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Abstract
We consider a hedonic coalition formation game in which a coalition chooses for each
partition of the player set the probability with which it forms and thereby destroys the current
partition. These probabilities are commonly known so that farsighted players know at every
partition what future partitions, and hence payoffs, will be reached with what probability.
Thus, players can make rational decisions about the moves they support. We show that if
coalitions make mistakes with small but positive probability, then there is a behavior profile
in which no coalition has a profitable one-shot deviation.

Keywords Abstract games · Hedonic games · Farsighted stability · Coalition stable
equilibrium

JEL Classification C71 · C72

1 Introduction

A hedonic game [8] specifies for each player a payoff in each coalition, giving players
preferences over coalitions. In particular, unlike in games in characteristic function form,
there is no competition over payoffs within any coalition: If a coalition forms, each player’s
payoff is determined. When solving a hedonic game, one is, hence, only interested in how
players partition into coalitions. Arguably, the most prominent solution is the set of core
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stable partitions: In such a partition no set of players can increase their payoffs by forming a
new coalition. Unfortunately, despite their rather simple structure, hedonic games might not
have core stable partitions. [4] and [2] provide sufficient conditions for the nonemptiness of
the core; [12] provides a condition which is both necessary and sufficient and very similar to
the balancedness condition by [16] and [5].

The idea of the core, namely that there be no profitable formation of new coalitions, is quite
intriguing; yet, it requires the assumption of players’ naivety: When a coalition considers
forming, all its members compare their current payoff with their payoff after forming. No
attention is being paid to future deviations by some of its members, and no attention is being
paid to other coalitions who might leave the status quo. That is, players are myopic.

The first investigation of farsighted players in hedonic games has been provided by [7]
who used the more general models of [9] and [6]. Although their analysis captures players’
rationality in that they can anticipate the consequences of their deviating, there are two
potentially problematic assumptions: First, it is assumed that whenever a player deviates from
a coalition, the remainder of this coalition stays intact. Second, players compare payoffs from
all reasonable future deviations to the status quo. So, they might act together even though
their final goals differ (see, for instance, [3]), and they do not take into account that other
coalitions might move preemptively. The result is a solution which always exists, but which
is too permissive and which does not account for the full rationality of players.

In this paper, we introduce a different way to talk about farsighted players in hedonic
games, which is based on [15] and [13]. For that purpose, we translate a hedonic game
into an abstract game. This abstract game considers the set of partitions as state space and
specifies for any partition and coalition what new partition emerged if this coalition formed.
We provide four axioms for this specification that ensure that all players have the same unique
expectation about potential moves among partitions.

The abstract game describes a coalition formation game that is similar to [14], where
coalitions are endowed with strategies (behaviors) that specify at each partition whether or
not to form (if they are not already part of that partition). A behavior profile, thus, defines
transitions among partitions, which in turn define a Markov process. The stationary distribu-
tion of such a process determines how much time is spent in each partition. Thus, the payoff
from any behavior profile is a weighted average of payoffs, where the weights are given by
the relative time spent in each partition.

In a weak equilibrium, each coalition behaves optimally in each partition π , given the
behavior of all coalitions (including itself) at all other partitions, and the behavior of all other
coalitions at π . Thus, a weak equilibrium is stable with respect to one-shot deviations. In
contrast to [14] we allow coalitions to play mixed strategies; in fact, we restrict our analysis
to strategies that play each pure behavior with some small but positive probability ε > 0,
taking into account the possibility to make mistakes. This ensures that there is a path of
moves between any two partitions, so that any partition is reached with positive probability.
Thus, any optimality condition in equilibrium applies to all partitions in which a coalition
might have to decide whether or not to form.

The main result of our paper is that for every ε > 0 a weak equilibrium exists. The
mathematical difficulty in showing this result is that players’ payoff functions are not linear
in the probability with which each behavior is being played. Thus, showing that the set of
best replies is convex (as it is in normal form games) is difficult. (If we allow for deviations
that are not one-shot, then the set of best replies is, in fact, not convex.) But once, convexity
is proven, obtaining the result is straightforward.

The remainder of the paper is structured as follows: In Sect. 2, we introduce the necessary
notation, recall the definition of hedonic games and introduce hedonic coalition formation
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games that are a special class of abstract games. In Sect. 3 we introduce coalition behaviors,
translate them into transition matrices and derive the relevant payoff functions. Section 4
introduces the equilibrium and proves its existence. We close the paper with Sect. 5 where
we show that weak equilibria are not necessarily stable with respect to arbitrary deviations.

2 Preliminaries

2.1 Hedonic Games

Let N be a finite set of players. Subsets S ⊆ N are called coalitions. For S ⊆ N write 2S for
the set of subsets of S, and P(S) for the set of nonempty subsets. A partition is a collection
π = {

S1, . . . , Sm
}
of nonempty coalitions such that

⋃m
k=1 S

k = N and Sk ∩ Sl = ∅ for all
k �= l; the set of all partitions is denoted by �. For i ∈ N and a partition π we write π(i) for
the unique element of π that contains i . A hedonic game is a map v that maps each nonempty
coalition S to some v(S) ∈ R

S . That is, a hedonic game is a cooperative game such that each
player’s payoff in each coalition is uniquely determined: There is no negotiation over payoffs
within coalitions whatsoever. For any hedonic game v, we define the map V : � → R

N by
Vi (π) = vi (π(i)). That is, V (π) ∈ R

N is the payoff vector if partition π forms.
Arguably, the most prominent solution of a hedonic game is the set of core partitions:

Those partitions for which no coalition has an incentive to deviate. To make this precise, we
say that a partition π is dominated via S if vi (S) > Vi (π) for all i ∈ S. The core is the set
of undominated partitions.1

Example 2.1 (The roommate problem) There are three players who have to decide about
who of them will be moving in together in a two-bedroom flat. They have somewhat conflict-
ing interests: While everybody dislikes to move in with three people into a two-bedroom flat,
1 prefers to move in with 2 over moving in with 3 over staying alone; 2 prefers moving in
with 3 over moving in with 1 over staying alone; and 3 prefers moving in with 1 over moving
in with 2 over staying alone. Suppose that payoffs from staying alone are 0, from moving
into an overcrowded place is −1, from getting the preferred roommate is 4, and from getting
the other room mate is a ∈ (0, 4). This game does not have a core stable outcome: Surely,
neither the partition into singletons nor the partition that only contains the grand coalition
are core stable. But neither are the others: Whenever two players have formed a coalition,
one of the two has an incentive to form a new one with the outside player.2 �	
The core is a myopic concept: At any partition π , the members of a potential coalition S
compare their payoffs from forming with those at π . No attention is paid to any moves other
coalitions (or even some members of S) could make after S has formed. In particular, the
players in S do not take the behavior of those in N \ S into account: It is irrelevant for v(S),
and S operates under the presumption that no one will react upon their deviation.

If players are notmyopic, theywill account for the possibility that after their own deviation
other coalitions might form. Thus, they have to make assumptions about what happens to
those “left behind.” So, a dominance relation cannot simply be defined between a partition and
a coalition, but rather between two partitions. [7] define such a dominance relation based on

1 As the payoffs of all players are determined by a partition π , there is no need to explicitly consider the set
of core payoff vectors.
2 Recently, [1] have proposed a solution to the roommate problem that is based on the credibility of deviations.
They show, in particular, that if one allows for “weak” deviations, then existence is guaranteed.
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[6]: Partition π ′ farsightedly dominates partition π if there is a sequence of pairs
(
Sl , π l

)m
l=1

such that

π l =
{
Sl

}
∪

{
T \ Sl

}

T∈π l−1
\ {∅}

for l = 1, . . . ,m, where π0 = π , πm = π ′, and Vi
(
π ′) > Vi

(
π l−1

)
for all i ∈ Sl . A

solution that is based on such a definition seems, at least from a rationality point of view,
more plausible than a purely myopic solution. Still, there are some caveats: For instance,
it makes the implicit assumption that players who are left behind stay together. Another
problem is that different members of a coalition S might only work together because they
have different, and potentially contradicting, expectations about how the game unfolds.3 The
most severe issue, however, seems to be that coalitions still do not behave rationally: They
make assumptions about the consequences of their forming, but they ignore the consequences
of their not forming.

In order to overcome these issues, we shall translate hedonic games into abstract games
for which farsightedness has recently gained some attention. In general, an abstract game is
a tupel

(
N , X , (→S)S∈P(N ) , (Ui (·))i∈N

)
, where X is a set of states, Ui : X → R is player

i’s utility function over states and →S describes coalition S’s ability to move from one state
to another: For two states x, y ∈ X we write x →S y if S can replace x with y. In this case,
we say S is effective for a move from x to y. In the context of a hedonic game we choose
X = �, i.e., the set of states is exactly the set of partitions, and Ui = Vi , which is i’s payoff
function over partitions.

Example 2.2 Recall the roommate problem in Example 2.1. A potential → for this hedonic
game in depicted in Fig. 1, whereπ0 = {{1}, {2}, {3}},π1 = {{1, 2}, {3}},π2 = {{1}, {2, 3}},
π3 = {{2}, {1, 3}}, and π4 = {N }. �	
As the profile →= (→S)S∈P(N ) is the most relevant piece of the puzzle, we shall have a
closer into it look in the next section.

2.2 Effectivity in Hedonic Coalition Formation

The question of what partitions can arise in a hedonic game hinges on the coalitions’ abilities
to change partitions. The hedonic game itself remains quite agnostic about this as it only
specifies payoffs for coalitions and nothing more. Thus, we shall derive four assumptions on
coalitions’ abilities to affect partitions, which are reflected in →. First, we would expect →
to satisfy:

H1 If π →S π ′, then S ∈ π ′.
That is, S can only move from a partition π to a partition π ′ if it is a member of the latter.
Observe that we do not allow the members of S to jointly form a partition of S: If they
collaborate, they must form a coalition. As [15] point out, the action of farsighted players in
S depends on the expected reaction by N \S as thismight influence future deviations. To avoid
unintuitive results, they propose two conditions and refer to them as coalition sovereignty4:

H2 If π →S π ′, T ∈ π , and S ∩ T = ∅, then T ∈ π ′.

3 A similar issue arises in [11], who consider “robust” deviations in the roommate problem. A deviation is
robust up to depth k if none of the deviators will be worse off after any sequence of at most k subsequent
deviations than at the original partition.
4 [15] formulate their conditions for general NTU games; we provide here the adaption to hedonic games.
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Fig. 1 The roommate problem

H3 For every π ∈ � and S ∈ P(N ) there is π ′ with S ∈ π ′ such that π →S π ′.

Condition H2 requires that a coalition S that deviates from partition π has no influence over
coalitions that have not been affected by its deviation. That is, a coalition in π that did not
intersect with S will not change. Condition H3 requires that from each partition π each
coalition S that is not a member of π can deviate. Both conditions are highly appropriate in
the context of hedonic games: They endow coalitions with the power to form at any state, yet
they ensure that no coalition has the power to affect the behavior of others when moving.5

An observation worth making is that H1 and H2 together imply π = π ′ whenever S ∈ π

and π →S π ′.
The transition between partitions in [7] satisfies ConditionsH1 –H3, but these conditions

alone still allow for quite a range of partitions π ′ that a coalition S might move to from π ,
as nothing has been said about those players who were “left behind” by S. Define for any
partition π and any coalition S the set π(S) by π(S) = ⋃

i∈S π(i), which is the set of all
players whose coalitions are affected by a deviation of S. There is no reason to presume S
have power about the behavior of π(S) \ S. Yet, we shall assume that there is a (common)
expectation about their behavior. A residual map is a map τ , which maps each pair (π, S) on
a partition τ (π, S) of the set π(S) with S ∈ τ (π, S). For i ∈ π(S) we write τ (i | π, S) for
the unique element of τ (π, S) that contains i .

H4 There is a residual map τ such that if π →S π ′, then π ′(i) = τ(i | π, S) for all i ∈ π(S).

5 This is not to say that there are no later moves that such groups might want to undertake, or that such moves
are not being expected. Such moves, however, are the decisions of the moving groups at the new partition
rather than a decision of the deviating coalition at the old one.
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Condition H4 ensures that the behavior of π(S) cannot be chosen by S, yet is uniquely
determined and commonly known. Thus,H2 andH4 together simply ensure that all coalitions
have a common expectation about the immediate consequences of any move.

We shall not impose any conditions on the residual map; for the remainder its existence
is sufficient. Yet, there are several instance of τ that have been investigated in the literature
before. For instance, [10] consider two variants: The γ -model, where coalitions who are left
behind split up into singletons, and the δ-model, where they remain as they were.

Example 2.3 For anypair (π, S)of a partition and a coalition letγ (π, S) = {
S, {{i}}i∈π(S)\S

}
.

The unique →γ that satisfies H1–H4 with τ = γ is

π →γ

S π ′ if and only if π ′ = {S} ∪ {T }T∈π\π(S) ∪ {{i}}i∈π(S)\S .

For any pair (π, S) of a partition and a coalition let δ (π, S) = {
S, {π(i) \ S}i∈π(S)\S

} \ {∅}.
The unique →δ that satisfies H1–H4 with τ = δ is6

π →δ
S π ′ if and only if π ′ = {S} ∪ {T \ S}T∈π \ {∅} .

Observe that → in Example 2.2 corresponds to the γ -model. This can be seen from π4 →{i}
π0 for i = 1, 2, 3. �	
We allow coalitions to act strategically when deciding whether or not to move, and we are
interested in their equilibrium behavior. We assume that in each partition π coalitions are
allowed tomove in a specified order that is described by a bijectionρπ : {

1, . . . , 2|N | − 1
} →

P(N ). Here, ρπ(l) is the l-th coalition that is allowed to move at π .7

Definition 2.4 A hedonic coalition formation game is a tuple (N , V ,→, ρ), where V is the
payoff function from a hedonic game with player set N , → satisfies conditionsH1–H4, and
ρ = (ρπ )π∈� is an order profile.

AsH2 andH4 together uniquely determine the behavior of N \ S for any S and π , we obtain
the following result. Its proof, as all proofs, can be found in the appendix.

Theorem 2.5 Let (N , V ,→, ρ) be a hedonic coalition formation game. Then, for each par-
tition π and each coalition S ⊆ N there is a unique partition π ′ with π →S π ′.

Observe that if a coalition S could decide to form a partition of S (which would violate H1),
then S could move to more than one other partition, and Theorem 2.5 would not hold.

3 Analysing Hedonic Coalition Formation Games

3.1 Coalition Behavior and Transitions

In a hedonic coalition formation game, any coalition (that has not formed yet) has only two
options: To be or not to be? That is the question. The only strategic decision that a coalition
has to make (at any partition) is, hence, to choose the probability with which to form.8 Thus,

6 This is the assumption that [7] use as well.
7 There is nothing specific about having a deterministic order at each π , a random order would suffice, as
long as the distribution over orders if commonly known.
8 We presume history independence here: A coalition’s decision at π only depends on π and not on how or
when π was reached.
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a (mixed) coalition behavior9 of coalition S is a map βS : � → [0, 1], where βS(π) denotes
the probability that S forms and deviates from π .10 We write 
S ⊆ [0, 1]� for the set of all
coalition behaviors of S. A behavior profile is a vector β = (βS)S∈P(N ) ∈ 
 = ×S∈P(N )
S

of behaviors.

Example 3.1 Recall → for the 3-player roommate problem in Example 2.2 and consider the
hedonic coalition formation game (N , V ,→, ρ) where ρπ = ρ for all π ∈ � and ρ is
defined by

ρ(1) = {1} ρ(2) = {2} ρ(3) = {3} ρ(4) = {1, 2}
ρ(5) = {2, 3} ρ(6) = {1, 3} ρ(7) = {1, 2, 3}.

Consider the following behavior profile. βρ(l) (π) = 0 for all π ∈ � and l = 1, 2, 3, 7.
Further, βρ(l)

(
π0

) = βρ(l)
(
π4

) = 1 for l = 4, 5, 6. Lastly,

βρ(4)
(
π2) = βρ(5)

(
π3) = βρ(6)

(
π1) = p,

βρ(4)
(
π3) = βρ(5)

(
π1) = βρ(6)

(
π2) = βρ(4)

(
π1) = βρ(5)

(
π2) = βρ(6)

(
π3) = 0,

where p ∈ (0, 1). That is, each pair would deviate from the grand coalition and from the
singleton partition with probability 1; and whenever a pair has formed, another pair will
deviatewith probability p. Surely, bothπ0 andπ4 will be left forπ1 by {1, 2}with probability
1. The probability that partition π1 will be left is p, and if it is left, then by a move of {1, 3}
to π3. Similarly, π2 will be left with probability p to π1, and π3 will be left with probability
p to π2. So, the transition probabilities between partitions are described by the (� × �)-
dimensional matrix

Pβ =

⎛

⎜⎜⎜⎜
⎝

0 0 0 0 0
1 1 − p p 0 1
0 0 1 − p p 0
0 p 0 1 − p 0
0 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

where Pπ ′,π denotes the probability of a transition from π to π ′. �	

3.2 Markov Processes and Expected Payoffs

Given an order profile ρ = (ρπ )π∈� and a behavior profile β, the probability of a transition
from π to π ′ is

Pβ

π ′,π =
∑

l:π→ρπ (l)π
′

∏

h<l

(
1 − βρπ (h) (π)

)
βρ(l) (π) for all π, π ′ ∈ �,π ′ �= π, (1)

and the probability, that no coalition will move out of π is, hence,

Pβ
π,π =

2|N |−1∏

l=1

(
1 − βρπ (l) (π)

)
for all π ∈ �. (2)

9 [14] defined a coalition behavior for a general abstract game (N , X ,→,U ) as a map βS : X → X with
x →S βS(x). Given the special form of hedonic coalition formation game and the observation in Theorem 2.5,
our definition is equivalent to a mixed behavior in this sense.
10 For convenience, if S ∈ π , then βS(π) = 0.
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If the behavior profile β is such that the Markov process with transition matrix Pβ converges
independently of its starting point towards a unique partition π , then the expected payoff
from β is easily determined, namely V (π). But in general, we cannot expect such a partition
to exist; in fact, one of the main problem in hedonic games are circles among partitions such
as in the roommate problem. In this case, we can define payoffs by asking: How much time
will be spent in each partition given some behavior profile β? For this purpose note that if
a partition π is reached, then after n periods of possible moves among states, the expected
number of periods spent in some π ′ is given by the π ′-th entry of the π-the column of the
matrix

∑n
m=1

(
Pβ

)m
. Thus, if the process starts at π and we do not impose any restrictions

on the number of periods during which coalitions are allowed to move, then the expected
relative amounts of time spent in each partition are given by the π-th column of the matrix
limn→∞ 1

n

∑n
m=1

(
Pβ

)m
, which is given by �-dimensional vector

μβ = lim
n→∞

1

n

n∑

m=1

(
Pβ

)m
eπ , (3)

where eπ is the �-dimensional unit vector with 1 as its π-th entry. With a slight abuse of
notation we shall write μβ

(
π ′) for the vector entry μ

β

π ′ .11 We shall formulate a condition on
Pβ such that μβ does not depend on the choice of π . This is particularly important for the
case of hedonic games as these games do not specify any initial partition.

The Markov process with transition matrix Pβ is called irreducible if for every two

partitions π, π ′ there is m ∈ N such that
((

Pβ
)m)

π ′,π
> 0. The following proposition

comprises well-known results about irreducible Markov processes with finite state space that
we will need later. We do not provide a proof but refer the reader to the standard literature,
e.g., [17].

Proposition 3.2 Let P be the transition matrix of an irreducible Markov process over �.
Then there is a unique vector μ ∈ R

� with
∑

π∈� μ(π) = 1 that satisfies (3) for all π ∈ �.
In particular, μ

(
π ′) > 0 for all π ′ ∈ � and μ satisfies Pμ = μ, i.e., μ is the unique

eigenvector of P to eigenvalue 1 with length 1.

Example 3.3 Recall the transition matrix in Example 3.1. The Markov process that is defined
by the transition matrix Pβ has stationary distribution

(
0, 1

3 ,
1
3 ,

1
3 , 0

)
. This means that after

a very long time it will have spent the same amounts of time in π1, π2, and π3, while it will
not have spent any time in π0 or π4. Observe that even if the game starts in π0 or π4, these
partitions will be left in the first period any never be returned to. Thus, relative time spent
there converges towards 0. �	
We can now define payoffs for those behavior profiles β for which Pβ is the transition matrix
of an irreducible Markov process.

Definition 3.4 Let β be a behavior profile such that Pβ be the transition matrix of an irre-
ducible Markov process with the unique stationary distribution μβ . Then the payoffs from
the behavior profile β are

ui (β) =
∑

π∈�

μβ(π)Vi (π) (4)

for all i ∈ N . �	
11 Note thatμβ (π) ≥ 0 for all π ∈ � and

∑
π∈� μβ (π) = 1, so thatμβ is indeed a probability distribution

over �.
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Example 3.5 Recall the game in Example 2.2, the behavior in in Example 3.1 and the corre-
sponding stationary distribution in Example 3.3. Here, the payoffs are given by ui (β) = 4+a

3
for all i ∈ N . �	
While the payoff function in (4) is rather intuitive, it has two severe caveats: First, it is not
well defined if the stationary distribution of Pβ is not unique. Second, unlike payoff functions
in standard normal form games, it is not linear in β. Thus, when looking for an equilibrium
that is based on (some form of) best replies, it is not trivial to show that the set of best replies
is convex.

3.3 Errors and "-Behaviors

We are interested in the following class of behavior profiles which lead to irreducibleMarkov
processes and, hence, well defined expected payoffs according to Definition 3.4.

Definition 3.6 Let ε > 0 and S ∈ P(N ). An ε-behavior of coalition S is a (mixed) coalition
behavior βS such that βS (π) ∈ [ε, 1 − ε] for all π ∈ � with S /∈ π . The set of ε-behaviors
of coalition S is denoted by 
ε

S , and the set of ε-behavior profiles by 
ε = ×S∈P(N )

ε
S . �	

In an ε-behavior, every possible move is implemented with positive probability. This means
that coalitions will make mistakes with some small (but positive) probability. In the theory
of dynamic games the ability to account for (even one own’s) possible mistakes provides one
of the motivation of subgame perfection: Players specify their actions even for histories that
would never be reached if they followed their strategy, and after any history their strategy
needs to specify some equilibrium behavior. In this paper, we make this option of mistakes
explicit as it ensures that for any two partitions π, π ′ there is some positive probability that
a chain of coalitional moves will lead from π to π ′.
Lemma 3.7 For every ε > 0 and every β ∈ 
ε the Markov process with transition matrix
Pβ is irreducible.

This lemma togetherwith Proposition 3.2 implies that the payoff function in (4) iswell defined
for all β ∈ 
ε . Observe, however, that irreducibility of the emerging Markov process is not
necessary for the payoff function to be well defined: The behavior profile in Example 3.5 is
not an ε-behavior, yet the payoffs are well defined.

4 Equilibrium

From here on, let ε > 0 and ρ = (ρπ )π∈� be fixed. We shall use the payoff functions in (4)
to obtain an equilibrium coalition behavior that exists for all hedonic games.

4.1 Definition

Let S be a nonempty coalition and letπ ∈ �. For a givenβ ∈ 
ε ,wewriteβ−S = (βT )∅�=T �=S
for the profile of ε-behaviors for all coalitions but S. Itwill also be convenient towriteβS (−π)

for the restriction of the behavior βS on � \ {π}. In this case, we write (βS(π), βS (−π)) for
the behavior βS . Let β ∈ 
ε . Then S ∈ P(N ) has a profitable one-shot deviation from β at
π if S /∈ π and there is q ∈ [ε, 1 − ε] such that

ui (q, βS (−π) , β−S) > ui (β)
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for all i ∈ S. We say that β∗
S(π) is a weak best reply against β at π if S does not have a

profitable one-shot deviation from
(
β∗
S (π) , βS (−π) , β−S

)
at π . That is, a weak best reply

of S against β at π takes the behavior of all coalitions and S’s behavior everywhere but in π

as given and specifies an optimal probability at π . We denote the set of S’s weak best replies
against β at π by Rε

S,π (β).12

Definition 4.1 A weak ε-equilibrium is an ε-behavior profile β such that for each S ∈ P(N )

and each π ∈ � it holds that βS (π) ∈ Rε
S,π (β). �	

That is, β is a weak ε-equilibrium if for each nonempty coalition S and each partition π the
behavior βS specifies a weak best reply βS (π) against β at π . We call such profile a “weak”
equilibrium as it is only stable with respect to one-shot deviations, but not with respect to
arbitrary deviations.

Example 4.2 Recall the roommate problem and the behavior profile in Example 3.1. Although
this is not an ε-behavior, we have well defined payoff functions so that we can try and find
weak best replies. For that purpose recall the behavior profile β in Example 3.1 and consider
coalition {2, 3} at π1. Suppose this coalition leaves π1 with probability q . Then the corre-
sponding transition matrix differs from Pβ only in the second column, where p is replaced

by q . The stationary distribution of the new matrix is given by
(
0, p

p+2q ,
q

p+2q ,
q

p+2q , 0
)
.

So, the payoffs of players 2 and 3 are

u2
(
q, β{2,3}

(−π1) , β−{2,3}
) = ap + 4q

p + 2q
u3

(
q, β{2,3}

(−π1) , β−{2,3}
) = (4 + a)q

p + 2q
.

Observe that u3 is always increasing in q while u2 is increasing in q for a < 2 and decreasing
in q for a > 2. Thus, for a < 2 the only weak best response of {2, 3} at π1 is to choose
q = 1 − ε.13 On the other hand, for a ≥ 2, every q ∈ [ε, 1 − ε] is a weak best response as
the interests of 2 and 3 are conflicting. �	
In the previous example the set Rε

{2,3},π1 (β) is, depending on a, either a point set or a compact
interval. This is true in general for all β ∈ 
ε , S ∈ P(N ), and π ∈ �. (See Lemma A.1 in
the appendix.)

4.2 Existence

We have mentioned before that the utility function in (4) is not necessarily linear in β. The
reason is as follows: Consider two behavior profiles β and γ that induce Markov processes
with transition matrices Pβ and Pγ , which in turn have stationary distributions μβ and μγ .
It can easily be verified that the convex combination rβ + (1−r)γ will lead to an irreducible
Markov process. However, there is very little that can be said about the stationary distribution
μrβ+(1−r)γ of this process. In particular, it is not necessarily the case that μrβ+(1−r)γ is a
convex combination of μβ and μγ .

This nonlinearity of the utility functions in β creates a problem as we cannot use standard
arguments from normal form games to show that the set of weak best replies is convex.

12 Note that if S ∈ π , then S does not have any profitable one-shot deviations at π . Hence, Rε
S,π (β) = {0}

for all β ∈ 
ε and all S ∈ P(N ), π ∈ � with S ∈ π .
13 Technically, γ1,2 is not a ε-behavior as γ1,2

(
π0

)
= 1. But it is sufficient to illustrate the concept of weak

best responses without losing tractability.
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Instead, we prove the following theorem that considers the stationary distribution of a convex
combinations of two Markov processes whose transition matrices are identical everywhere
but in one column.

Theorem 4.3 Let X be a finite set, and let P, Q ∈ [0, 1]X×X be transition matrices of
irreducible Markov processes over X, so that there is y∗ with Px,y = Qx,y for all x ∈ X and
all y �= y∗. Let λ and μ be the (unique) stationary distributions of P and Q, respectively.
Let r ∈ [0, 1] and define

t = rμ (y∗)
rμ (y∗) + (1 − r) λ (y∗)

(5)

Then r P + (1 − r) Q is the transition matrix of an irreducible Markov process, and ν =
tλ + (1 − t) μ is the unique stationary distribution of this process.

Consider a (completely mixed) behavior profile β, and fix a partition π and a coalition
S ∈ P(N ). Then, for any two strategies β1

S and β2
S that coincide with βS everywhere but in

π the transition matrices of the corresponding Markov processes differ only in column π .
That is, they satisfy the condition of Theorem 4.3. Thus, we obtain the following result.

Corollary 4.4 Let β ∈ 
ε , S ∈ P(N ), and π∗ ∈ � with S /∈ π∗. Let β
S
, βS be such that

β
S
(π) = βS (π) = βS (π) for all π �= π∗, and β

S
(π∗) = ε and βS (π∗) = 1 − ε. Let

r = 1−ε−βS(π∗)
1−2ε . Then

ui (β) = tui
(
β
S
, β−S

)
+ (1 − t) ui

(
βS, β−S

)

for all i ∈ N, where t is defined as in (5).

This solves the issue outlined above: For any behavior profile β, each player’s payoff from a
convex combination of two deviations of S at π is a convex combination of the payoffs from
the two deviations.

For all β ∈ 
ε
S let R

ε (β) = ×S∈P(N ) ×π∈� Rε
S,π (β). Then coalition behavior profile β

is a weak ε-equilibrium if and only if it is a fixed point of the correspondence β �→ Rε (β).
Thus, it is sufficient to prove that this correspondence has a fixed point. The most important
part, namely convexity, follows from Corollary, 4.4. The rest of the proof is in the appendix.

Theorem 4.5 For every hedonic coalition formation game (N , V ,→, ρ) and every ε > 0,
there is a weak ε-equilibrium.

5 Best Responses VersusWeak Best Responses

We have seen that the definition of weak ε-equilibria ensures stability against one-shot devia-
tion, but not necessarily against deviations at more than one state. So, the coalition formation
games that we have defined in Sect. 3 lack some kind of “one-shot-principle.” We shall pro-
vide an example here where a coalition does not have a one-shot deviation, i.e., is playing a
weak best response, but can find a better response by changing its behavior at two states.

Let N = {1, 2, 3} and v be the hedonic game given by v({1}) = 20, v({2}) = 0, v({3}) =
0, v({1, 2}) = (17, 14), v({1, 3}) = (17, 0), v({2, 3}) = (15, 0) and v(N ) = (1, 18, 0).
Let → be defined by the residual map γ in Example 2.3. Define three bijections ρ1, ρ2, ρ3 :
{1, . . . , 7} → P(N ) by
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(ρ1(1), ρ1(2), ρ1(3), ρ1(4), ρ1(5), ρ1(6), ρ1(7)) = ({1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}),
(ρ2(1), ρ2(2), ρ2(3), ρ2(4), ρ2(5), ρ2(6), ρ2(7)) = ({1, 2, 3}, {2, 3}, {1, 3}, {1, 2}, {3}, {2}, {1}),
(ρ3(1), ρ3(2), ρ3(3), ρ3(4), ρ3(5), ρ3(6), ρ3(7)) = ({1, 2}, {1, 3}, {2, 3}, {1, 2, 3}, {1}, {2}, {3}).

Let the partitions be numbered as in Example 2.2. Define the collection (ρπ )π∈� by ρπ0 =
ρπ3 = ρπ4 = ρ1, ρπ1 = ρ2 and ρπ2 = ρ3. Let S0 = {1, 2}. We now construct a behavior
profile β such that coalition S0 has a profitable deviation at β, but no one-shot deviation. For
all T �= S0 and all π ∈ � with T /∈ π let βT (π) = 1

20 . That is, β prescribes for any T �= S0

at any π with T /∈ π to form and deviate from π to π ′ with probability 1
20 and to remain at

π with probability 19
20 . For each k = 1, 2, 3, 4 let β p

S0
(
πk

) = 1− pk , where pk ∈ [ε, 1 − ε].

Then the transition matrix of the Markov process associated with profile
(
β
p
S0

, β−S0

)
is

P =

⎛

⎜⎜⎜⎜
⎝

p0(1 − x)3 x(1 − x)3(2 − x) p2(1 − x)2x(2 − x) x(2 − x) x(x2 − 3x + 3)
1 − p0 (1 − x)5 x (1 − x)2(1 − p3) (1 − x)3(1 − p4)

p0(1 − x)x x(1 − x) p2(1 − x)4 p3(1 − x)2x p4(1 − x)4x
p0x x(1 − x)2 x(1 − x) p3(1 − x)4 p4(1 − x)3x

p0(1 − x)2x x (1 − x)2(1 − p2) p3(1 − x)3x p4(1 − x)5

⎞

⎟⎟⎟⎟
⎠

.

where x = 1
20 . The stationary distribution of P , μ, is given by μ (πk) = μ(πk )∑k

l=1 μ(πl )
, where

μ(π0) = 2.659690476 1022 − 1.121619627 1022 p2 p3 p4 + 1.611058344 1022 p2 p3

+ 1.449336223 1022 p2 p4 + 1.442311007 1022 p3 p4 − 2.081799782 1022 p2

− 2.058328825 1022 p3 − 1.863704548 1022 p4

μ(π1) = 2.621440000 1023 + 1.207584620 1023 p0 p2 p3 p4 − 1.505504975 1023 p0 p2 p3

− 1.498726885 1023 p0 p2 p4−1.479293341 1023 p0 p3 p4−1.415672613 1023 p2 p3 p4

+ 1.859871285 1023 p0 p2 + 1.860700832 1023 p0 p3 + 1.831542937 1023 p0 p4

+ 1.739116855 1023 p2 p3 + 1.748510977 1023 p2 p4 + 1.725374942 1023 p3 p4

− 2.293812673 1023 p0 − 2.135179264 1023 p2 − 2.140798157 1023 p3

− 2.124770265 1023 p4

μ(π2) = 1.245184000 1022 − 5.434523952 1021 p0 p3 p4 + 7.432904695 1021 p0 p3

+ 7.042336316 1021 p0 p4 + 7.023069493 1021 p3 p4 − 9.632257219 1021 p0

− 9.608306688 1021 p3 − 9.101201613 1021 p4

μ(π3) = 1.242071040 1022 − 5.307293743 1021 p0 p2 p4 + 7.351769281 1021 p0 p2

+ 6.854619389 1021 p0 p4 + 6.950743632 1021 p2 p4 − 9.478516665 1021 p0

− 9.634996429 1021 p2 − 8.976693796 1021 p4

μ(π4) = 2.434498560 1022 − 1.319357013 1022 p0 p2 p3 + 1.705305641 1022 p0 p2

+ 1.467654760 1022 p0 p3 + 1.695404081 1022 p2 p3 − 1.896199018 1022 p0

− 2.191368192 1022 p2 − 1.884302724 1022 p3

The payoffs of players 1 and 2 are

u1
(
β
p
S0

, β−S0

)
= 20(μP (π0) + μP (π2)) + 17(μP (π1) + μP (π3)) + μP (π4)

u2
(
β
p
S0

, β−S0

)
= 14μP (π1) + 15μP (π4) + 18μP (π4).
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Let p∗
k = 19

20 for k = 0, 2, 3, 4. Then

d

dp0
u1

(
β
p∗
S0

, β−S0

)
> 0

d

dp0
u2

(
β
p∗
S0

, β−S0

)
< 0

d

dp2
u1

(
β
p∗
S0

, β−S0

)
> 0

d

dp2
u2

(
β
p∗
S0

, β−S0

)
< 0

d

dp3
u1

(
β
p∗
S0

, β−S0

)
> 0

d

dp3
u2

(
β
p∗
S0

, β−S0

)
< 0

d

dp4
u1

(
β
p∗
S0

, β−S0

)
< 0

d

dp4
u2

(
β
p∗
S0

, β−S0

)
> 0.

That is, for each k any change in p∗
k makes exactly one player better off and one player worse

off, so that S0 does not have any profitable one-shot deviations from
(
β
p∗
S0

, β−S0

)
.

Finally, define p̂ by p̂0 = p̂2 = 19
20 and p̂3 = p̂4 = 1

20 . Then

u1
(
β
p̂
S0

, β−S0

)
= 17.72703770896 > 16.2479670393 = u1

(
β
p∗
S0

, β−S0

)

u2
(
β
p̂
S0

, β−S0

)
= 9.19781147654 > 7.4664207782 = u2

(
β
p∗
S0

, β−S0

)

That is, by changing their behavior both at π3 and at π4 both members of S0 can strictly
improve their payoffs.
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A Proofs

Proof of Theorem 2.5 Let π be a partition and S be a nonempty coalition. If S ∈ π , then
π ′ = π by H1, H2 and H3. So, let S /∈ π . Then, by H2 and H4, π →S π ′ only if

π ′ = {τ(i | π, S)}i∈π(S) ∪ {T ∈ π : T ∩ S = ∅} , (6)

where τ is the residual map specified by H4. By H3, there is some π ′ with π →S π ′. Thus,
π →S π ′ if and only if π ′ satisfies (6). In particular π ′ is uniquely determined by τ , which
completes the proof. �	
Proof of Lemma 3.7 We first show that for any two partitions π , π , there are an integer m,
partitions π1, . . . , πm , and coalitions S1, . . . , Sm+1 such that π →S1 π1, π l−1 →Sl π l for
l = 2, . . . ,m, and πm →Sm+1 π . To see this, let π∗ = {{i}}i∈N . It is sufficient to show that
the claim is true for any π and π = π∗, as well as for any π and π = π∗. To see the first
case, observe that for any i, j ∈ N and any partition π with { j} ∈ π , there is π ′ with {i} ∈ π ′
and π →{i} π ′ by H3. Moreover, {i} ∈ π ′ by H1 and { j} ∈ π ′ by H2. Thus, the successive
deviation of singletons will lead from π to π∗. On the other hand, let π = {

R1, . . . , Rm
}
,

http://creativecommons.org/licenses/by/4.0/


Dynamic Games and Applications (2023) 13:462–479 475

and let π l = {
R1, . . . , Rl

} ∪ {{i}}i∈∪m
h=l+1R

h for all l = 1, . . . ,m. Then π∗ →R1 π1 and

π l−1 →Rl π l for l = 2, . . . ,m by H2. As π = πm , the claim is proven.
Next observe that 0 < Pβ

π,π < 1 for all π ∈ � by Eq. (2). Moreover, for each partition π

and each coalition S, there is a positive chance that all coalitions preceding S (according to
ρπ ) will stay at π , so that S will be able to implement its move with positive probability. This
is, in particular, true for the coalitions that have been used in the first part of the proof. Thus,

for anyπ, π ′ ∈ �, there is a positive chance of amove fromπ toπ ′, that is,
((

Pβ
)m)

π ′,π
> 0

for some m ∈ N. �	

Proof of Theorem 4.3 Surely, the new Markov with transition matrix r P + (1 − r) Q is irre-
ducible. Thus, it has a unique stationary distribution, and it is sufficient to show that it is
ν. That is, we have to show that ν is a strictly positive probability distribution over X ,
and that (r P + (1 − r) Q) ν = ν. Clearly,

∑
x∈X ν(x) = 1. Moreover, by construction,

rμ (y∗) + (1 − r) λ (y∗) > 0, so that t is well defined. Thus, ν(x) > 0 for all x ∈ X .
Further,

(1 − r) tλ
(
y∗) − r (1 − t) μ

(
y∗) = (1 − r) rμ (y∗) λ (y∗)

rμ (y∗) + (1 − r) λ (y∗)
− r (1 − r) λ (y∗) μ (y∗)

rμ (y∗) + (1 − r) λ (y∗)
= 0.

Thus, recalling that Pλ = λ and Qμ = μ, and denoting by P.,y∗ and Q.,y∗ the y∗-th coloumn
of P and Q, respectively, we find

(r P + (1 − r) Q) ν = r t Pλ + r(1 − t)Pμ + (1 − r)t Qλ + (1 − r)(1 − t)Qμ

= tλ−(1−r)t Pλ+(1−t)μ−r(1−t)Qμ + r(1 − t)Pμ + (1 − r)t Qλ

= tλ + (1 − t)μ + r(1 − t) (P − Q) μ + (1 − r)t (Q − P) λ

= ν + r(1 − t)μ
(
y∗) (

P.,y∗ − Q.,y∗
) + (1 − r)tλ

(
y∗) (

Q.,y∗ − P.,y∗
)

= ν + (
r(1 − t)μ

(
y∗) − (1 − r)tλ

(
y∗)) (

P.,y∗ − Q.,y∗
)

= ν,

which proves, together with Proposition 3.2, that ν is the stationary distribution of r P +
(1 − r) Q. �	

Proof of Corollary 4.4 Let P = P

(
β
S
,β−S

)

, let P = P
(
βS ,β−S

)
, and observe that the corre-

sponding Markov processes are irreducible by Lemma 3.7. First note that

rβ
S

(
π∗) + (1 − r) βS

(
π∗) = 1 − ε − βS (π∗)

1 − 2ε
ε + βS (π∗) − ε

1 − 2ε
(1 − ε) = βS

(
π∗) ,

so that rβ
S

+ (1 − r) βS = βS . We show that Pβ = r P + (1 − r) P . Surely, Pβ

π ′,π =
Pπ ′,π = Pπ ′,π for all π ′ ∈ � and all π �= π∗, so that Pβ

π ′,π = r Pπ ′,π + (1 − r) Pπ ′,π for
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all π ′ ∈ � and all π �= π∗. Let l∗ be such that ρπ∗
(l∗) = S. Then

Pβ
π∗,π∗ =

(
1 −

(
rβ

S

(
π∗) + (1 − r) βS

(
π∗))) 2|N |−1∏

l �=l∗

(
1 − βρ(l)

(
π∗))

= r
(
1 − β

S

(
π∗))

2|N |−1∏

l �=l∗

(
1 − βρ(l)

(
π∗))

+ (1 − r)
(
1 − βS

(
π∗))

2|N |−1∏

l �=l∗

(
1 − βρ(l)

(
π∗))

= r Pπ∗,π∗ + (1 − r) Pπ∗,π∗ .

Moreover, for π ′ �= π∗ we have

Pβ

π ′,π∗ =
∑

l:π∗→
ρπ∗

(l)
π ′

βρπ∗
(l)

(
π∗) ∏

h<l

(
1 − βρπ∗

(h)

(
π∗))

=
∑

l<l∗:π∗→
ρπ∗

(l)
π ′

βρπ∗
(l)

(
π∗) ∏

h<l

(
1 − βρπ∗

(h)

(
π∗))

+
(
rβ

ρπ∗
(l∗)

(
π∗) + (1 − r) βρπ∗

(l∗)
(
π∗)) ∏

h<l∗

(
1 − βρπ∗

(h)

(
π∗))

+
∑

l>l∗:π∗→
ρπ∗

(l)
π ′

βρπ∗
(l)

(
π∗) ∏

h<l,h �=l∗

(
1 − βρπ∗

(h)

(
π∗))

·
(
1 −

(
rβ

ρπ∗
(l∗)

(
π∗) + (1 − r) βρπ∗

(l∗)
(
π∗)))

= r

⎛

⎜
⎝

∑

l<l∗:π∗→
ρπ∗

(l)
π ′

βρπ∗
(l)

(
π∗) ∏

h<l

(
1 − βρπ∗

(h)

(
π∗))

+ β
ρπ∗

(l∗)

∏

h<l∗

(
1 − βρπ∗

(h)

(
π∗))

+
∑

l>l∗:π∗→
ρπ∗

(l)
π ′

βρπ∗
(l)

(
π∗) (

1 − β
ρπ∗

(l∗)
(
π∗)) ∏

h<l,h �=l∗

(
1 − βρπ∗

(h)

(
π∗))

⎞

⎟
⎠

+ (1 − r)

⎛

⎜
⎝

∑

l<l∗:π∗→
ρπ∗

(l)
π ′

βρπ∗
(l)

(
π∗) ∏

h<l

(
1 − βρπ∗

(h)

(
π∗))

+ βρπ∗
(l∗)

(
π∗) ∏

h<l∗

(
1 − βρπ∗

(h)

(
π∗))

+
∑

l>l∗:π∗→
ρπ∗

(l)
π ′

βρπ∗
(l)

(
π∗) (

1 − βρπ∗
(l∗)

(
π∗)) ∏

h<l,h �=l∗

(
1 − βρπ∗

(h)

(
π∗))

⎞

⎟
⎠

= r Pπ ′,π∗ + (1 − r) Pπ ′,π∗ .
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Hence, we find that Pβ = r P + (1 − r) P . Thus, by Theorem 4.3, the Markov process

associated with behavior profile β =
(
rβ

S
+ (1 − r) βS, β−S

)
has the unique stationary

distribution ν = tμ + (1 − t) μ, where μ and μ are the stationary distributions of P and P ,
respectively. Thus, by Eq. (4), we obtain

ui (β) = ui
(
rβ

S
+ (1 − r) βS, β−S

)

=
∑

π∈�

ν (π) Vi (π) =
∑

π∈�

tλ (π) Vi (π) + (1 − t) μ (π) Vi (π)

= tui
(
β
S
, β−S

)
+ (1 − t) ui

(
βS, β−S

)

for all i ∈ N . �	

Proof of Theorem 4.5 It is sufficient to show that the correspondence 
ε ⇒ 
ε with β �→
Rε(β) has a fixed point. To that end we first show that Rε(β) is the product of nonempty,
compact, and convex sets, and then that the correspondence is upper hemi-continuous. �	

Lemma A.1 Let S ∈ P(N ), β ∈ 
ε , and π∗ ∈ � with S /∈ π∗. Then Rε
S,π∗ (β) is nonempty,

compact, and convex.

Proof Let β
S
and βS be defined as in Corollary 4.4. We show that

Rε
S,π∗ (β) =

⎧
⎪⎪⎨

⎪⎪⎩

{ε} if ui
(
β
S
, β−S

)
> ui

(
βS, β−S

)
for all i ∈ S

{1 − ε} if ui
(
β
S
, β−S

)
< ui

(
βS, β−S

)
for all i ∈ S

[ε, 1 − ε] otherwise.

The first two cases are clear, and their proofs are omitted. So, suppose that neither case
applies. Then there are i, j ∈ S (potentially i = j) such that

ui
(
β
S
, β−S

)
≤ ui

(
βS, β−S

)
(7)

u j

(
β
S
, β−S

)
≥ u j

(
βS, β−S

)
. (8)

Let q ∈ [ε, 1 − ε] and assume that q /∈ Rε
S,π∗ (β). Then there is q∗ ∈ [ε, 1 − ε] such that

uk (q∗, βS (−π∗) , β−S) > uk (q, βS (−π∗) , β−S) for all k ∈ S. Let r = 1−ε−q
1−2ε and r∗ =

1−ε−q∗
1−2ε and note that (q, βS (−π∗)) = rβ

S
+ (1 − r)βS and, similarly, (q∗, βS (−π∗)) =

r∗β
S

+ (1 − r∗) βS . Define t and t∗ as in (5) for r and r∗, respectively. If t∗ ≥ t , then, by
Corollary 4.4 and (7),

ui
(
q∗, βS

(−π∗) , β−S
)

> ui
(
q, βS

(−π∗) , β−S
) = ui

(
rβ

S
+ (1 − r)βS, β−S

)

= tui
(
β
S
, β−S

)
+ (1 − t) ui

(
βS, β−S

)

≥ t∗ui
(
β
S
, β−S

)
+ (

1 − t∗
)
ui

(
βS, β−S

)

= ui
(
r∗β

S
+ (1 − r∗)βS, β−S

)

= ui
(
q∗, βS

(−π∗) , β−S
)
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which is impossible; and if t∗ ≤ t , then, similarly with (8),

u j
(
q∗, βS

(−π∗) , β−S
)
>u j

(
q, βS

(−π∗) , β−S
)= tu j

(
β
S
, β−S

)
+(1 − t) u j

(
βS, β−S

)

≥ t∗u j

(
β
S
, β−S

)
+ (

1 − t∗
)
u j

(
βS, β−S

)

= u j
(
q∗, βS

(−π∗) , β−S
)
,

which is impossible as well. Hence, q ∈ Rε
S,π∗ (β), i.e., Rε

S,π∗ (β) = [ε, 1 − ε]. �	
We next show that the correspondence
ε ⇒ 
ε with β �→ Rε(β) is upper hemicontinuous.

Lemma A.2 The correspondence 
ε ⇒ 
ε with β �→ Rε(β) is upper hemicontinuous.

Proof Let (βn)n∈N be a converging sequence of mixed behavior profiles βn ∈ 
ε with
limn→∞ βn = β, and let (γ n)n∈N be a sequence with γ n ∈ Rε (βn) for all n ∈ N.
As Rε (βn) ⊆ 
ε for all n ∈ N and the latter is compact, there is a converging sub-
sequence (γ nk )k∈N with γ = limk→∞ γ nk ∈ 
ε . Assume that γ /∈ Rε (β). Then
there are S ∈ P(N ) and π∗ ∈ � such that γS (π∗) /∈ Rε

S,π∗ (β). Thus, there is
q ∈ [ε, 1 − ε], such that ui (q, βS (−π∗) , β−S) > ui (γS (π∗) , βS (−π∗) , β−S). Let(
qk

)
k∈N be a sequence in [ε, 1 − ε] such that limk→∞ qk = q . Moreover, let δ =

ui (q, βS (−π∗) , β−S) − ui (γS (π∗) , βS (−π∗) , β−S) > 0. By the continuity of ui there is
K 1 ∈ N such that

∣∣ui
(
γ
nk
S (π∗) , β

nk
S (−π∗) , β

nk−S

) − ui (γS (π∗) , βS (π∗) , β−S)
∣∣ < 1

2 δ

for all k ≥ K 1 and all i ∈ S. For the same reason, there is K 2 ∈ N such that∣∣ui
(
qk, βnk

S (−π∗) , β
nk−S

) − ui (q, βS (−π∗) , β−S)
∣∣ < 1

2 δ for all k ≥ K 2 and all i ∈ S.
Thus, for all k ≥ max

{
K 1, K 2

}
and all i ∈ S

ui
(
qk, βnk

S

(−π∗) , β
nk−S

)
> ui

(
q, βS

(−π∗) , β−S
) − 1

2
δ

≥ ui
(
γS

(
π∗) , βS

(−π∗) , β−S
) + 1

2
δ

> ui
(
γ
nk
S

(
π∗) , β

nk
S

(−π∗) , β
nk−S

)
.

But this is a contradiction as γ nk (π∗) ∈ Rε
S,π∗ (βnk ) by construction. Hence, γ ∈ R∗ (β),

which proves upper hemicontinuity. �	
By Lemmas A.1, A.2, and Kakutani’s fixed point theorem, there is β ∈ 
ε such that β ∈
Rε (β). By the definition of Rε (β), such a behavior profile is a weak ε-equilibrium. �	
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