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Abstract
An important aspect of network dynamics that has been missing from our understanding of
network dynamics in various applied settings is the influence of strategic behavior in deter-
mining equilibrium network dynamics. Our main objective hear to say what we can regarding
the emergence of stable club networks—and therefore, stable coalition structures—based on
the stability properties of strategically determined equilibrium network formation dynam-
ics. Because club networks are layered networks, our work here can be thought of as a first
work on the strategic dynamics of layered networks. In addition to constructing a discounted
stochastic game model (i.e., a DSG model) of club network formation, (1) we show that our
DSG of network formation possesses a stationary Markov perfect equilibrium in players’
membership-action strategies; (2) we identify the assumptions on primitives which ensure
that the induced equilibrium Markov process of layered club network formation satisfies the
Tweedie Stability Conditions (Tweedie in Stoch Process Appl 92:345–354, 2001) and (3) we
show that, as a consequence, the equilibrium Markov network formation process generates
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a unique decomposition of the set of state-network pairs into a transient set together with
finitely many basins of attraction. Moreover, we show that if there is a basin containing a
vio set (a visited infinitely often set) of club networks sufficiently close together, then the
coalition structures across club networks in the vio set will be the same (i.e., closeness across
networks in a vio set leads to invariance in coalition structure across networks in a vio set).

Keywords Club networks · Stable coalition structures · Harris recurrent sets · Topological
Harris recurrent sets · Basins of attraction · Discounted stochastic games · Stationary
Markov perfect equilibria

JEL Classification C7

1 Introduction

A coalition is a group of players who, through their own actions, can realize some set of
outcomes for its own members [36]. Here, we will be interested in the equilibrium dynamics
governing the formation and evolution of coalitions as well as the strategic forces which
give rise to these dynamics. We will think of a coalition as a group of players belonging to
the same club, and we will represent the prevailing club membership structure as a labeled,
directed bipartite network. Because we will allow each player to be a member of multiple
clubs, each player can be a member of multiple coalitions (see [32]). 1 Each club network
consists of three primitives: a set of players, a set of clubs, and a set of arc labels. In our
network model, a player’s club membership is represented by a labeled directed arc from the
node representing the player to the node representing the club. The arc label, which must be
feasible for that player in that club, indicates the action chosen by the player to be taken in the
chosen club. Thus, a player establishes a directed connection by choosing a club and a feasible
club action. The set of all such player-specific directed club connections is the player’s club
network and together the union of these player club networks constitute the club network. At
each of infinitely many time points, players, in light of the prevailing state and club network,
are free to noncooperatively alter their club memberships as well as their corresponding
club action profiles in accordance with the rules of network formation. We will assume that
after players have altered their own club networks, each player receives a stage payoff, a
function of the prevailing state-network pair, then given the prevailing state and the new club
network chosen by the players, a new state is generated in accordance with the law of motion.
We will assume that players, in making their membership-action choices through discrete
time, seek to maximize the discounted sum of their expected future payoffs. In particular,
we will assume that players in forming their club networks, play a discounted stochastic
game of club network formation in which they seek to choose stationary Markov perfect
membership-action strategies that maximize the discounted sum of their expected payoffs.
Taken together, the players’ noncooperative network formation strategies (i.e., membership
and club specific action strategies) determine a network formation process. We say that
this process is an equilibrium network formation process if in the underlying discounted
stochastic game (DSG) of network formation players noncooperatively choose stationary
Markov perfect membership and club action strategies forming a Nash equilibrium.

1 The paper by [2], is closely related to our paper—but differs in two important respects: (i) in Arnold and
Wooders, players are allowed to join only one club, whereas here we allow players to have multiple club
memberships, and (ii) in Arnold and Wooders, players are myopic, whereas here players are farsighted in the
sense of discounted stochastic games.
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Our main contributions, in addition to constructing a DSG model of layered club network
formation, are (1) to show that our DSG model of network formation is approximable,
and that as a consequence, it possesses a stationary Markov perfect equilibrium in players’
membership-action strategies; (2) to identify the assumptions on primitives which ensure
that the induced equilibrium Markov state and club network formation process satisfies the
Tweedie Conditions [35] and (3) to show that as a consequence of satisfying the Tweedie
Conditions, the equilibrium Markov perfect network formation process generates a unique
decomposition of the set of state-network pairs into a transient set together with finitely many
basins of attraction. We then show that each basin, upon which resides a unique ergodic
probability measure, has the property that if the Markov state-network process enters the
basin, then the process will remain there for all future periods, visiting some unique, further
subset of state-network pairs infinitely often. From a macroscopic perspective, it is these
basin-specific club networks, visited infinitely often by the process (i.e., vio sets) that form
the set of viable candidates for stable equilibrium club network. We show that if there is a
basin having a vio set of states generating club networks each of whose induced coalition
structure is invariant across the networks generated by the vio states, then this vio set of
states generates club networks having a stable coalition structure.2 This is what we mean
by coalitional stability: persistent club network structures in which the underlying coalition
structure is invariant across club networks generated by the set of vio states. We show that
whether or not the vio states contained in a basin of attraction generate an invariant coalition
structure depends on the distance between the club networks generated by the vio states (i.e.,
it depends on the distance between the vio networks). In particular, we show that closeness
(across networks) leads to invariance in coalition structure across club networks. Thus, if each
of finitely many basins has network vio sets containing club networks that are sufficiently
close together (i.e., if networks are densely packed), then the equilibriumMarkov process of
club network formation will, in finite time with probability one, generate a stable coalition
structure. While the coalition structures generated by the vio states in each basin are the
same across the basin’s densely packed club networks, these signature coalition structures
can differ across basins. In the long run, whether or not the equilibrium Markov process
of network formation generates a stable coalition structure depends on whether or not each
basin’s network vio set is densely packed. If all basin-specific network vio sets are sufficiently
dense, then with probability 1 in finite time, the equilibrium network formation process will
arrive at a basin specific stable coalition structure. However, if some basins have network
vio sets in which the club networks are not sufficiently close, while other basins possess
densely packed network vio sets, then in equilibrium, there is a positive probability that a
stable coalition structure will never be reached. What we conclude here is that if a basin’s
vio set of networks is chainable, then a stable coalition structure will emerge.3 Thus, if club
network vio sets are chainable, then in finite time with probability 1, there will emerge from
the equilibrium process of club network formation, a basin specific stable coalition structure.

As a running example, we consider a DSG over time allocation networks (a class of
club networks sufficiently simple to allow us to illustrate the ideas and results we obtain for
our general DSG of network formation and equilibrium network dynamics). We show that
because players’ payoff functions are naturally affine over the convex, compact feasible set of
time allocation networks, players’ stationary Markov perfect equilibrium network formation

2 vio stands for “visited infinitely often.”
3 The idea of a chainable set is borrowed from continuum theory [25]. A set of networks is chainable if there
is a finite sequence of pairwise intersecting open balls of radius less than 1 forming an open ball path from
one network to any other network in the vio set.
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strategies are bang-bang. Thus, rather than diversifying their club time across several clubs,
each player in each state spends all club time in one and only one club. Moreover, we show
that all that is required for the equilibrium time allocation process induced by players’ bang-
bang time allocation strategies to satisfy the Tweedie conditions is for the state space to be
compact and the conditional densities over coming states to be continuous in the current state
and time allocation network for almost all coming states (i.e., except potential coming states
having probability zero of occurring).

2 Layered Club Networks

We begin with a formal definition of club networks and a discussion of their properties.
The discussion here is based, in part, on prior work by the second author with M. Wooders
(see [29–32, 36]).4 Multiple membership club networks, as defined in [32], are examples of
layered networks in which connections between layers is brought about by overlapping club
memberships. In a club network where each player is the member of one and only one club,
the induced club membership structure partitions the set of active players, making each club
layer isolated—having no connections, via overlapping memberships, to other layers in the
network.

In the club networkmodel,we construct here the feasible action sets available to the players
who are active in a particular club layer are subsets of a compact metric space of actions
specific to that club layer—and these club specific action spaces can differ across layers. In
[32], the underlying metric space of player actions—whose subsets form the various player
feasible sets—is the same across club layers. Here, the heterogeneity of player action sets
across club layers makes defining a metric to measure the distance between club networks a
much more delicate task—but we do accomplish this, thereby providing us with a compact
metric hyperspace of club networks in which to carry out our game theoretic analysis of the
emergence of equilibrium layered club network dynamics.

Finally, here unlike in [29–32], the game of network formation is dynamic with the equi-
librium network dynamics being determined by the law of motion and the stationary Markov
perfect equilibrium in behavioral network formation strategies which emerge from the game
of network formation.

We begin by defining connections, layers and networks.

2.1 Connections

[N-1] Assume the following:

(1) D is a finite set of n players equipped with the discrete metric ηD, having typical
element d.5

(2) C is a finite set of m clubs equipped with discrete metric ηC having typical element c.
(3) Ac is a compact metric space of arc types, equipped with metric ρc, having typical

element a.

4 It is important to note that in [29–32, 36], the network formation games being considered are not dynamic.
5 Under the discrete metric the distance between two nodes d and d ′ in D is given by

ηD(d, d ′) :=
{
1 if d �= d ′
0 if d = d ′.
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(4) 2Ac is the collection of all closed subsets of Ac (including the empty set).
(5) (d, c) −→ A(d, c) ∈ 2Ac is the feasible arc correspondence, with A(d, c) ⊂ Ac for

all c , with c-domain given by

D(A(·, c)) := {d ∈ D : A(d, c) �= ∅}.

specifying for each club, the set of playerswho can join club c by indicating a nonempty
feasible set of arcs club c will allow player d to use in connecting to club c.

A connection is an ordered pair, (a, (d, c)), consisting of an arc label, a, indicating player
d ′s action (arc) choice and a player-club pair, (d, c), indicating player d ′s club membership
choice c. The action choice made by a particular player d must be feasible for the club player
d has chosen, a requirement satisfied provided a ∈ A(d, c) ⊂ Ac.

We will refer to a player-club pair, (d, c), as a preconnection. A preconnection, (d, c),
acquires the status of a connection onlywhen player d has chosen a feasible arc and (a, (d, c))
becomes part of a network. For preconnection, (d, c), the set of all feasible connections is
given by

Kdc := A(d, c) × ({d} × {c}).

The collection, {Kdc : (d, c) ∈ D×C}, contains the basic building block of layered networks.
Let 2Kdc denote the collection of all closed subsets of Kdc (including the empty set), and let
Kdc ⊂ 2Kdc be the collection of subsets of Kdc of size at most 1.

[N-2] Assume the following:

(1) Each player, in considering whether or not to connect to a particular club either does
not connect or connects in one and only one way.

(2) Each player or group of players can move freely and unilaterally from one club to
another via feasible connections. Thus, a player can drop his membership in any given
club and, if allowed by the feasible arc correspondence, join any other club without
bargaining and without seeking the permission of any player or group of players.6

2.2 Layered Networks

If Gcd ∈ Kdc, then

Gdc =
⎧⎨
⎩

{(adc, (d, c))} ⊂ Kdc if d is a member of club c

∅ if d is not a member of club c.

The feasible set of club networks, K := (Kdc)dc, is given by an n × m array of feasible
player-club connections (see, 1), where Kc := (Kdc)d is the feasible set of all possible c-
layers (or club c layers), and where K

d := (Kdc)c is the feasible set of all possible d-layers

6 It is interesting to note that strategic network formation with club memberships being determined via
bargaining with or voting by the club’s existing membership can be treated via a discounted stochastic game,
but a game played over stationary semi-Markov behavioral strategies or a game in which the state space
consists of network-coalition pairs. Here, we will focus on stationary Markov behavioral strategies—leaving
for future research the semi-Markov case.
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(or player d layers). In array form, we have

K := (Kdc)dc

:=

⎛
⎜⎜⎜⎜⎜⎜⎝

K11 · · · K1c · · · K1m
...

...
...

Kd1 · · · Kdc · · · Kdm
...

...
...

Kn1 · · · Knc · · · Knm

⎞
⎟⎟⎟⎟⎟⎟⎠

n×m

:=

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · K
1 · · ·
...

· · · K
d · · ·
...

· · · K
n · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
rows represent feasible d-layers

:=

⎛
⎜⎜⎝

...
...

...

K1 Kc Km
...

...
...

⎞
⎟⎟⎠

︸ ︷︷ ︸
columns represent feasible c-layers

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Formally, we have the following definition of a feasible club network, G ∈ K := (Kdc)dc,
as an n × m array of feasible player-club connections.

Definition 1 (Feasible Club Networks, c-Layers, d-Layers, and Connection Arrays) A fea-
sible club network G ∈ K is an n × m array of feasible player-club connections given
by

G :=

⎛
⎜⎜⎜⎜⎜⎜⎝

G11 · · · G1c · · · G1m
...

...
...

Gd1 · · · Gdc · · · Gdm
...

...
...

Gn1 · · · Gnc · · · Gnm

⎞
⎟⎟⎟⎟⎟⎟⎠

n×m

:=

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · G1 · · ·
...

· · · Gd · · ·
...

· · · Gn · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
rows represent d-layers

:=

⎛
⎜⎜⎝

...
...

...

G1 Gc Gm
...

...
...

⎞
⎟⎟⎠

︸ ︷︷ ︸
columns represent c-layers

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where for each player-club pair, (d, c),

Gdc ∈ Kdc ⊂ 2Kdc := 2A(d,c)×({d}×{c})

is player d ′s part of c-layer, Gc ∈ Kc, given by the cth column in the club network, G,
above, and where Gdc ∈ Kdc if and only if

Gdc =
⎧⎨
⎩

{(adc, (d, c))} ⊂ Kdc if d is a member of club c

∅ if d is not a member of club c,

and where Gd ∈ K
d is player d ′s connection choice profile, given by the dth row in the club

network, G, above.
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If we agree to the notational convention that Gdc := adc then club networks in K =
(Kdc)dc can be given a reduced form array representation—as an array of arc types (without
loss of information)—as follows:

G :=

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 · · · a1c · · · a1m
...

...
...

ad1 · · · adc · · · adm
...

...
...

an1 · · · anc · · · anm

⎞
⎟⎟⎟⎟⎟⎟⎠

n×m

=

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · a1 · · ·
...

· · · ad · · ·
...

· · · an · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
reduced form rows represent d-layers

=

⎛
⎜⎜⎝

...
...

...

a1 ac am
...

...
...

⎞
⎟⎟⎠

︸ ︷︷ ︸
reduced form columns represent c-layers

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

A club network, G ∈ K implicitly determines an arc selection, (d, c) −→ G(d, c) given
by

(d, c) −→ G(d, c) = {a ∈ A(d, c) : (a, (d, c)) ∈ G}, (4)

with domain given by

D(G) := {(d, c) ∈ D × C : G(d, c) �= ∅}.
If G(d, c) = ∅, then in network G, the preconnection (d, c) is not elevated to the status of
a connection (i.e., player d is not a member of club c in network G either because d chose
not to join club c or because player d was not allowed to join club c—i.e., A(d, c) = ∅).
Alternatively, if G(d, c) �= ∅, then preconnection (d, c) has been elevated to a connection.
We note that G(d, c) ⊂ A(d, c) is a singleton set for all preconnections (d, c) ∈ D ×C and
for all preconnections (d, c) in D(G) ⊂ D(A(d, c)), G(d, c) �= ∅. Thus, a club network’s
arc selection, G(·, ·), is a selection from the feasible arc correspondence, (d, c) −→ A(d, c)
correspondence.

2.3 Coalition Structure

Each feasible club network, with its implied arc selection determines a coalition structure.
In particular, given arc selection G(·, ·) determined by club network, G ∈ K, each club c has
a membership coalition given by the domain of the mapping d −→ G(d, c) for fixed c. In
particular, club c has membership coalition in network G, denoted by, ScG , and given by

ScG = D(G(·, c)) := {d ∈ D : G(d, c) �= ∅} ∈ 2D,

where 2D is the collection of all subsets of D, including the empty set. Thus, the coalition
structure determined by club network G ∈ K is given by

(S1G , . . . , ScG , . . . , SmG)

where for c = 1, 2, . . . ,m
ScG = D(G(·, c)).

⎫⎬
⎭ (5)

In a club network, connections between layers are made through overlapping club mem-
berships. Without this, each club layer is isolated. For example, in layered club network,
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G ∈ K, if ScG ∩ Sc′G �= ∅, then each player d ∈ ScG ∩ Sc′G is a member of club c as well
as a member of club c′. In this way, club layers Gc and Gc′ are connected in network G.
Note that if in club network, G, players are members of one and only one club then if the
network has multiple nonempty layers, there are no connections between these layers—each
layer is isolated precisely because there are no overlapping club memberships. In this case,
the coalition structure induced by club network G given by

SG := (S1G , . . . , SmG) ∈ 2D × · · · × 2D, (6)

is a partition of the active club members—and players are siloed by their club memberships.

3 Measuring the Distance Between Club Networks

In order to analyze the co-evolution of strategic behavior, club network structure and equilib-
rium dynamics, we require a topology for the space of club networks that is simultaneously
coarse enough to guarantee compactness of the set of networks and fine enough to discrim-
inate between differences across networks that are due to differences in the ways nodes are
connected (via differing arc types) versus differences across networks that are due to the
complete absence of connections. We resolve this topological dilemma by equipping the
space club networks, K, with the Hausdorff metric hK—making the space of feasible club
network connection arrays, a compact metric space (see Appendix 1 on the Hausdorff metric
on the hyperspace of layered networks).

It is easy to show that if the Hausdorff distance between any pair club networks G and G ′
is less than ε ∈ (0, 1), then the networks can differ only in the ways a given set of player-club
pairs are connected—and not in the set of player-club pairs that are connected. In particular,
if for networks G and G ′ , hK (G,G ′) < ε < 1, then

(a, (d, c)) ∈ G if and only if (a′, (d, c)) ∈ G ′

for arcs a and a′ with ρAc (a, a′) < ε. Thus, if two club networks are at hK -distance ε < 1,
then both club networks G and G ′ have the same coalition structures, i.e.,

SG := (S1G , . . . , SmG) = (S1G ′ , . . . , SmG ′) := SG ′ . (7)

Such closeness will often occur and can only persist in network vio sets (sets of networks
visited infinitely often by the equilibrium stochastic process of network formation) i.e., sets
belonging to basins of attraction generated by the equilibrium dynamics governing the move-
ments of club networks—all discussed in detail below.

We will equip the hyperspace of feasible club network connection arrays, K = (Kdc)dc,
with the Hausdorff metric given by

hK (G,G ′) :=
n∑

d=1

m∑
c=1

hKdc (Gdc,G
′
dc), for (d, c) connections Gdc and G ′

dc in Kdc,

where

Gdc =
⎧⎨
⎩

{(adc, (d, c))} ⊂ Kdc if d is a member of club c

∅ if d is not a member of club c,
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and where, due to the single arc connection rule,

hKdc (Gdc,G
′
dc) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρc(adc, a
′
dc) ifGdc �= ∅and G ′

dc �= ∅,

diam(Adc) if Gdc �= ∅,G ′
dc= ∅ or Gdc= ∅,G ′

dc �= ∅,

0 if Gc= ∅, G ′
c= ∅.

4 Example: Time Allocation Networks

Consider a space of club networks in which the set of arc types, Ac, is given by Ac =
[0, 1] for all clubs, c, and the feasible arc correspondence, (d, c) −→ A(d, c), is given by
A(d, c) = [0, 1] for all player-clubs pairs. We have for each player-club pair, (d, c), that
Kdc := [0, 1]×({d}×{c}) and 2Kdc is the hyperspace of all closed subsets of Kdc (including
the empty set) and Kdc is the collection of all subsets of Kdc of size 1. Thus, Gdc ∈ Kdc if
and only if

Gdc =
⎧⎨
⎩

{(adc, (d, c))} ⊂ Kdc if d spends fraction adc of club time in club c

∅ if d is not a member of club c

But nowweadd a further condition given by the time allocation constraint.Wewill require that
the d-layers, K

d , in each club network G ∈ K := (Kdc)dc, having arc selection, (d, c) −→
G(d, c), be such that

d −→
∑

c∈D(G(d,·))
G(d, c) = 1,

whereD(G(d, ·)) is the club domain of player d—the clubs to which d belongs. The feasible
set of club networks is,

KT A := {G ∈ (Kdc)dc : ∀(d, c), G(d, c)={adc} , adc ∈ [0, 1], and ∀ d,
∑

c∈D(G(d,·))
adc = 1}.

Thus, in a time allocation network, players freely and noncooperatively choose which clubs
they want to join as well as their levels of participation in each club they join. Their levels of
participation in each club are then expressed as fractions of their total club time—and these
fractions must sum to one.

Figure 1 depicts a time allocation in which 5 players, D = {d1, d2, d3, d4, d5} allocate
their club time across 3 clubs, C = {c1, c2, c3}.

Following the notational convention that

adck ∈ (0, 1] ⇐⇒ Gdck = {(adck , (d, ck))}
and

adck = 0 ⇐⇒ Gdck = ∅,

⎫⎬
⎭ (8)

the connections array in reduced form for network G in Fig. 1 is given by⎛
⎜⎜⎜⎜⎝

1 0 0
0 a22 a23
0 1 0
1 0 0
0 1 0

⎞
⎟⎟⎟⎟⎠
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Fig. 1 Time allocation
network G

Because the d-layers (the rows) must have arc labels, adc ∈ [0, 1], that sum to 1, and because
players d1, d3, d4, and d5 spend all of their time in one and only one club, we know that in
the case of player d1, for example, a11 = 1, while a12 = a13 = 0. Player d2 splits all of his
club time between clubs c2 and c3. Thus, in the case of player d2, we have that a22 and a23
are positive with a22 + a23 = 1. Club c2 has 3 members, Sc2G = {d2, d3, d5}, while club c1
has 2 members, Sc1G = {d1, d4}, and club c3 has 1 member, Sc3G = {d2}.

Again following the notational convention (8) and writing out the connections long hand,
the connections in the d-layers are given by

G1 = (G11,G12,G13) = ({(1, (d1, c1))}, ∅, ∅),

G2 = (G21,G22,G23) = (∅, {(a22, (d2, c2))}, {(a23, (d2, c3))}),
G3 = (G31,G32,G33) = (∅, {(1, (d3, c2))}, ∅),

G4 = (G41,G42,G43) = ({(1, (d4, c1))}, ∅, ∅),

G5 = (G51,G52,G53) = (∅, {(1, (d5, c2))}, ∅),

while the connections in the c-layers are given by

G1 = (G11,G21,G31,G41,G51) = ({(1, (d1, c1))}, ∅, ∅, {(1, (d4, c1))}, ∅),

G2 = (G12,G22,G32,G42,G52) = (∅, {(a22, (d2, c2))}, {(1, (d3, c2))}, ∅, {(1, (d5, c2))}),
G3 = (G13,G23,G33,G43,G53) = (∅, {(a23, (d2, c3))}, ∅, ∅, ∅).

We note that the time allocation club networks in KT A and in general the club networks
in K satisfy assumptions [N-1]. We will assume for the remainder of the paper that [N-2]
holds. We will return to the example above later in the paper.
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5 Discounted Stochastic Games of Club Network Formation

In order to address the questions of whether or not and under what conditions the strategic
formation of club networks will lead to the emergence of dynamically stable coalition struc-
tures, we will show that our discounted stochastic game (DSG) of club network formation
possesses Nash equilibria in stationary Markov perfect behavioral club network formation
strategies. It is the players’ equilibrium behavioral network formation strategies which deter-
mine the equilibrium dynamics of club network formation. By identifying conditions under
which stationary Markov perfect equilibria (SMPE) exist in such behavioral strategies and
by showing that the resulting equilibrium state and club network dynamics are stable, we
will be able to establish the conditions under which stable coalition structures will emerge
and persist in the form of stable club networks. In this section, we will construct a DSG
model of club network formation and show that our model possesses SMPE in behavioral
club network formation strategies. The SMPE existence problem in the setting considered
here (with uncountable states and compact metric action spaces) is quite difficult and its
solution—and counterexamples—are of independent interest (for details see [15, 22, 23, 27,
28]).

An m-player, nonzero sum, discounted stochastic game, DSG, over the product space of
probability measures over player club networks (i.e., the convex, compact metric space of
behavioral actions),

(�(K), ρw∗
ca

) :=
(∏

d

�(Kd),
∑
d

ρw∗d
ca

)
, (9)

is given by the following primitives:

DSG :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�, B�,μ)︸ ︷︷ ︸
state space

,
{(

�(Kd),�(�d(ω)), βd ,Ud(ω, vd , ·)
)
d∈D

}
(ω,v)︸ ︷︷ ︸

collection of one-shot games

, q(·|ω, ·)︸ ︷︷ ︸
law of motion

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(10)
where � is the state space, B� is the Borel σ -field of events, and μ is a probability measure.
For each player d , K

d is the set of all possible player club networks available to player d ,
while �(�d(ω)) is the convex, compact feasible set of behavioral action available to player
d in state ω . A feasible behavioral action available to player d in state ω is a probability
measure σd ∈ �(Kd) with support contained in �d(ω) (i.e., σd ∈ �(�d(ω)) if and only if
σd(�d(ω)) = 1). Finally, βd ∈ (0, 1) is player d ′s discount rate and Ud(ω, vd , ·) is player
d ′s payoff function in state ω given valuations (or prices) vd , and q(·|ω, ·) is the law of
motion in state ω. If players holding value function profile v = (v1 . . . , vn) choose feasible
profile of behavioral actions,

σ = (σ1, . . . , σn) ∈ �(�1(ω)) × · · · × �(�n(ω)) = �(�(ω)), (11)

in stateω, then the next stateω′ is chosen in accordancewith probabilitymeasure q(·|ω,G) ∈
�(�) and player d ′s stage payoff is given by
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Ud(ω, vd , σ ) :=
∫
K

[
(1 − βd)rd(ω,G) + βd

∫
�

vd(ω
′)q(ω′|ω,G)

]
︸ ︷︷ ︸

ud (ω,vd ,G)

π(σ (dG))

:=
∫
K

ud(ω, vd ,G)πσ(dG).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

Here, πσ(dG) := π(σ1(dG1), . . . , σn(dGn)) := ⊗n
d=1σd(dG

d) is the product probability
measure representing the random club network determined by the n-tuple of random player
club networks, (σ1(dG1), ..., σn(dGn)), chosen by the players.

We will denote by, G(ω,v) := (�(�d(ω)),Ud(ω, vd , ·))d∈D , the n-player (ω, v)-game
in state ω underlying the DSG when players hold valuations (or state-contingent prices),
v := (v1, . . . , vn).

5.1 Primitives and Assumptions

We will maintain the following assumptions throughout. Label these (i.e., assumptions (1)–
(15)) as [A-1]:

(1) D = the set of players, consisting of n players indexed by d = 1, 2, . . . , n and each
having discount rate given by βd ∈ (0, 1).

(2) (�, B�,μ), the state space where � is a complete separable metric spaces with metric
ρ�, equipped with the Borel σ -field, B�, upon which is defined a probability measure,
μ .

(3) Y := Y1×· · ·×Yn, the space of all possible players’ payoff profiles,U := (U1, . . . ,Un),
such that for each player d, Yd := [−M, M] and is equipped with the absolute value
metric, ρYd (Ud ,U ′

d) := ∣∣Ud −U ′
d

∣∣ and Y is equipped with the sum metric, ρY :=∑
d ρYd .

(4) K := K
1×· · ·×K

n, the set of player pure action profiles, G := (G1, . . . ,Gn) , where
for each player d,

Gd := (Gd1, . . . ,Gdc, . . . ,Gdm)

is player d ′s club network and where K
d := Kd1 × · · · × Kdc × · · · × Kdm is

a compact metric space of feasible player club networks with typical element, Gd ,
equipped with metric, hKd := ∑c hKdc , and K is equipped with the sum metric,
hK :=∑n

d=1
∑m

c=1 hKdc .

(5) �(Kd)is the space of all probability measures, σd , with supports contained in player
d ′sset of club networks, Kd , equipped with the compact metrizable weak star topology
(a topology denoted by w∗d

ca ) inherited from ca(Kd), the Banach space of finite signed
Borel measures on K

d with the total variation norm.7 We will equip �(Kd) with a
metric, ρw∗d

ca
, compatible with the relative w∗d

ca -topology on �(Kd) inherited from

ca(Kd) and we will refer to σd as player d ′s random player club network.

7 Recall that the support of (a regular Borel) probability measure, σd ∈ �(Kd ), is the unique closed subset,
suppσd , of K

d such that σd (Kd\suppσd ) = 0, with the property that for any open set E
d ⊂ K

d such that

E
d ∩ suppσd �= ∅

σd (Ed ∩ suppσd ) > 0. Also, note that ca(Kd ) is a locally convex Hausdorff topological vector space with
�(Kd ) a convex, ρ

w∗d
ca
-compact subset of ca(Kd ).
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(6) �(K) := �(K1) × · · · × �(Kn), the space of player behavioral action profiles, σ :=
(σ1, . . . , σn), equipped with the sum metric, ρw∗

ca
:= ∑d ρw∗d

ca
, a metric compatible

with the relative w∗
ca-product topology on

�(K1) × · · · × �(Kn)

inherited from ca(K1) × · · · × ca(Kn).
(7) ω −→ �d(ω), is player d ′s measurable action constraint correspondence, defined on

� taking nonempty hKd -closed (and hence hKd -compact) network values in K
d .

(8) ω −→ �(ω) := �1(ω) × · · · × �n(ω), players’ measurable action profile constraint
correspondence, definedon� takingnonempty hK -closed (andhence compact) network
values in K.

(9) ω −→ �(�d(ω)), is player d ′s measurable behavioral action constraint correspon-
dence, defined on � taking nonempty w∗d

ca -closed (and hence w∗d
ca -compact), convex

random network values in �(Kd), containing all probability measures, σd(ω), with
supports contained in player d ′s feasible set of actions, �d(ω) ⊂ K

d , in state ω.
(10) ω −→ �(�(ω)) := �(�1(ω)) × · · · × �(�n(ω)), players’ measurable behavioral

action profile constraint correspondence, defined on � taking nonempty w∗
ca-closed

(and hence w∗
ca-compact), convex values in �(K1) × · · · × �(Kn).

(11) L∞
Yd
, the Banach space of all μ-equivalence classes of measurable (value) functions,

vd(·), defined on � with values in Yd a.e. [μ], equipped with metric ρw∗
d
compatible

with the weak star topology inherited from L∞
R .8

(12) L∞
Y := L∞

Y1
× · · · × L∞

Ym
⊂ L∞

Rm , the Banach space of all μ-equivalence classes of
measurable (value) function profiles, v(·) := (v1(·), . . . , vm(·)), defined on � with
values in Y a.e. [μ], equipped with the sum metric ρw∗ := ∑d ρw∗

d
compatible with

the weak star product topology inherited from L∞
Rm .

(13) S∞(�(�d(·))), the set of all μ-equivalence classes of measurable functions (selec-
tions), σd(·) ∈ L∞

�(Kd )
, defined on � such that in σd(ω) ∈ �(�d(ω)) a.e. [μ] , and

S∞(�(�(·))) = S∞(�(�1(·))) × · · · × S∞(�(�n(·))) (13)

the set of all μ-equivalence classes of measurable profiles (selection profiles), σ(·) =
(σ1(·), . . . , σn(·)), defined on � such that in σ(ω) ∈ �(�(ω)) := �(�1(ω)) × · · · ×
�(�n(ω)) a.e. [μ].

(14) rd(·, ·) : � × K −→ Yd is player d ′s Caratheodory stage payoff function (i.e., for all
(ω,G) ∈ �×K, rd(ω, ·) is hK -continuous onK and rd(·,G) is (B�, BYd ) -measurable
on �).

(15) q(·|·, ·) : � × K −→ �(�) is the law of motion defined on � × K taking values
in the space of probability measures on �, having the following properties: (i) each
probability measure, q(·|ω,G), in the collection

Q(� × K) := {q(·|ω,G) : (ω,G) ∈ � × K}

8 L∞
R is the Banach space of μ-equivalence classes of μ-essentially bounded functions, v : � −→ R with

norm
‖v‖∞ := esssup[v] := inf {y ∈ R : μ{ω : |v(ω)| > y} = 0} .

The space ofμ-equivalence classes of functionsL∞
R is the separable norm dual of the space ofμ -equivalence

classes of μ-integrable functions, L1
R . Because the Borel σ -field B� is countably generated, L1

R , is separa-
ble. As a consequence, the subset of value function μ-equivalence classes, L∞

Yd
, is a compact, convex, and

metrizable subset of L∞
R for the weak star topology.
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is absolutely continuous with respect to μ(denoted Q(� × K) << μ), (ii) for each
E ∈ B� , q(E |·, ·) is measurable on � × K, (iii) the collection of probability density
functions,

Hμ := {h(·|ω,G) : (ω,G) ∈ � × K} , (14)

of q(·|ω,G) with respect to μ is such that for each state ω, the function

G −→ h(ω′|ω,G) (15)

is hK-continuous in G a.e. [μ] in ω′.

We note that the assumptions are above are the usual assumptions underlying discounted
stochastic game models (see the Appendix 2 for technical notes on these assumptions).

6 StationaryMarkov Perfect Equilibria in Club Network Formation
Strategies

6.1 Existence

Let DSG be a discounted stochastic game of club network formation satisfying assumptions
[A-1], with one-shot game,

G�×L∞
Y

:= {(�(�d(ω)),Ud(ω, vd , ·))d}(ω,v)∈�×L∞
Y

. (16)

Definition 2 (Nash Equilibria in Behavioral Strategies) A feasible profile of probability
measures over player club networks, σ ∗ := (σ ∗

1 , . . . , σ ∗
m) ∈ �(�(ω)) is said to be a Nash

equilibrium of the one-shot network formation game, (�(�d(ω)),Ud(ω, vd , ·))d , provided
that for each player d ,

Ud(ω, vd , σ
∗
d , σ ∗−d) = max

σd∈�(�d (ω))
Ud(ω, vd , σd , σ

∗−d). (17)

Denote by N (ω, v) the set of all Nash equilibria belonging to (�(�d(ω)),Ud(ω, vd , ·))d ,
and byP(ω, v) the set of all Nash equilibria payoffs belonging to (�(�d(ω)),Ud(ω, vd , ·))d .
Thus,

P(ω, v) := {U ∈ Y : U = U (ω, v, σ ) for some σ ∈ N (ω, v)}
:= U (ω, v,N (ω, v)).

}
(18)

Under assumptions, [A-1], we know that N (ω, v) is nonempty and ρw∗
ca
-compact and

therefore we know that P(ω, v) is nonempty and ρY -compact. Moreover, applying optimal
measurable selection results (e.g., [19]) and Berge’s Maximum Theorem (e.g., see 17.31 in
[1]), we can show that the Nash correspondences,N (·, ·) andP(·, ·), are upper Caratheodory
(also, see Proposition 4.2 in Page [26]). In particular, the Nash correspondence, N (·, ·), is
jointly measurable in (ω, v) and N (ω, ·), is upper semicontinuous in v for each ω, and the
Nash payoff correspondence, P(·, ·), is jointly measurable in (ω, v) and P(ω, ·), is upper
semicontinuous in v for each ω.

Our main existence result is the following:

Theorem 1 (All DSGs satisfying [A-1] have SMPE in behavioral strategies) Let

DSG :=
{
(�, B�,μ) ,

{(
�(Kd ),�(�d (ω)), βd ,Ud (ω, vd , ·)

)
d∈D
}
(ω,v)∈�×L∞

Y

, q(·|ω, ·)
}
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be a discounted stochastic game of club network formation satisfying assumptions [A-1],
with upper Caratheodory (uC) Nash correspondences, N (·, ·) and P(·, ·).

There exists a pair, (v∗, σ ∗(·)) ∈ L∞
Y × S∞(�(�(·))) such that σ ∗(·) ∈ S∞(Nv∗)

is a Stationary Markov Perfect Equilibrium (SMPE) in behavioral club network formation
strategies supported by Bellman prices v∗ ∈ S∞(Pv∗)—i.e., there exists a pair, (v∗, σ ∗(·)) ∈
L∞
Y × S∞(�(�(·))) such that a.e. [μ]

σ ∗(ω) ∈ N (ω, v∗) and v∗(ω) = U (ω, v∗, σ ∗(ω)) ∈ P(ω, v∗).

For a formal proof, we refer the reader to [15]. Informally, the proof proceeds along
the following lines: Let S∞(P(·, v)) be the set of all μ-equivalence classes of measurable
functions, u ∈ L∞

Y , such that u(ω) ∈ P(ω, v) a.e. [μ]. It follows from Blackwell’s Theorem
[9], extended to DSGs, that our discounted stochastic game of club network formation (10)
will have stationary Markov perfect equilibria in network formation strategies if and only if
there exists a value function profile, v∗ ∈ L∞

Y , such that

v∗(ω) ∈ P(ω, v∗) a.e. [μ] ,
or equivalently if and only if the Nash payoff selection correspondence,

v −→ S∞(P(·, v)) := S∞(Pv),

hasfixedpoints, i.e., has at least onevalue functionprofile,v∗ ∈ L∞
Y , such thatv∗ ∈ S∞(Pv∗).

This is a very difficult fixed point problem because the measurable selection valued cor-
respondence, S∞(P(·)), is neither convex valued nor closed value—nor of course is it
upper semicontinuous. Until [15], no results were available to establish the existence of
a fixed point for Nash payoff selection correspondences. Essentially what [15] show is
that while the Nash payoff selection correspondence, v −→ S∞(Pv), is badly behaved,
under assumptions [A-1], its underlying upper Caratheodory Nash payoff correspondence,
P(·, ·), always contains an upper Caratheodory sub-correspondence, p(·, ·), that has ε-
approximate Caratheodory selections for all ε > 0, implying that the Nash payoff selection
sub-correspondence, v −→ S∞(pv), has fixed points. Thus, [15] show that, in general, there
exists a Nash payoff sub-correspondence, S∞(p(·)), having fixed points, i.e., that there exists
v∗ ∈ L∞

Y , such that v∗ ∈ S∞(pv∗) ⊂ S∞(Pv∗). More fundamentally, [15] are able to show
that the upper Caratheodory Nash payoff sub-correspondence, p(·, ·), has ε-approximate
Caratheodory selections for all ε > 0, because under assumption [A-1] the underlying upper
Caratheodory Nash correspondence, N (·, ·), always contains an upper Caratheodory Nash
sub-correspondence, η(·, ·), that takes closed connected values. Thus, because

p(ω, v) = (p1(ω, v), . . . , pn(ω, v))

:= (U1(ω, v1, η(ω, v)), . . . ,Un(ω, vn, η(ω, v))),

the continuity ofUd(ω, vd , ·) in behavioral actions σ for each player d = 1, 2, . . . , n together
with the closed connectedness of η(ω, v) implies that

(ω, v) −→ pd(ω, v) = Ud(ω, vd , η(ω, v))

is upper Caratheodory and interval valued for each player d = 1, 2, . . . , n. It then follows
from Corollary 4.3 in [21] that each player’s Nash payoff sub-correspondence, pd(·, ·), is
Caratheodory approximable and this together with the unusual properties of Komlos conver-
gence [20] of value functions allow us to show that there exists a value function profile, ,
v∗ ∈ L∞

Y , such that v∗(ω) ∈ p(ω, v∗) a.e. [μ] or equivalently such that

v∗ ∈ S∞(pv∗) ⊂ S∞(Pv∗).
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In order to complete our informal argument for existence we need only note that by
implicit measurable selection (e.g., see Theorem 7.1 in Himmelberg [18]), there exists a
profile, σ ∗(·) = (σ ∗

1 (·), . . . , σ ∗
n (·)), of a.e. measurable selections of ω −→ η(ω, v∗), such

that for each player d = 1, 2, . . . , n,

v∗
d(ω) = Ud(ω, v∗

d , σ
∗(ω)) ∈ Ud(ω, v∗

d , η(ω, v∗)) := pd(ω, v∗) a.e. [μ], (19)

Thus, for each player d , the state-contingent prices given by value function, v∗
d(·) ∈ L∞

Yd
,

incentivizes the continued choice by each player d , of behavioral strategy, σ ∗
d (·), and we have

for the value function-strategy profile pair, (v∗, x∗(·)) ∈ S∞(pv∗) × S∞(ηv∗), that

v∗(ω) = U (ω, v∗, σ ∗(ω)) ∈ p(ω, v∗) and σ ∗(ω) ∈ η(ω, v∗) a.e. [μ], (20)

implying that
v∗(ω) ∈ P(ω, v∗) and σ ∗(ω) ∈ N (ω, v∗) a.e. [μ]. (21)

Thus, for value function-behavioral strategy profile pair, (v∗, σ ∗(·)), we have for each
player d = 1, 2, . . . , n and for ω a.e. [μ], that (v∗, σ ∗(·)) satisfies the Bellman equation (1)
and the Nash condition (2),

(1) v∗
d(ω) = (1 − βd)rd(ω, σ ∗

d (ω), σ ∗−d(ω)) + βd
∫
�

v∗
d(ω

′)q(ω′|ω, σ ∗
d (ω), σ ∗−d(ω)),

and

(2) (1 − βd)rd(ω, σ ∗
d (ω), σ ∗−d(ω)) + βd

∫
�

v∗
d(ω

′)q(ω′|ω, σ ∗
d (ω), σ ∗−d(ω))

= maxσd∈�(�d (ω))

[
(1 − βd)rd(ω, σd , σ

∗−d(ω)) + βd
∫
�

v∗
d(ω

′)q(ω′|ω, σd , σ
∗−d(ω))

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(22)

Thus, σ ∗(·) ∈ S∞(Nv∗) is a stationary Markov perfect equilibrium of a DSG satisfying
assumptions [A-1], incentivized by state-contingent prices, v∗ ∈ S∞(Pv∗).

Thus here we have argued informally—and shown formally in [15]—that under the usual
assumptions specifying a discounted stochastic game (in this case a club network formation
DSG),while the DSG ′sNash payoff selection is badly behaved, nonetheless, it naturally pos-
sesses (without additional assumptions) an underlying Nash payoff correspondence, P(·, ·),
containing sub-correspondences, p(·, ·), which are Caratheodory approximable implying
that its induced selection correspondence, v −→ S∞(pv∗) has fixed points. [16], by mak-
ing an additional assumption (that the DSG is G -nonatomic or has a coarser transition
kernel) guarantee that DSG ′s Nash payoff selection correspondence has a convex valued
sub-correspondence—and therefore an approximable sub-correspondence.9 Moreover, [16]
show that [12] accomplishes the same thing by assuming that the DSG has a noisy state. In
the negative direction, [22, 23] construct counterexamples showing that not all uncountable-
finite DSGs have stationaryMarkov perfect equilibria. They accomplish this by constructing
counterexamples in which the Nash correspondences are not approximable—which follows
from the fact that in their counterexamples, there is an absence of fixed points. Because the

9 In our club network formation model, we have assumed that the state space is a Polish space, �, equipped
with the Borel σ -field, B�, and a probability measure, μ, defined on B�. Suppose that G is a sub-σ -field of
B�. Denote by μG (·) a regular G-conditional probability given sub-σ -field G. Following [13], A ∈ B� is
G-atom if μ(A) > 0 and for any B ∈ B� such that B ⊂ A

μ
{
ω ∈ � : 0 < μG (B)(ω) < μG (A)(ω)

}
= 0.
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clubnetwork formation DSGweanalyze here isapproximable,we avoid theLevy-McLennan
counterexamples.

6.2 Example: DSGs over Time Allocation Networks

The one-shot game for a DSG satisfying assumptions [A-1] over time allocation networks,
KT A, is given by

G�×L∞
Y

:= {(�(�d(ω)),Ud(ω, vd , ·))d}(ω,v)∈�×L∞
Y

. (23)

In a (ω, v)-game each player d has preferences over the d-layer networks in K
d given by,

Gd −→ ud(ω, vd ,G
d ,G−d︸ ︷︷ ︸
G

), (24)

where Gd = (Gd1, . . . ,Gdm) and Gdc = {(adc, (d, c))} for c ∈ D(G(d, ·)), and Gdc = ∅

for c /∈ D(G(d, ·)). Rewriting these preferences as preferences over d-layer networks in
reduced from, we have

ad −→ ud(ω, vd , a
d , a−d︸ ︷︷ ︸

(Gd ,G−d )

), (25)

where
Gd := ad = (adc1 , . . . , adcm ) ∈ �m ⊂ [0, 1]m, (26)

and where

�m := {(adc1 , . . . , adcm ) ∈ Rm+ :
m∑

k=1

adck = 1}, (27)

with notational convention, adck ∈ (0, 1] ⇐⇒ Gdck = {(adck , (d, ck))} and adck = 0 ⇐⇒
Gdck = ∅.

We will assume that for each player d and for each (ω, v) ∈ �×L∞
Y , ud(ω, vd , ·) is affine

on KT A. Thus, for time allocation networks, G and G ′ in KT A, we have for any λ ∈ [0, 1] ,
ud(ω, vd , λG + (1 − λ)G ′) = λud(ω, vd ,G) + (1 − λ)ud(ω, vd ,G

′), (28)

where

λG + (1 − λ)G ′

= λ

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 · · · a1c · · · a1m
...

...
...

ad1 · · · adc · · · adm
...

...
...

an1 · · · anc · · · anm

⎞
⎟⎟⎟⎟⎟⎟⎠

+ (1 − λ)

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
11 · · · a′

1c · · · a′
1m

...
...

...

a′
d1 · · · a′

dc · · · a′
dm

...
...

...

a′
n1 · · · a′

nc · · · a′
nm

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

λa11+(1 − λ)a′
11 · · · λa1c+(1 − λ)a′

1c · · · λa1m+(1 − λ)a′
1m

...
...

...

λad1+(1 − λ)a′
d1 · · · λadc+(1 − λ)a′

dc · · · λadm+(1 − λ)a′
dm

...
...

...

λan1+(1 − λ)a′
n1 · · · λanc+(1 − λ)a′

nc · · · λanm+(1 − λ)a′
nm

⎞
⎟⎟⎟⎟⎟⎟⎠

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)
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We will also assume that players’ one-shot payoff functions,

(ω, vd , a
d , a−d) −→ ud(ω, vd , a

d , a−d),

are measurable in ω for each (vd , ad , a−d) and jointly continuous in (vd , ad , a−d) for each
ω.

By Theorem 1 (also see [15]), there exists a value function profile, v∗ ∈ L∞
Y and an n-tuple

of measurable function

(a∗d1(ω), . . . , a∗dn (ω)) ∈ �m × �m × · · · × �m︸ ︷︷ ︸
n -times

.

where by notational convention,

a∗di (ω) := G∗di (ω)

= (G∗
di c1(ω), . . . ,G∗

di cm (ω))

:= ((a∗
di c1(ω), (di , c1)), . . . , (a

∗
di cm (ω), (di , cm))),

and where,

(a∗
di ck

(ω), (di , ck)) =
⎧⎨
⎩

{(1, (di , ck))} if di spends 100% of club time in club ck

{(0, (di , ck))} if di is not a member of club ck .

In fact, given the assumptions that players’ one-shot payoff functions are affine over the
convex set of time allocation networks (see 28 and 29), we know by Corollary 1.4 in [4] that
the m-tuple,

(a∗
di c1(ω), . . . , a∗

di cm (ω))

consists of 1′s and 0′s, because for each club ck , a∗
di ck

(ω) is an extreme point of the interval
[0, 1] a.e. [μ]. Thus, in each state a player spends 100% of his time in one and only one
club—i.e., each player’s stationary Markov perfect time allocation strategy is bang-bang.
Thus, we have by Theorem 1 that

v∗(ω) ∈ P(ω, v∗) and G∗(ω) ∈ N (ω, v∗) a.e. [μ],
where by Corollary 1.3 in [4], a.e. [μ] in ω, the stationary Markov perfect time allocation
network, given by the arrays,

G∗(ω) := (G∗
dc(ω))dc := (a∗

dc(ω))dc,

has a reduced form n ×m array, (a∗
dc(ω))dc, consisting of 0′s and 1′s. Moreover, in equilib-

rium, the state-contingent coalition of members of any club ck determined by the equilibrium
club network G∗(·) is given by

SckG∗(ω) = D(G∗(ω)(·, ck)) = {d : a∗
dck (ω) = 1}.

7 Equilibrium State-Network Dynamics and Stable Coalitions

Returning to our general model, under the profile of stationary Markov perfect equilibrium
behavioral strategies

σ ∗(·) := (σ ∗
1 (·), . . . , σ ∗

n (·)), (30)
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the equilibrium state and network formation process is given by,
{
Z∗
t

}∞
t=0 := {(W ∗

t ,G∗
t )
}∞
t=0 , (31)

with underlying probability space (� × K, B� × BK, μ ⊗ σ ∗) := (Z, BZ, P∗) consists of
random objects,

z −→ W ∗
t (z) := W ∗

t (ω,G) and z −→ G∗
t (z) := G∗

t (ω,G),

such that in each state z = (ω,G) ∈ � × K,

W ∗
t (ω,G) = ω and G∗

t (ω,G) = G, (32)

and where for any measurable set E ∈ B� × BK,

P
∗
(E) =

∫
�

σ ∗(Eω|ω)dμ(ω), (33)

Eω := {G ∈ K : (ω,G) ∈ E} (see 2.6.2, the Product Measure Theorem, in [3]).
The movements of the process,

{
Z∗
t

}∞
t=0, are governed by the equilibrium Markov transi-

tion kernel,
(ω,G) −→ π∗(d(ω′,G ′)|ω,G).

For each (ω,G) ∈ � × K, π∗(d(ω′,G ′)|ω,G) is given by the product probability measure,
q(·|ω,G) ⊗ Q∗(·|ω,G), where for each measurable rectangle, R × R ∈ B� × BK,

π∗(R × R|ω,G) := q(R|ω,G) ⊗ Q∗(R|ω,G),

:= q(R|ω,G) ⊗
∫

�

σ ∗(R|ω′)q(dω′|ω,G).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(34)

Thus, if the current state-club network is (ω,G) = (ω,G1, . . . ,Gn), with d-layers (Gd)nd=1,
then the probability that the coming state and coming club network lie in the set, R × R ∈
B� × BK, is given by

π∗(R × R|ω,G) := q(R|ω,G) ⊗ Q∗(R|ω,G) (35)

Whether or not a stable club network emerges depends on the stability properties of equi-
librium state-network dynamics underlying club network formation. Our main objective is to
say what we can regarding the emergence of stable club structures—and hence stable coali-
tion structures—based on the stability properties of the equilibrium state-network formation
dynamics.We would argue that this is one of the main aspects of network dynamics that has
been missing from our understanding of network dynamics in various applied settings—the
influence of strategic behavior on network dynamics. Here, we present a first attempt. We
will proceed as follows: First we state the Tweedie (Stability) Conditions [35] guaranteeing
Markov stability. Second, we show that if we slightly strengthen assumptions [A-1] (2) and
(15) in our discounted stochastic gamemodel, then the stationaryMarkov perfect equilibrium
(SMPE) of our discounted stochastic game of network formation gives rise to a Markov sta-
ble equilibrium state-network formation process satisfying the Tweedie Conditions. Finally,
we summarize some of the main implications of the Tweedie Conditions and the resulting
Markov stability properties of the equilibrium state-network formation process—such as the
existence of finitely many basins of attraction and ergodic probabilities, and the implications
of Markov stability for the emergence of stable coalition structures.
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We begin by stating the Tweedie Conditions, and after strengthening assumptions [A-1]
(2) and (15)(iii) in our discounted stochastic game model, showing that our strengthened
discounted stochastic game model, in general, gives rise to an equilibrium state-network
process satisfying the Tweedie conditions.

7.1 The Tweedie Conditions and Discounted Stochastic Games of Club Network
Formation

We say that the Markov transition, π∗(·|·), satisfies the Tweedie conditions, [T], provided,
(1) (Drift Condition) There exists (i) a nonnegative-valued measurable function, V (·) : � ×

K −→ [0,+∞], with V (z0) < +∞ for some z0 ∈ � × K; (ii) a subset C ⊂ � × K,
and (iii) a finite real number, −∞ < b < +∞ , such that we have∫

�×K

V (z′)π∗(dz′|z) ≤ V (z) − 1 + bIC (z). (36)

(2) (Uniform Countable Additivity) For any sequence of measurable sets, {Sn}n ⊂ B� × BK

with Sn ↓ ∅,
lim

n−→+∞ sup
z∈C

π∗(Sn |z) = 0. (37)

The intuition behind the Tweedie conditions can be described as follows: Rewriting the
first condition (36)—the drift condition—we have for each z ∈ � × K∫

�×K
V (z′)π∗(dz′|z) ≤ V (z) − 1 + bIC (z)

if and only if
�V (z)︸ ︷︷ ︸
drift

≤ bIC (z) − 1︸ ︷︷ ︸,
state-contingent bound

⎫⎪⎪⎬
⎪⎪⎭

(38)

where

�V (z) :=
∫
Z

[V (z′) − V (z)]π∗(dz′|z)

is the drift operator evaluated at z = (ω,G) ∈ � × K. The drift operator measures the
expected drift (or movement) of the process away from states in C starting from state z.
Drift is measured by the value taken by the drift operator, �V (·), at z. We see from the
state-contingent bound on the right-hand side of (38) that if we are measuring expected drift
from a state z in C and if b > 1, so that b − 1 > 0, then condition (36) will tolerate some
drift away from C . However, if we are measuring expected drift from a state z not in C ,
then condition (36) requires that the expected drift be back toward C . The first Tweedie
condition requires that the equilibrium process be such that there exist such a function,
V (·) : � × K −→ [0,+∞], finite valued at least at one point, a set C , and a bounding
constant, b , such (36) is satisfied. The second Tweedie condition requires that the collection
of probability measures,

π∗(� × K) := {π∗(dz′|z) : z ∈ � × K},
determined by discounted stochastic game’s strengthened law of motion and the equilibrium
behavioral strategies of the players beuniformly countably additive (37)—guaranteeing there-
fore that the expected drift of the process is a continuous function of state-network pairs (i.e.,
that there are no discontinuous jumps in the expected magnitude of the drift).
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The required strengthening of our stochastic continuity assumptions [A-1](15) is the fol-
lowing:

[A-1](15)(iii)∗In addition to [A-1](15)(iii), we will assume that for any sequence of state-
club network pairs, {(ωn,Gn)}n, converging to (ω∗,G∗) under themetric ρ�×K := ρ�+hK
on the product of the state space � and the club network space K,

q(R|ωn,Gn) −→ q(R|ω∗,G∗) (39)

for any R ∈ B�, i.e., the sequence of probability measures, {q(·|ωn,Gn)}n converges setwise
to q(·|ω∗,G∗).

Under the strengthened stochastic continuity assumptions, labeled [A-1](15)∗, because
the sequence, {q(R|ωn,Gn)}n , converges to q(R|ω∗,G∗) uniformly in R ∈ B� and because
σ ∗(R|·) is a bounded measurable function for any R ∈BK, it follows from Delbaen’s Lemma
[11] that {Q∗(·|ωn,Gn)}n setwise converges to Q∗(·|ω∗,G∗), and in particular that

Q∗(R|ωn,Gn) := ∫
�

σ ∗(R|ω′)q(dω′|ωn,Gn)

−→∫
�

σ ∗(R|ω′)q(dω′|ω∗,G∗) = Q∗(R|ω∗,G∗)

⎫⎬
⎭ (40)

for any R ∈BK. Thus, given that {q(·|ωn,Gn)}n and {Q∗(·|ωn,Gn)}n setwise converge to
q(·|ω∗,G∗) and Q∗(·|ω∗,G∗) for any sequence of state-club network pairs, {(ωn,Gn)}n ,
converging to (ω∗,G∗), we have that

π∗(R × R|ωn,Gn) −→ π∗(R × R|ω∗,G∗) (41)

for anymeasurable rectangle, R× R ∈ B�×BK i.e., that {π∗(·|ωn,Gn)}n , setwise converges
to π∗(·|ω∗,G∗), for any sequence, {(ωn,Gn)}n , converging to (ω∗,G∗). Moreover, we know
that if {π∗(·|zn)}n setwise converges to π∗(·|z∗) for any sequence {zn}n = {(ωn,Gn)}n,
converging to z∗ = (ω∗,G∗), then for any bounded and continuous function, c(·) ∈ Cb(�×
K)—or any bounded measurable function—∫

�×K

c(z′)π∗(dz′|zn) −→
∫

�×K

c(z′)π∗(dz′|z∗). (42)

i.e., {π∗(·|zn)}n converges weak star to π∗(·|z∗).
Up until now, we have assumed that the set of states, �, is Polish (complete, separable,

metric). Our strengthening of [A-1](2) is to assume that
[A-1](2)∗ In the probability space of states, (�, B�,μ), �, is a compact metric space.
Because the hyperspace of club networks, K, is compact, with the strengthening of [A-

1](2) making � compact, we have for any sequence, {(ωn,Gn)}n , in � × K that there is a
convergent subsequence {(ωnk ,Gnk )}k with limit (ω∗,G∗) ∈ � × K. Given the arguments
and observations immediately above this means that the set of probability measures,


 := {π∗(·|z) : z ∈ � × K},
isweak star compact—because Z := �×K is compact, any sequence {zn}n has a subsequence
converging to some z∗ ∈ Z , implying that any sequence of probabilitymeasures, {π∗(·|zn)}n ,
has a subsequence, {π∗(·|znk )}k , setwise converging and therefore weak star converging
to π∗(·|z∗). Moreover, by Proposition 1.4.2(a)(ii) in Hernandez-Lerma and Laserre [17],
because
 := {π∗(·|z) : z ∈ �×K} is weak star compact, the equilibriumMarkov transition
kernel, z −→ π∗(dz′|z), is uniformly countably additive on any closed subset C of � × K.
Thus, the equilibrium Markov kernel, π∗(·|·), governing the state-network process, Zt , is
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such that for any closed subset C of � × K,

lim
n−→+∞ sup

z∈C
π∗(Sn |z) = 0, (43)

for any sequence of states {Sn} ⊂ B� × BK with Sn ↓ ∅.
Wewill denote by [A-1]∗ our list of assumptions [A-1] but with [A-1](2) and [A-1](15)(iii)

strengthened as above. Our next result, which follows directly from the arguments above,
states that any equilibrium state-network process determined by the stationaryMarkov perfect
equilibrium of a DSG of club network formation satisfying assumptions [A-1] ∗ satisfies the
Tweedie conditions.

Theorem 2 (All DSGs satisfying [A-1] ∗ induce equilibrium processes satisfying the
Tweedie conditions) Any state-network Markov transition,

π∗(d(ω′,G ′)|ω,G) := q(dω′|ω,G) ⊗ Q∗(dG ′|ω,G),

:= q(dω′|ω,G) ⊗
∫

�

σ ∗(dG ′|ω′)q(dω′|ω,G),

determined by a stationary Markov perfect behavioral club network formation strategy,

σ ∗(·) := (σ ∗
1 (·), . . . , σ ∗

n (·)),
of a discounted stochastic game satisfying assumptions [A-1] ∗ satisfies the Tweedie condi-
tions. In particular, for V (z) = 1 for all z ∈ � × K, b = 2, and C = � × K we have∫

�×K

V (z′)π∗(dz′|z) ≤ V (z) − 1 + bIC (z) for all z ∈ � × K,

and for any sequence of sets of states {Sn}n ⊂ B� × BK with Sn ↓ ∅

lim
n−→+∞ sup

z∈�×K

π∗(Sn |z) = 0.

In our DSG over time allocation networks discussed above, if we strengthen the stochastic
continuity assumptions [A-1](15)(iii) to [A-1](15)(iii)∗ and if we assume that the state space,
�, is compact, then the equilibrium state-network process induced by players’ bang-bang
strategies will satisfy the Tweedie conditions. Moreover, if � is compact and we assume that
the set of conditional densities,

Hμ := {h(·|ω,G) : (ω,G) ∈ � × K} ,

of q(·|ω,G) with respect to μ is such that the function

(ω,G) −→ h(ω′|ω,G)

is ρ�×K-continuous (ρ�×K := ρ� + hK ) in ω and G a.e. [μ] in ω′, then the Tweedie
conditions will be satisfied in our DSG over time allocation networks.

8 Strategically Stable Club Networks and Coalition Structures

By Theorem 2, the equilibrium state-network transition, π∗(·|·), governing themovements of
the state-network process, {Z∗

t }t , through the space,�×K, satisfies the Tweedie conditions.
As a consequence, as shown by [35], the space � × K can be decomposed in a unique way
into a transient set of state-network pairs and a finite collection of largest absorbing sets (i.e.,
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basins of attraction given by Harris sets) consisting of state-network pairs that might persist
in the long run (and will persist in the long run if there is only one basin of attraction) and
that exhaust all the possibilities for what will happen in the future with regard to the path of
the network formation process.10

Restating Tweedie’s decomposition result for the strategically determined equilibrium
state-network transition, π∗(·|·), we have the following:
Theorem 3 [35, Theorem 2] Let {Z∗

t }t be an equilibrium state-network Markov process gov-
erned by the transition kernel, π∗(dz′|z), satisfying [T]. Then, π∗(dz′|z) uniquely partitions
the space Z := � × K into a finite number of maximal Harris sets, Hi ⊂ Z, and a transient
set, E ⊂ Z, and in particular,

Z =
[
∪I
i=1Hi

]
∪ E . (44)

The union of the Harris sets, HI := ∪I
i=1Hi , has the property that starting from any transient

z ∈ E, the state-network process Z∗
t reaches HI (i.e., reaches some Harris set) in finite time

with probability 1, and each Harris set, Hi has an ergodic probability measure, λi .

We denote the fact that starting from any transient state-network pair, z = (ω,G) ∈
E , the state-network process, Z∗

t , reaches HI in finite time with probability 1 by writing,
L(z, HI ) = 1, where

L(z, HI ) := P∗
z (τHI < ∞) = P∗

z (Z∗
t ever enters HI ), (45)

denotes the first entry probability and where

τHI = min{t ≥ 1 : Z∗
t (z) ∈ HI } (46)

is the first enter time.
Because we are concerned with stability, one of the questions we want to answer is for any

given subset S of state-network pairs, z := (ω,G), contained in a Harris set, Hi , how often
does the state-network process, Z∗

t , visit state-network pairs in S? Let ηS :=∑∞
t=1 IS(Z

∗
t (z))

denote the number of visits of the process, Z∗
t , to the set of state-network pairs, S, where

IS(·) is the indicator function of the set S. We say that a state-network set, S ⊂ Z, is a vio set
(i.e., a set visited infinitely often) if the probability that Z∗

t , leaving from z, visits S infinitely
often is 1—a fact denoted by writing

Q(z, S) := P∗
z (ηS = ∞) = 1,

where Q(z, S) denotes the vio set probability.
In order to answer the question of how many times the process visits various subsets of

state-networks contained in a Harris set, Hi , the following further refinement of our partition
is useful. To begin, because each Harris set Hi is a largest absorbing set, if we restrict the
process to the maximal Harris set, Hi , giving us a sub-process, Z∗Hi

t := Z∗i
t , governed by

the Markov kernel, π∗
Hi

(·|·) := π∗
i (·|·), then the process, restricted to Hi , is λi (·)-irreducible

(i.e., for all S ⊂ Hi with S ∈ BHi and λi (S) > 0, L(z, S) > 0 for all z ∈ Hi ). Because
the process, Z∗

t , generates a finite set of largest absorbing sets with each having an ergodic
measure, it follows from Theorem 2.18 and Corollary 2.19 in [10] that Z∗i

t , governed by the
kernel, π∗

i (·|·), is a λi (·)-irreducible, T -process (see p. 124 in [24], and Definitions 2.1–2.4

10 Recall that a set of H ∈ B� × BK is an absorbing set with respect to the transition kernel, π∗(·|·), if
π∗(H |z) = 1 for all z ∈ H .
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in [10]). By Theorem 9.3.6, in [24], each Harris set Hi in expression (44) is positive Harris
recurrent and by Theorem 9.3.5, in [24] can be further decomposed as,

Hi = Ri ∪ Ei (47)

where Ri is the set of topological Harris recurrent state-network pairs and Ei is topologically
transient (i.e., z∗i ∈ Ei if and only if Ez∗i (ηOz∗i ) < ∞).11 Therefore, a state-network pair

z∗i = (ω∗i ,G∗i ) ∈ Ri if and only if

Pz∗i (ηOz∗i = ∞) = 1

(i.e., if and only if the process visits each state-network pair contained in any neighborhoods
of z∗i ∈ Ri ⊂ Hi infinitely often).12 Essentially, when the process, Z∗

t , enters the maximal
Harris set Hi it stays there for all future periods and becomes a λi (·) -irreducible, T -process,
visiting the topological Harris recurrent state-network pairs, z∗i ∈ Ri , infinitely often—
passing through state-network pairs in Ei on its way to state-network pairs in Ri . Thus, a
refinement of the decomposition in Theorem 3 is given by

Z =
[
∪I
i=1(Ri ∪ Ei )

]
∪ E . (48)

If the process begins at some state-network pair in E , then in finite time with probability 1
the process will leave E and enter one of the basins, Hi = Ri ∪ Ei , where it will remain,
visiting each state-network pair in Ri infinitely often with probability 1, and if the process
visits a state-network pair in Ei then with probability 1 it will leave that state-network pair
in finite time never to return, perhaps visiting a different state-network pair in Ei and with
probability 1 leaving that state-network pair in finite time never to return.

Because the equilibriumMarkov transition,π∗(·|·), governing themovements of the state-
network process, Z∗

t , is strongly stochastically continuous (i.e., because z
n converging to z∗

implies that π∗(·|zn) converges setwise to π∗(·|z∗)), π∗(·|·) has the strong Feller property
(e.g., see [24, Section 6.1]). Moreover, because, Z∗i

t restricted to Hi is a λi (·)-irreducible, T -
process, governed by the Markov kernel, π∗

i (·|·), having the strong Feller property, it follows
from Theorem 7.1(iii) in [34] that because the state-network space is compact (see [A-2]∗),
the set of topologically Harris recurrent (THR) state-network pairs, Ri is closed (and hence
compact) and Ei is open.

Each set of topological Harris recurrent state-network pairs, Ri ⊂ Z := �×K, determines
a correspondence,

ω −→ Ri (ω) := {G ∈ K : (ω,G) ∈ Ri }, (49)

with range given by
Ri := ∪ω∈�Ri (ω). (50)

For club network G ∈ Ri , there is at least one state ω (and possibly many states) such that
(ω,G) ∈ Ri . Because Ri is compact, Ri is compact. Thus, for each 0 < ε < 1, there is a
finite set of club network contained in Ri ,

{G∗i
εh : h = 1, 2, . . . , Ni

ε}
and a corresponding finite set of open balls,

{BhK (ε,G∗i
εh) : h = 1, 2, . . . , Ni

ε}.
11 Recall that ηOz∗i :=∑∞

t=1 IOz∗i (Z
∗
t (z)). Ez∗i (ηOz∗i ) denotes the expected number of times the process

visits Oz∗i starting from z∗i (see expression 75 below).
12 Or equivalently, if and only if, L(z∗i , Oz∗i ) for all neighborhoods Oz∗i of z

∗i .
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covering Ri such that any club network G ∈ Ri is contained in an open ball of networks,
BhK (ε,G∗i

εh), with each network in BhK (ε,G∗i
εh) being at hK -distance less than ε ∈ (0, 1)

from network G∗i
εh for some h = 1, 2, . . . , Ni

ε . Given our prior observation concerning the
properties of the Hausdorff metric on the hyperspace of club networks, we know that for
ε ∈ (0, 1), all club networks contained in the open ball BhK (ε,G∗i

εh) have the same coalition
structure as club network G∗i

εh . Thus, for club networks G and G ′ contained in BhK (ε,G∗i
εh),

for ε ∈ (0, 1),
SG := (S1G , . . . , SmG) = (S1G ′ , . . . , SmG ′) := SG ′

= (S1G∗i
εh

, . . . , SmG∗i
εh

) := SG∗i
εh

,

where recall for each club-network pair, (c,G),

ScG = D(G(·, c)) := {d ∈ D : G(d, c) �= ∅}.
What conditions are sufficient to guarantee that the finite set of networks,

G
∗i
ε := {G∗i

εh : h = 1, 2, . . . , Ni
ε},

underlying the finite ε-covering,

{BhK (ε,G∗i
εh) : h = 1, 2, . . . , Ni

ε}.
have the same coalition structure? Consider the following definition.

Definition 3 (Chainable THRSets)Let Ri be a compact topologicallyHarris recurrent (THR)
set of state-network pairs with network part Ri . We say that Ri is chainable if there is an
ε ∈ (0, 1) and a finite ε -covering

{BhK (ε,G∗i
εh) : h = 1, 2, . . . , Ni

ε},
with underlying set of networks, G

∗i
ε := {G∗i

εh : h = 1, 2, . . . , Ni
ε} ⊂ Ri , such that for any

two club network, G and G ′ in Ri there is a subset of the finite ε-covering, {BhK (ε,G∗i
εh) :

h = 1, 2, . . . , Ni
ε} given by

{BhK (ε,G∗i
εhk ) : k = 1, 2, . . . , k′}, k′ < Nεi

with G ∈ BhK (ε,G∗i
εh1

) and G ′ ∈ BhK (ε,G∗i
εhk′ ) such that

BhK (ε,G∗i
εhk ) ∩ BhK (ε,G∗i

εhk+1
) �= ∅, k = 1, . . . , k′ − 1.

Thus, for any two club networks in Ri , there is a ε-open ball path from G to G ′ consisting
of pairwise intersecting open balls. Because consecutive open balls are intersecting, that is,
because,

BhK (ε,G∗i
εhk ) ∩ BhK (ε,G∗i

εhk+1
) �= ∅, k = 1, . . . , k′ − 1,

all the networks contained in ∪k BhK (ε,G∗i
εhk

) have the same coalition structure. Because Ri

is chainable such an ε-open ball path with intersecting consecutive open balls can be found
between any two club networks in Ri , implying that all the club networks in

Ri = ∪h BhK (ε,G∗i
εh)

have the same coalition structure.
We can distill the arguments and conclusions above in the following Theorem:
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Theorem 4 (Topological Harris Recurrence and Coalitional Homogeneity) Let {Z∗
t }t be an

equilibrium state-network Markov process governed by the transition kernel, π∗(dz′|z), sat-
isfying [T] induced by the stationary Markov perfect equilibrium behavioral strategy profile,
σ ∗(·), of a discounted stochastic game of club network formation satisfying assumptions,
[A-1]∗. Let

Z =
[
∪I
i=1(Ri ∪ Ei )

]
∪ E . (51)

be the decomposition of the space Z := � × K generated by equilibrium state-network
process, {Z∗

t }t into a finite number of maximal Harris sets, Hi = Ri ∪ Ei ⊂ Z, and a
transient set, E ⊂ Z with Hi = Ri ∪ Ei being given by the union of an open topologically
transient set Ei and a compact topologically Harris recurrent (THR) set, Ri , with network
part

Ri := ∪ω∈�Ri (ω) = ∪ω∈�{G ∈ K : (ω,G) ∈ Ri }.
.

If Ri is chainable, then all club networks in Ri have the same underlying coalition struc-
ture. Moreover, all club networks in any chainable subset Ci of Ri contain networks with
the same underlying coalition structure.

Proof If Ri is chainable, then for any two club networks in Ri , there is a ε-open ball path
from G to G ′ consisting of pairwise intersecting open balls. Because consecutive open balls
are intersecting, that is, because,

BhK (ε,G∗i
εhk ) ∩ BhK (ε,G∗i

εhk+1
) �= ∅, k = 1, . . . , k′ − 1,

all the networks contained in ∪k BhK (ε,G∗i
εhk

) have the same coalition structure. Because Ri

is chainable such an ε-open ball path with intersecting consecutive open balls can be found
between any two club networks in Ri , implying that all the club networks in

Ri = ∪h BhK (ε,G∗i
εh)

have the same coalition structure. Q.E.D. ��

9 Summary and Conclusions

If we strengthen the assumptions underlying our discounted stochastic game of club network
formation (from [A-1] to [A-1]∗), then because the equilibrium state-network transition
kernel, π∗(dz′|z), induced by the SMPE strategy profile, σ ∗(·), of the DSG satisfies the
Tweedie conditions [T], we know by Theorem 2 in [35] and further results by [24] which
build on [10, 34, 35], that the state-network space, Z := � × K, can be uniquely partitioned
into a finite number of maximal Harris sets, Hi ⊂ Z, and a transient set, E ⊂ Z, and in
particular, we know that

Z =
[
∪I
i=1(Ri ∪ Ei )

]
︸ ︷︷ ︸
Hi a maximal Harris set

∪ E .

where Hi = Ri ∪ Ei ⊂ Z, Ei being an open topologically transient set and Ri being a
compact topologically Harris recurrent (THR) set with network part given by

Ri := ∪ω∈�Ri (ω) = ∪ω∈�{G ∈ K : (ω,G) ∈ Ri }.
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These conclusions all flow from the discounted stochastic game of club network formation
under assumptions [A-1]∗. Our last result above tells us that if, in addition, the club network
vio sets, Ri , are chainable, then all the club networks in any given vio set Ri have the same
coalition structure.
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Appendix 1: The Hausdorff Metric on the Hyperspace of Layered Net-
works

To begin, equip the set of c-connections, Kc := ∪d Kdc := ∪d A(d, c) × ({d} × {c}), with
the sum metric,

ρKc := ρc + ηD + ηC . (52)

Thus, the distance between c-connections, (a, (d, c)) and (a′, (d ′, c)), is

ρKc ((a, (d, c)), (a′, (d ′, c))) := ρc(a, a′) + ηD(d, d ′) + ηC (c, c) = ρ∗
c (a, a′) + ηD(d, d ′).

We will equip each hyperspace of c-layers, 2Kc , with the Hausdorff metric induced by the
metric,ρKc , on the set of c -connections. In defining theHausdorffmetric hKc on 2

Kc , wemust
allow for empty c-layers. For nonempty c-layer G ′

c ∈ 2Kc and connection (a, (d, c)) ∈ Kc,
we define the distance from (a, (d, c)) to the nonempty c-layer G ′

c to be

dist((a, (d, c)),G ′
c) := min

(a′,(d ′,c))∈G ′
c

ρKc ((a, (d, c)), (a′, (d ′, c))); (53)

and for c-layers Gc �= ∅, G ′
c �= ∅, we define the excess of Gc over G ′

c to be

e(Gc,G
′
c) := max

(a,(b,c))∈Gc
dist((a, (d, c)),G ′

c). (54)

The Hausdorff distance between nonempty c-layers, Gc and G ′
c is given by

hKc (Gc,G
′
c) = max

{
e(Gc,G

′
c), e(G

′
c,Gc)

}
(55)

while
hKc (Gc, ∅) := hKc (∅,G ′

c) = diam(Kc)

and
hKc (∅, ∅) = 0.

⎫⎬
⎭ (56)

The diameter, diam(Kc), of the set of c-connection Kc,is given by

diam(Kc)

:= max(a′,(d ′,c)) and (a′′,(d ′′,c)) in Kc ρKc ((a
′, (d ′, c)), (a′′, (d ′′, c))).

⎫⎬
⎭ (57)

http://creativecommons.org/licenses/by/4.0/
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Thus, the Hausdorff metric on the hyperspace of c-layers, 2Kc , is given by

hKc (Gc,G
′
c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
{
e(Gc,G

′
c), e(G

′
c,Gc)

}
if Gc �= ∅, G ′

c �= ∅.

diam(Kc) if Gc �= ∅,G ′
c= ∅ or Gc= ∅,G ′

c �= ∅.

0 if Gc= ∅, G ′
c= ∅.

(58)
Given that the basic building block of a club network array is the hyperspace Kdc of

feasible c-connections belonging to player d , with an underlying set of connections given
by Kdc := A(d, c) × ({d} × {c}), and given that each player can take, at most one action in
each club, we see that the Hausdorff metric hKdc on Kdc reduces to

hKdc (Gdc,G
′
dc) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρc(adc, a
′
dc) if Gdc �= ∅ and G ′

dc �= ∅.

diam(Adc) if Gdc �= ∅,G ′
dc= ∅ or Gdc= ∅,G ′

dc �= ∅.

0 if Gc= ∅, G ′
c= ∅.

(59)

Recall that Gdc ∈ Kdc if and only if

Gdc =
⎧⎨
⎩

{(adc, (d, c))} if d is a member of club c i.e., if (d, c) ∈ D(G)

∅ if d is not a member of club c. i.e., if(d, c) /∈ D(G).

(60)

The Hausdorff metric on the hyperspace of feasible club networks, K = (Kdc)dc, is given
by

hK (G,G ′) :=
n∑

d=1

m∑
c=1

hKdc (Gdc,G
′
dc). (61)

for G := (Gc)c∈C and G ′ := (G ′
c)c∈C in

∏
c∈C

Kc. Because (Kc, ρKc ) is a compact metric

space, we have by Proposition C.2 in Bertsekas and Shreve [6] that (2Kc , hKc ) is a compact
metric space of c-layers, and because Kdc is an hKdc -closed subset of the hKdc -compact
subset of 2Kdc , Kdc is hKdc -compact—implying that (K, hK ), given by

(K, hK ) =
(

(Kdc)dc,

n∑
d=1

m∑
c=1

hKdc

)
, (62)

is a compact metric space.

Appendix 2: Technical Notes on Assumptions [A-1]

Weak Star Convergence of Random Player Club Networks

Under the metric, ρw∗d
ca
, compatible with the relative w∗d

ca -topology on �(Kd), we have

σ n
d −→

ρ
w∗d
ca

σ∗
d if and only if

∫
Kd

c(Gd )dσ n
d (Gd ) −→

∫
Kd

c(Gd )dσ∗
d (Gd ) for all c(·) ∈ C(Kd ),

(63)
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where C(Kd) is the Banach space of continuous functions defined on the compact metric
space, K

d , with the sup norm. In fact, there exists a countable subcollection of continuous
functions, C0(Kd), such that

σ n
d −→

ρ
w∗d
ca

σ ∗
d if and only if

∫
Kd

ci (G
d)dσ n

d (Gd) −→
∫
Kd

ci (G
d)dσ ∗

d (Gd) (64)

for all ci (·) ∈ C0(Kd) (e.g., see Aliprantis and Border [1, Chapter 15]).
By Theorem 3.2 in [7], we know that

πσ n = σ n
1 ⊗· · ·⊗σ n

m −→
w∗
ca

σ ∗
1 ⊗· · ·⊗σ ∗

m = πσ ∗ if and only if for each player σ n
d −→

w∗d
ca

σ ∗
d .

(65)
Thus, a sequence of behavioral action profilesw∗

ca-converges to a particular behavioral action
profile if and only if each player’s sequence of behavioral actions w∗d

ca -converges to a par-
ticular behavioral action such that the w∗

ca-limit of behavioral action profiles is equal to the
product of the w∗d

ca -limits of players’ behavioral action sequences. Unfortunately, the map-
ping (σd(·), σ−d(·)) −→ π((σd(·), σ−d(·))) is not jointly ρW ∗d

ca
-continuous. A good example

of the failure of joint ρW ∗d
ca
-continuity can be found in [14], Example 3.16.

Weak Star and K-Convergence of Value Functions

A sequence, {vn}n ⊂ L∞
Y , converges weak star to v∗ = (v∗

1(·), . . . , v∗
m(·)) ∈ L∞

Y , denoted
by vn −→

ρw∗
v∗, if and only if

∫
�

〈
vn(ω), l(ω)

〉
Rm dμ(ω) −→

∫
�

〈
v∗(ω), l(ω)

〉
Rm dμ(ω)

for all l(·) ∈ L1
Rm .

A sequence, {vn}n ⊂ L∞
Y , K -converges (i.e., Komlos convergence—Komlos [20]) to

v̂ ∈ L∞
Y , denoted by vn −→

K
v̂, if and only if every subsequence, {vnk (·)}k , of {vn(·)}n has

an arithmetic mean sequence, {̂vnk (·)}k , where

v̂nk (·) := 1

k

k∑
q=1

vnq (·),

such that
v̂nk (ω) −→

Rm
v̂(ω) a.e. [μ].

The relationship between w∗-convergence and K -convergence is summarized via the fol-
lowing results from Balder [5]: For every sequence of value functions, {vn}n ⊂ L∞

Y , and
v̂ ∈ L∞

Y the following statements are true:

(i) If the sequence {vn}n K -converges to v̂, then {vn}n w∗-converges to v̂.

(ii) The sequence {vn}n w∗-converges to v̂ if and only if
every subsequence {vnk }k of {vn}n has a further subsequence, {vnkr }r ,

K -converging to v̂.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(66)
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For any sequence of value function profiles, {vn}n, in L∞
Y it is automatic that

supn

∫
�

∥∥vn(ω)
∥∥
Rm dμ(ω) < +∞.

Thus, by the classical Komlos Theorem [20], any such sequence, {vn}n , has a subsequence,
{vnk }k that K -converges to some K -limit, v̂ ∈ L∞

Y .

Strong Stochastic Continuity of the Law of Motion

Under the stochastic continuity assumptions made above, [A-1](14), we have by Scheffee’s
Theorem (see [8, Theorem 16.11]) that for each ω ∈ �,

supE∈B(�) |q(E |ω,Gn) − q(E |ω,G∗)|R
≤ ∫

�

∣∣h(ω′|ω,Gn) − h(ω′|ω,G∗)
∣∣
R dμ(ω′) −→ 0,

⎫⎬
⎭ (67)

for any sequence of networks {Gn}n in�(ω) converging to networkG∗ ∈ �(ω) (i.e., for each
ω ∈ � the conditional density mapping, G −→ h(·|ω,G), is continuous in L1 norm with
respect toG). Thus, by Scheffee’s Theorem the L1 norm continuity ofG −→ h(·|ω,G)with
respect to network G in each state ω is equivalent to the continuity of G −→ q(E |ω,G) in
each state ω with respect to network G uniformly in E ∈ B� (i.e., for each ω ∈ �, q(E |ω, ·)
is continuous in G, uniformly with respect to E ∈ B�).

Convergence and Continuity

Under assumptions [A-1], for each (ω, v) each player’s payoff function,

G −→ ud(ω, vd ,G) := (1 − βd)rd(ω,G) + βd

∫
�

vd(ω
′)q(ω′|ω,G), (68)

is jointly continuous in G = (G1, . . . ,Gm), and for any sequence of value function-network
pairs, {(vn,Gn)}n , if vn −→

ρw∗
v∗ and Gn −→

hK
G∗ then for each ω,

u(ω, vn,Gn) −→
ρY

u(ω, v∗,G∗),

(i.e., u(ω, ·, ·) is jointly continuous in (v,G)). Moreover, for each ω, the v-parameterized
collection of m-tuples of integrands given by

{
u(ω, v, ·) : v ∈ L∞

Y

}
, (69)

where (see expression 68),

G −→ u(ω, v,G) := (u1(ω, v1,G), . . . , um(ω, vm,G)) (70)
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is uniformly equicontinuous (see Solan [33, Lemma 3.6]).13 Thus, the Y -valued players’
payoff function, u(·, ·, ·), is a Caratheodory function: ρw∗×hK -continuous in (v,G) for each
ω, and (B�, BY )-measurable in ω on � for each (v,G).

Appendix 3: Elementary Properties of Markov Transitions

Let {Wt } be the Markov process governed by the transition kernel, p(dω′|ω), where for each
t = 0, 1, 2, 3, . . ., we have for each ω ∈ �, Wt (ω) = ωt . Recall that

p(B|ω) := prob{Wt+1(ω
′) ∈ B|Wt (ω) = ω}. (71)

Hitting and Return Times

The number of visits of the process, Wt (·), to the set of states B is given by ηB :=∑∞
t=1 IB(Wt (ω)). Let ϕ be a nontrivial, σ -finite measure on B�.
We say that the process, Wt (·), is ϕ-irreducible if for all B ∈ B� such that ϕ(B) > 0,

U (ω, B) = Eω(ηB) = lim
T−→∞

T∑
t=1

pt (B|ω) =
∞∑
t=1

pt (B|ω) > 0. (72)

If the process,Wt (·), is ϕ-irreducible, then we know that there exists a (maximal) dominating
measure, ψ , such that Wt (·) is also ψ-irreducible (and see Proposition 4.2.2 in [24]).

Let
τB = min{t ≥ 1 : Wt (ω) ∈ B} = first return time,

and
δB = min{t ≥ 0 : Wt (ω) ∈ B} = first hitting time.

⎫⎬
⎭ (73)

Return time probabilities and recurrent time probabilities are given by

L(ω, B) := Pω(τB < ∞) = Pω(Wt (·) ever enters B)
and

Q(ω, B) := Pω(ηB = ∞) = Pω(Wt (·) enters B infinitely often)

⎫⎬
⎭ (74)

The set B ∈ B� isHarris recurrent if Pω(ηB = ∞) = 1 for all ω ∈ B. The Markov process,
Wt (·) , is Harris recurrent if it is ψ-irreducible and every B ∈ B� such that ψ(B) > 0 is
Harris recurrent. Thus a set B is Harris recurrent if when the Markov process Wt (·) starts
at ω ∈ B , it returns to B infinitely many times, except when the process starts at any state
contained in a set of initial states having probability zero—thus, Pω(·)-almost surely. In fact,
for any Markov process Wt (·) that is Harris recurrent, Pω(ηB = ∞) = 1 for all ω ∈ � and
for all B ∈ B� such that ψ(B) > 0.

13 The collection, {
u(ω, v, ·) : v ∈ L∞

Y
}
,

is uniformly equicontinuous if for any ε > 0 there is a δ > 0 such that for any G and G′ in �(ω) with
hK (G,G′) < δ,

ρY (u(ω, v,G), u(ω, v,G′)) < ε,

for all v ∈ L∞
Y .
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Summarizing for all B ∈ B� such that ψ(B) > 0

U (ω, B) := Eω(ηB) > 0 ⇐⇒ Wt (·) is ψ-irreducible,
U (ω, B) := Eω(ηB) = ∞ ⇐⇒ Wt (·) is recurrent,
Q(ω, B) := Pω(ηB = ∞) = 1 ⇐⇒ Wt (·) is Harris recurrent.

⎫⎬
⎭ (75)

Occupation Times

Given Markov process,Wt (·), with Markov transition, p(·|·), the n-step occupation measure
is given by

p(T )(B|ω) := 1

T

T−1∑
t=0

pt (B|ω) for all B ∈ B�, t = 1, 2, 3, . . . (76)

the pathwise occupation measure is given by

π(T )(B) := 1

T

T−1∑
t=0

IB(Wt (ω)). (77)

Thus,
p(T )(B|ω) = E(π(T )(B)|W0(ω) = ω).
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