
(mn − mn−1)

∣
∣
∣

≤ | f ′(mn−1) − f ′(m)||mn − m| + | f ′(mn−1) − f ′(m)||m − mn−1|
≤ C

(
|ρn ||ρn−1| + |ρn−1|2

)
.

(3.13)

Finally, by Eqs. (3.10), (3.11), (3.12) and (3.13), we get

‖a‖C0 ≤ C
(
‖vn−1‖2C1,0 + ‖ρn−1‖2C0 + ‖vn−1‖4C1,0 + ‖ρn−1‖4C0

+ (‖vn−1‖C1,0 + ‖vn−1‖2C1,0 + ‖vn−1‖4C1,0 + ‖ρn−1‖C0

+ ‖ρn−1‖2C0

)(‖vn‖C1,0 + ‖ρn‖C0
))

.

(3.14)

Now we consider the equation satisfied by ρn . We have

∂tρ
n − �ρn − div(ρnHp(x,m, Du)) − div(mρnHpm(x,m, Du))

= div
(
mHpp(x,m, Du)Dvn

)
div(b),

with

b := − ρnHp(x,m, Du) − mρnHpm(x,m, Du)

− mHpp(x,m, Du)Dvn

+ mn−1Hp(x,m
n−1, Dun−1) − mHp(x,m, Du)

+ (mn − mn−1)Hp(x,m
n−1, Dun−1)

+ mn−1Hpm(x,mn−1, Dun−1)(mn − mn−1)

+ mn−1Hpp(x,m
n−1, Dun−1)(Dun − Dun−1).

To estimate ‖b‖C0 , we start observing that

b = mn−1Hp(x,m
n−1, Dun−1)

− mHp(x,m, Du) − mn−1Hpp(x,m
n−1, Dun−1)(Dun−1 − Du)

− (mn−1 − m)Hp(x,m
n−1, Dun−1) − mn−1Hpm(x,mn−1, Dun−1)(mn−1 − m)

+ ρn
(
Hp(x,m

n−1, Dun−1) − Hp(x,m, Du)
)

+ ρn
(
mn−1Hpm(x,mn−1, Dun−1) − mHpm(x,m, Du)

)

+ Dvn
(
mn−1Hpp(x,m

n−1, Dun−1) − mHpp(x,m, Du)
)
.

(3.15)

Denoting �(x,m, p) = mHp(x,m, p), then by elementary calculation

∂p�(x,m, p) = mHpp(x,m, p), ∂pp�(x,m, p) = mHppp(x,m, p),

∂m�(x,m, p) = Hp(x,m, p) + mHpm(x,m, p), ∂mm�(x,m, p)

= 2Hpm(x,m, p) + mHmmp(x,m, p).
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It is clear from (A2) that

sup
τ

∣
∣
(
m + τ(mn−1 − m)

)
Hppp(x,m + τ(mn−1 − m), Du

+τ(Dun−1 − Du))
∣
∣ ≤ C

(|m| + |ρn−1|).
From Eq. (3.8) and

sup
τ

∣
∣Hmmp(x,m + τ(mn−1 − m), Du

+τ(Dun−1 − Du))
∣
∣ ≤ C

(|Du| + |Dun−1 − Du|), (3.16)

we obtain

sup
τ

∣
∣2Hpm(x,m + τ(mn−1 − m), Du + τ(Dun−1 − Du))

∣
∣

+ sup
τ

∣
∣
(
m + τ(mn−1 − m)

)
Hpmm(x,m + τ(mn−1 − m), Du + τ(Dun−1 − Du))

∣
∣

≤ C
(
1 + |Dvn−1| + |ρn−1| + |Dvn−1||ρn−1|).

In addition, we have

sup
τ

∣
∣
∣Hpp

(
x,m + τ(mn−1 − m), Du + τ(Dun−1 − Du)

)

+ (
m + τ(mn−1 − m)

)
Hppm

(
x,m + τ(mn−1 − m), Du + τ(Dun−1 − Du)

)∣∣
∣

≤ C(1 + |ρn−1|).
Collecting these estimates, we obtain
∣
∣
∣mn−1Hp(x,m

n−1, Dun−1) − mHp(x,m, Du) − mn−1Hpp(x,m
n−1, Dun−1)(Dun−1 − Du)

− (mn−1 − m)Hp(x,m
n−1, Dun−1) − mn−1Hpm(x,mn−1, Dun−1)(mn−1 − m)

∣
∣
∣

≤ C
(
1 + |ρn−1|)|Dvn−1|2 + C

(
1 + |vn−1| + |ρn−1|

+ |Dvn−1||ρn−1|)|ρn−1|2 + C(1 + |ρn−1|)|Dvn−1||ρn−1|
≤ C

(|Dvn−1|2 + |ρn−1|2 + |ρn−1|3
+ |Dvn−1||ρn−1| + |Dvn−1|2|ρn−1| + |Dvn−1||ρn−1|2 + |Dvn−1||ρn−1|3)

≤ C
(|Dvn−1|2 + |ρn−1|2 + |Dvn−1|4 + |ρn−1|4 + |ρn−1|3 + |ρn−1|6).

(3.17)

Moreover, from Eq. (2.4), it follows that
∣
∣Hp(x,m

n−1, Dun−1) − Hp(x,m, Du)
∣
∣ ≤ C

(|Dvn−1|
+(1 + |Dvn−1|)|ρn−1|) , (3.18)

and, from Eqs. (2.4) and (3.16),
∣
∣mn−1Hpm(x,mn−1, Dun−1) − mHpm(x,m, Du)

∣
∣

≤ C(1 + |ρn−1|)|Dvn−1| + C
(
1 + |vn−1| + (1 + |vn−1|)(1 + |ρn−1|)

)
|ρn−1|

≤ C
(|Dvn−1| + |ρn−1| + |Dvn−1|2 + |ρn−1|2 + |ρn−1|4),

(3.19)

∣
∣mn−1Hpp(x,m

n−1, Dun−1) − mHpp(x,m, Du)
∣
∣ ≤ C(1 + |ρn−1|)|Dvn−1|

+ C |ρn−1| + C(1 + |ρn−1|)|ρn−1|. (3.20)
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Replacing estimates Eqs. (3.17)–(3.20) in Eq. (3.15), we get

‖b‖C0 ≤ C
(
‖vn−1‖2C1,0 + ‖vn−1‖4C1,0 + ‖ρn−1‖2C0 + ‖ρn−1‖3C0 + ‖ρn−1‖4C0 + ‖ρn−1‖6C0

+ (‖vn−1‖C1,0 + ‖ρn−1‖C0 + ‖vn−1‖2C1,0

+ ‖ρn−1‖2C0 + ‖ρn−1‖4C0

)(‖vn‖C1,0 + ‖ρn‖C0
))

.

(3.21)

Finally, from Lemma 2.6 and estimates Eqs. (3.14) and (3.21), we have

‖vn‖C1,0 + ‖ρn‖C0 ≤ C(‖a‖C0 + ‖b‖C0 )

≤ K
[
‖vn−1‖2C1,0 + ‖vn−1‖4C1,0 + ‖ρn−1‖2C0 + ‖ρn−1‖3C0 + ‖ρn−1‖4C0 + ‖ρn−1‖6C0

+ (‖vn−1‖C1,0 + ‖ρn−1‖C0 + ‖vn−1‖2C1,0 + ‖vn−1‖4C1,0 + ‖ρn−1‖2C0

+ ‖ρn−1‖4C0

)(‖vn‖C1,0 + ‖ρn‖C0
)]

,

(3.22)

where K is a constant which depends only on the data of the problem. Without loss of
generality, we assume that K > 1. Assume that initial guess (u0,m0) of the Newton method
satisfies

‖v0‖C1,0 + ‖ρ0‖C0 ≤ 1

12K
,

where K as in Eq. (3.22). Since K > 1, we have

‖v0‖4C1,0 ≤ ‖v0‖C1,0 , ‖ρ0‖6C0 ≤ ‖ρ0‖C0 ,

‖v0‖C1,0 + ‖ρ0‖C0 + ‖v0‖2C1,0 + ‖v0‖4C1,0 + ‖ρ0‖2C0 + ‖ρ0‖4C0 ≤ 3(‖v0‖C1,0

+‖ρ0‖C0) ≤ 1

4K
,

‖v0‖2C1,0 + ‖ρ0‖2C0 ≤ 2(‖v0‖C1,0 + ‖ρ0‖C0)2 ≤ 1

72K
,

‖v0‖2C1,0 + ‖v0‖4C1,0 + ‖ρ0‖2C0 + ‖ρ0‖3C0 + ‖ρ0‖4C0 + ‖ρ0‖6C0 ≤ 4(‖v0‖2C1,0

+‖ρ0‖2C0) ≤ 1

18K
. (3.23)

Replacing the previous estimates in Eq. (3.22) for n = 1, we get

‖v1‖C1,0 + ‖ρ1‖C0 ≤ 1

18K
+ 1

4
(‖v1‖C1,0 + ‖ρ1‖C0).

Hence, by absorbing the term 1
4 (‖v1‖C1,0 + ‖ρ1‖C0) on the right hand side, we get

‖v1‖C1,0 + ‖ρ1‖C0 ≤ 2

27K
<

1

12K
. (3.24)

Arguing iteratively, we have that, if ‖v0‖C1,0 + ‖ρ0‖C0 ≤ 1
12K , then

‖vn‖C1,0 + ‖ρn‖C0 ≤ 1

12K
, for anyn ∈ N.

Repeating an estimate similar to Eq. (3.23) for n − 1, we have

‖vn−1‖C1,0 + ‖ρn−1‖C0 + ‖vn−1‖2C1,0 + ‖vn−1‖4C1,0 + ‖ρn−1‖2C0 + ‖ρn−1‖4C0 ≤ 1

4K
.
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From Eq. (3.22), we obtain

‖vn‖C1,0 + ‖ρn‖C0 ≤ K
[
8
(‖vn−1‖C1,0 + ‖ρn−1‖C0

)2 + 1

4K

(‖vn‖C1,0 + ‖ρn‖C0
)]

,

hence we get the estimate

‖vn‖C1,0 + ‖ρn‖C0 ≤ 32K

3

(‖vn−1‖C1,0 + ‖ρn−1‖C0
)2

.

Multiplying both the side of the previous estimate for 32K
3 , we have

32K

3

(‖vn‖C1,0 + ‖ρn‖C0
) ≤

(32K

3

(‖vn−1‖C1,0 + ‖ρn−1‖C0
))2

.

Hence, as we have assumed
(‖v0‖C1,0 + ‖ρ0‖C0

) ≤ 1
12K , we obtain by induction that

‖vn‖C1,0 + ‖ρn‖C0 ≤ 3

32K

(8

9

)2n
.

�

Remark 3.3 We can extend our main convergence rate result to MFG system with
superquadratic Hamiltonians, if we assume the system admits a classical solution. In this
case, for the rate of convergence in Theorem 3.2, it is sufficient to assume that H is smooth,
without the uniform bounds on the derivatives in Eq. (2.4). Indeed, a careful inspection of
the previous proof shows that the constant K in Eq. (3.22) depends on (u,m), the data of the
problem and, in particular, on the derivative of the Hamiltonian computed in Dvn−1, ρn−1.
If we assume that ‖v0‖C1,0 + ‖ρ0‖C0 < 1/12K , then, arguing as in the proof, we have that
‖vn‖C1,0 + ‖ρn‖C0 < 1/12K for any n ∈ N. Hence, the constant K in Eq. (3.22), which
depends on ‖vn−1‖C1,0 + ‖ρn−1‖C0 , does not change with the iterations. The restriction of
quadratic H in Theorem 3.2 is made to prove existence and uniqueness of a classical solution
to the MFG system.

Remark 3.4 Assumption (A3) requires the uniform Lipschitz continuity of f ′ and therefore
it excludes some interesting cases such as f (m) = mα , α �= 1. We show that we can at least
consider the case α ≥ 2. The main difference from using (A3) is in the estimate Eq. (3.13).
We replace the argument in the proof with

∣
∣ f ′(mn−1) − f ′(m)

∣
∣ ≤ (α − 1)(|mα−2| + |(mn−1)α−2|)|ρn−1|
≤ (α − 1)(2|mα−2| + |(ρn−1)α−2|)|ρn−1|

and therefore
∣
∣
∣

(
f ′(mn−1) − f ′(m)

)
(mn − mn−1)

∣
∣
∣

≤ (α − 1)(2|mα−2| + |(ρn−1)α−2|)|ρn−1|2 + (α − 1)(2|mα−2| + |(ρn−1)α−1|)|ρn−1||ρn |.
Then one can proceed similarly as in Theorem 3.2. So far we do not have a corresponding
result for 0 < α < 2, α �= 1. For global (in time) solutions to MFGs with separable
Hamiltonians and f (m) = mα , α > 0 we refer to the paper of Cirant and Goffi [20, Theorem
1.4].
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4 The NewtonMethod for theMean Field Games Systemwith
Saparable Hamiltonian and Nonlocal Coupling

In this section, we consider theMFG systemwithHamiltonian independent ofm and nonlocal
coupling

⎧
⎪⎨

⎪⎩

(i) − ∂t u − �u + H(x, Du) = f [m](x) in Q,

(i i) ∂tm − �m − div
(
mHp(x, Du)

) = 0 in Q,

m(x, 0) = m0(x), u(x, T ) = g[m(T )](x) in T
d .

(4.1)

We assume that m0 is as in (A1), the Hamiltonian H satisfies (A2), while the assumption on
uT in (A1) and (A3) are replaced by

(A3’) f , g : Td × P(Td) → R. f , g and their space derivatives ∂xi f , ∂xi g, ∂xi x j g are all

globally Lipschitz continuous. The measure derivatives δ f
δm and δg

δm : Td × P(Td) ×
T
d → R are also Lipschitz continuous. For any m,m′ ∈ P(Td),

∫

Td

(
f [m](x) − f [m′](x)) d(m − m′)(x) ≥ 0,

∫

Td

(
g[m](x) − g[m′](x)) d(m − m′)(x) ≥ 0.

(4.2)

Remark 4.1 Equation (4.2) implies that δ f
δm and δg

δm satisfy the following monotonicity
property (explained for f ):

∫

Td

∫

Td

δ f

δm
[m](x)(y)ρ(x)ρ(y)dxdy ≥ 0 (4.3)

for any centered measure ρ, c.f. [16, p. 36].

Remark 4.2 From assumption (A3’), there exists a constant C > 0,

sup
x∈Td

∣
∣ f [m′](x) − f [m](x)∣∣ + sup

x,y∈Td

∣
∣ δ f

δm
[m′](x)(y) − δ f

δm
[m](x)(y)∣∣ ≤ Cd1(m,m′),

(4.4)

sup
x∈Td

∣
∣ f [m′](x) − f [m](x) −

∫

Td

δ f

δm
[m](x)(y)d(m′ − m)(y)

∣
∣ ≤ Cd21(m,m′),

(4.5)

sup
x∈Td

∣
∣g[m′](x) − g[m](x) −

∫

Td

δg

δm
[m](x)(y)d(m′ − m)(y)

∣
∣ ≤ Cd21(m,m′).

(4.6)

Remark 4.3 For the simplicity, we will be using the shortened notation, c.f. [16, p. 60]
∫

Td

δ f

δm
[m](x)(y)dm′(y) = δ f

δm
[m](x)m′

for the duality bracket between δ f
δm [m] and m′ at x .

The next two lemmas are proved in Cardaliaguet Briani [12, Lemma 5.2]. A similar result
with different functional spaces is discussed in Cardaliaguet, Delarue, Lasry and Lions [16,
Lemma 3.3.1].
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Lemma 4.4 Under assumptions (A1), (A2) and (A3’), let (u,m) be a classical solution to the
system (4.1). Then, the unique weak solution of the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) − ∂tv − �v + Hp(x, Du)Dv = δ f

δm
[m(t)]ρ in Q,

(i i) ∂tρ − �ρ − div
(
ρHp(x, Du)

) = div
(
mHpp(x, Du)Dv

)
in Q,

ρ(x, 0) = 0, v(x, T ) = δg

δm
[m(T )]ρ(T ) in T

d

(4.7)

is the trivial solution (v, ρ) = (0, 0).

Lemma 4.5 Given a ∈ C0(Q), b ∈ C0(Q;Rd). Let (u,m) be a classical solution to the
system (4.1) and (v, ρ) be a classical solution of the perturbed linear system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i) − ∂tv − �v + Hp(x, Du)Dv = δ f

δm
[m(t)](x)ρ + a(x, t) in Q,

(i i) ∂tρ − �ρ − div
(
ρHp(x, Du)

) = div
(
mHpp(x, Du)Dv

) + div(b(x, t)) in Q,

ρ(x, 0) = 0, v(x, T ) = δg

δm
[m(T )](x)ρ(T ) + c(x) in T

d .

(4.8)

Then, there exists a constant C > 0 depending on the coefficients of the problem, such that

‖v‖C1,0 + ‖ρ‖C0 ≤ C
(‖a‖C0 + ‖b‖C0 + ‖c‖C0

)
.

Existence and uniqueness result for a classical solution to Eq. (4.1) under rather general
assumptions which, in particular, include (A1), (A2) and (A3’), can be found in [27]. The
Newton system for solving Eq. (4.1), analogous to Eq. (1.4), can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(i) − ∂t u
n − �un + Hp(x, Dun−1)D(un − un−1)

= − H(x, Dun−1) + f [mn−1(t)](x) + δ f

δm
[mn−1(t)](x)(mn − mn−1) in Q,

(i i) ∂tm
n − �mn − div

(
mnHp(x, Dun−1)

) = div
(
mn−1Hpp(x, Dun−1)(Dun − Dun−1)

)
in Q,

mn(x, 0) = m0(x), un(x, T ) = g[mn−1(T )] + δg

δm
[mn−1(T )](x)(mn(T ) − mn−1(T )

)
in T

d .

(4.9)

Existence and uniqueness of a classical solution to Eq. (4.9) can be proved as in
Proposition 3.1.

Theorem 4.6 Let (u,m)be the solutionof system (4.1)and (un,mn) is the sequencegenerated
by Newton’s algorithm (4.9). Set vn = un − u, ρn = mn −m. There exists a constant η > 0
such that if ‖v0‖C1,0 + ‖ρ0‖C0 ≤ η then ‖vn‖C1,0 + ‖ρn‖C0 → 0 with a quadratic rate of
convergence.

Proof We first observe that vn = un − u, ρn = mn − m satisfy

− ∂tv
n − �vn + Hp(x, Du) · Dvn = δ f

δm
[m](x)(ρn) + a,

∂tρ
n − �ρn − div(ρnHp(x, Du)) = div

(
mHpp(x, Du)Dvn

) + div(b),

ρn(x, 0) = 0, vn(x, T ) = δg

δm
[m(T )](x)(ρn) + c(x),
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where

a := Hp(x, Du)(Dun − Du) + H(x, Du) − H(x, Dun−1) − Hp(x, Dun−1)D(un − un−1)

− δ f

δm
[m](x)(mn − m) + f (mn−1) − f (m) + δ f

δm
[mn−1](x)(mn − mn−1),

(4.10)

b := − ρnHp(x, Du) − mHpp(x, Du)Dvn + mn−1Hp(x, Dun−1) − mHp(x, Du)

+ (mn − mn−1)Hp(x, Dun−1) + mn−1Hpp(x, Dun−1)(Dun − Dun−1),

c := g[mn−1(T )](x) − g[m(T )](x) − δg

δm
[m(T )](x)(ρn)

+ δg

δm
[mn−1(T )](x)(mn(T ) − mn−1(T )

)
.

We first consider the nonlocal coupling terms as they constitute the main differences with
respect to the Proof of Theorem 3.2. Rewrite the terms containing f in Eq. (4.10) as

− δ f

δm
[m](x)(mn − m) + f (mn−1) − f (m) + δ f

δm
[mn−1](x)(mn − mn−1)

= f (mn−1) − f (m) − δ f

δm
[mn−1](x)(ρn−1) +

( δ f

δm
[mn−1](x) − δ f

δm
[m](x)

)
(ρn).

By Lipschitz continuity of δ f
δm , i.e., Eqs. (4.4) and (4.5), we get

‖ − δ f

δm
[m](·)(mn − m) + f (mn−1) − f (m) + δ f

δm
[mn−1](·)(mn − mn−1)‖C0

≤ C(‖ρn−1‖2C0 + ‖ρn−1‖C0‖ρn‖C0).

Similarly, rewriting

c = g[mn−1(T )](x) − g[m(T )](x) − δg

δm
[mn−1(T )](x)(ρn−1(T ))

+
( δg

δm
[mn−1(T )](x) − δg

δm
[m(T )](x)

)
(ρn(T )),

we obtain

‖c‖C0 ≤ C
(‖ρn−1‖2C0 + ‖ρn−1‖C0‖ρn‖C0

)
.

By a straightforward adaptation of the Proof of Theorem 3.2, we estimate the other terms in
a and b. Indeed, we have

∣
∣Hp(x, Du)(Dun − Du) + H(x, Du) − H(x, Dun−1) − Hp(x, Dun−1)D(un − un−1)

∣
∣

≤ C(|Dvn−1|2 + |Dvn−1||Dvn |),
hence

‖a‖C0 ≤ C
(‖vn−1‖2C1,0 + ‖vn−1‖C1,0‖vn‖C1,0 + ‖ρn−1‖2C0 + ‖ρn−1‖C0‖ρn‖C0

)
.

Moreover, by

b := ρn(Hp(x, Du) − Hp(x, Dun−1)) + ρn−1Hpp(x, Du)Dvn

+ mn−1Hp(x, Dun−1) − mHp(x, Du)

− (mn−1 − m)Hp(x, Dun−1) − mn−1Hpp(x, Dun−1)(Dun−1 − Du),
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we obtain

‖b‖C0

≤ C
(‖vn−1‖C1,0‖ρn‖C0

+‖vn‖C1,0‖ρn−1‖C0 + ‖ρn−1‖2C0 + ‖vn−1‖C1,0‖ρn−1‖C0 + (1 + ‖ρn−1‖C0 )‖vn−1‖2C1,0

)
.

Collecting the estimate of a, b and c, by Lemma 4.5 we obtain

‖vn‖C1,0 + ‖ρn‖C0 ≤ C
(‖vn−1‖2C1,0 + ‖vn−1‖4C1,0 + ‖ρn−1‖2C0 + (‖vn−1‖C1,0

+‖ρn−1‖C0)(‖vn‖C1,0 + ‖ρn‖C0)
)
.

We omit the rest of the proof as it is very similar to Theorem 3.2. �

Remark 4.7 The monotonicity conditions Eq. (4.2) guarantee uniqueness of the solution to
the MFG system with nonlocal coupling. If we do not assume Eq. (4.2), the result and proof
methodology in this section can be adapted to prove local convergence to a stable solution
of a potential MFG. Recall that, for a potential MFG, a solution (u,m) is said to be stable if
the only solution to the linearized MFG system at (u,m) is the trivial one (see [12]). In other
words, instead of proving that (v, ρ) = 0 as in Lemma 4.4, we use it as part of the definition
of the stable solution. We plan to study this problem in the future.

Remark 4.8 In this paper, we separated the discussions on MFGs with local or nonlocal
couplings for simplicity. One can easily replace in Eq. (1.1) one or both of the terms f and
g by nonlocal couplings and obtain similar results as Proposition 2.4 and Theorem 3.2. One
can also consider the non-separable Hamiltonians with nonlocal congestions, e.g., replacing
m in H(x,m, p) by a convolution with some kernels, as in [6]. However, even though the
existence of solution to such type of MFGs has been demonstrated in [6], it is not clear how
one can apply the Hessian condition Eq. (2.5) to show the uniqueness of a global (in time)
classical solution and the stability property (Lemma 2.6) in the nonlocal congestion case. We
leave further developments in this direction for the future.
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A Appendix: Some Classical Parabolic Estimates Results

Consider the linear parabolic equation:
{ − ∂t u − �u + b(x, t) · ∇u + c(x, t)u = f (x, t) in Q,

u(x, T ) = uT (x) in T
d .

(A.1)

The following two results are very classical for equations on cylinders with boundary condi-
tions (see [26, Theorem 5.1, p. 320 ] and [26, Theorem 9.1 pp. 341–342]). A complete proof
of them in the flat torus case can be found in [19, Appendix pp. 17–18].

Proposition A.1 Let b ∈ Cα,α/2(Q;Rd), c and f belong to Cα,α/2(Q) and uT ∈ C2+α(Td).
Then, the problem (A.1) admits a unique solution u ∈ C2+α,1+α/2(Q) and it holds

‖u‖C2+α,1+α/2(Q) ≤ C
(‖ f ‖Cα,α/2(Q) + ‖uT ‖C2+α(Td )

)
,

where C depends on the Cα,α/2 norms of b, c and remains bounded for bounded values of T .

Proposition A.2 Let r > d + 2, b ∈ L∞(Q;Rd), c ∈ L∞(Q), f ∈ Lr (Q) and uT ∈
W

2− 2
r

r (Td). Then, the problem (A.1) admits a unique solution u ∈ W 1,2
r (Q) and it holds

‖u‖W 2,1
r (Q)

≤ C

(

‖ f ‖Lr (Q) + ‖uT ‖
W

2− 2
r

r (Td )

)

,

where C depends on the norms of b, c and remains bounded for bounded values of T .
Moreover, the following embedding holds:

‖u‖
C2− d+2

r ,1− d+2
2r (Q)

≤ C‖u‖W 2,1
r (Q)

. (A.2)

(see [26, Corollary pp. 342–343])

Next we introduce some results for the parabolic equations in divergence form, for the proof
we refer to [34, Proposition A.3]. We use the notation ι := {1, 2}.
Proposition A.3 Let r > d + 2, m0 ∈ W 1

r (Td), qι ∈ L∞(Q;Rd) and consider the parabolic
equation in divergence form

{
∂tmι − �mι − div(mιqι) = 0 in Q,

mι(0, x) = m0(x) in T
d .

(A.3)

Then, there exists a unique solution mι in H1
r (Q) to (A.3). Then, there exists a constant C

depending only on r , T , d, R, ‖m0‖W 1
r (Td ) and ‖qι‖L∞(Q;Rd ) such that

‖mι‖H1
r (Q) ≤ C .

Moreover, denote by δm = m1 − m2 and δq = q1 − q2. Then,

‖δm‖H1
r (Q) ≤ C‖δq‖L∞(Q;Rd )

with C as above.

We show the well posedness of the MFG system with non-separable Hamiltonian by
means of an argument similar to [5, Lemma 4.1].
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Proof of Proposition 2.4 Define X := {
m ∈ C0(Q) : m > 0,m(x, 0) = m0(x),

∫

Td m(x, t)
dx = 1

}
. Consider the compact mapping m̃ = T(m) : X → Cα,α/2(Q) ,

⎧
⎪⎨

⎪⎩

(i) − ∂t u − �u + H(x,m, Du) = f (m) in Q,

(i i) ∂t m̃ − �m̃ − div
(
m̃Hp(x,m, Du)

) = 0 in Q,

m̃(x, 0) = m0(x), u(x, T ) = uT (x) in T
d .

(A.4)

f (·) : X → R is uniformly bounded. By (A2), H(x,m, p) ≤ C̄(|p|2 + 1). It follows from
the standard result of quasilinear parabolic equation (see Theorem 6.3 in Chapter 5 of [26])
that Eq. (A.4) (i) has a unique solution u ∈ L∞(0, T ;W 1∞(Td)) and ‖u‖L∞(0,T ;W 1∞(Td ))

is bounded independently of m in X. From the boundedness of ‖Du‖L∞(Q) and (A2),
Hm(x,m, p) is bounded independently of m in X. Under the additional assumption that
f ′(m) is bounded independently of m in X, it is easy to see that the map m �→ u
from X to L∞(0, T ;W 1∞(Td)) is continuous. Equation (A.4) (ii) has a unique solution
m̃ ∈ X ∩ Cα,α/2(Q), which is bounded in Cα,α/2(Q) uniformly with respect to m in X,
see, e.g., [26], Chapter 3, Theorem 10.1. From Proposition A.3 and the continuous embed-
ding ofH1

r (Q) onto Cα,α/2(Q), the map Hp(x,m, Du) �→ m̃ is continuous from L∞(Q) to
Cα,α/2(Q). From (A2), Hp(x,m, Du) is continuous with respect to both m and Du, inde-
pendently of m in X. As we have shown, the map m �→ u from X to L∞(0, T ;W 1∞(Td)) is
continuous; hence, the map m �→ m̃ is continuous from X to X ∩ Cα,α/2(Q). We can obtain
by Schauder fixed point theorem that the map T has at least one fixed point. Regularity of
the solution follows from assumptions (A1), (A2), (A3) and previously cited results in [26].
Uniqueness follows from (A2) ((2.5) in particular) and (A3). We refer to [4, Ch.1, Theorem
13] for details. �
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