
Dynamic Games and Applications (2023) 13:440–461
https://doi.org/10.1007/s13235-022-00465-9

Social Rationalizability with Mediation

P. Jean-Jacques Herings1 · Ana Mauleon2,3 · Vincent Vannetelbosch3

Accepted: 15 July 2022 / Published online: 23 August 2022
© The Author(s) 2022

Abstract
We propose a solution concept for social environments called social rationalizability with
mediation that identifies the consequences of common knowledge of rationality and farsight-
edness. In a social environment several coalitions may and could be willing to move at the
same time. Individuals not only hold conjectures about the behaviors of other individuals but
also about how a mediator is going to solve conflicts of interest. The set of socially rational-
izable outcomes with mediation is shown to be non-empty for all social environments, and
it can be computed by an iterative reduction procedure. We show that social rationalizabil-
ity with mediation does not necessarily satisfy coalitional rationality when the number of
coalition members is greater than two.
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JEL Classification C70 · C72 · C78

1 Introduction

Social environments [4] constitute a framework in which it is possible to study how groups
of agents interact in a society. It specifies what each coalition can do if and when it forms.
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Social environments are general enough to encompass the representation of a cooperative
game, an extensive-form game with perfect information, as well as a normal-form game.1

We propose a new solution concept for social environments called social rationalizability
with mediation that identifies the consequences of common knowledge of rationality and
farsightedness. Given that social environments mainly deal with the behavior of coalitions,
whereas rationalizability is about the implications of rationality of individuals, we convert
coalitional behavior into individual behavior. Individual participation in a coalition basically
reverts either to agree to a coalitional move or to object to it and block it. In a social envi-
ronment several coalitions may and could be willing to move at the same time. Conflicts of
interest may arise: one coalition may try to preempt the move of another coalition or coor-
dination problems in and between coalitions may arise. We assume that individuals not only
hold conjectures about the behaviors of other individuals but also about how a mediator is
going to solve conflicts of interest.

In the rationalizability approach, conjectures are not assumed to be correct, but are only
constrained by considerations of rationality: individuals are rational and this is common
knowledge. That is, each individual believes that the behavior of every other individual is
a best response to some conjecture on every other individual’s behavior, and further, each
individual assumes that every other individual reasons in this way and hence believes that
every other individual believes that every other individual’s behavior is a best responses to
some conjecture, and so on.

Central to social rationalizability with mediation are the notions of individual behavior
and of conjectures about the mediator’s behavior. An individual behavior describes, for each
history, the coalitional moves the individual agrees to join and those she decides to block.
The mediator (player 0 whose payoff is always zero) chooses a move for each possible set of
moves on which the individuals could agree to join, and individuals hold conjectures about
the behavior of themediator. Our definition of social rationalizability ismotivated by Pearce’s
[22] original extensive-form rationalizability.2

We show that the set of socially rationalizable outcomes with mediation is non-empty for
all social environments and it can be computed by an iterative reduction procedure. Since
social environments deal with coalitional moves, one may wonder if social rationalizability
withmediation satisfies, in general, the property of coalitional rationality. That is, in a situation
in which a coalition of two or more individuals can move from a status quo to different
outcomes that are Pareto ranked, does social rationalizability with mediation prescribe that
players coordinate on the outcome that Pareto dominates all others? We find that social
rationalizability with mediation does not necessarily satisfy coalitional rationality when the
number of coalition members is greater than two.

The most closely related paper to ours is Herings, Mauleon and Vannetelbosch [18] who
also define rationalizability for social environments. There are two main differences. First,
they do not define rationalizability directly on the social environment but rather embed the
social environment in a multi-stage game and then use the notion of extensive-form game
rationalizability by Pearce [22] to solve the multi-stage game. Second, their mediator is
a dummy player whose payoff is always zero but who chooses an action consisting of a
permutation on the set of feasible moves after each history. Such a permutation indicates

1 Chwe [4] and Xue [27] propose, respectively, the largest consistent set and the optimistic or conservative
stable standards of behavior as solution concepts for social environments. The largest consistent set may fail
to satisfy individual rationality while the stable standards of behavior may be empty-valued or rule out too
much.
2 Related papers to extensive-form rationalizability are among others Bernheim [2], Shimoji andWatson [25],
Vannetelbosch [26].
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the order according to which moves are implemented. Suppose that, from a status quo,
individuals can move to three outcomes x1, x2, and x3. The mediator imposes a ranking over
those three outcomes, for instance, (x2, x3, x1). If the individuals find the moves to x1, x2,
and x3 acceptable, then x2 is implemented. If they only agree on x1 and x2, then x2 is still
implemented. Such behavior of the dummy player guarantees that individuals coordinate on
the Pareto-dominant outcome. However, with a more general mediator, it may happen that
if the individuals find the moves to x1, x2, and x3 acceptable, then the mediator chooses
to implement x2. But, if they only agree on x1 and x2, then she chooses to implement x1
instead. We show that once the behavior of the mediator is not constrained to the choice of
a permutation over alternatives, individuals may fail to coordinate on the Pareto-dominant
outcome.

Besides the largest consistent set and the optimistic or conservative stable standards of
behavior, another common notion for analyzing outcomes that emerge in the long run when
individuals are farsighted is the farsighted stable set [4, 11, 19, 23].3 However, the farsighted
stable set suffers from a conceptual drawback: the maximality issue. For instance, while
coalitional moves improve on existing outcomes along a farsighted objection, coalitions
might do even better by an alternative deviation. Dutta and Vohra [8] propose the rational
expectations farsighted stable set and the strong rational expectations farsighted stable set
that restrict coalitions to hold common, history-independent expectations that incorporate
maximality regarding the continuation path. More recently, Ray and Vohra [24] incorporate
absolute maximality into the definition of the farsighted stable set. Absolute maximality
requires immunity to all deviations, not just by the coalition that moves or by those coalitions
that intersect the one that moves. Asking for maximality can be interpreted as imposing
coalitions to play a form of coalitional best responses. We find that social rationalizability
may violate coalitional rationality. In other words, the rationality of individuals is not enough
to guarantee that coalitional best responses or maximality do emerge endogenously.

The paper is organized as follows. In Sect. 2 we define social environments and social
rationalizability with mediation and we provide an illustration. In Sect. 3 we show that social
rationalizability with mediation satisfies two-player coalitional rationality, while in Sect. 4
we show that coalitional rationality does not necessarily hold for larger coalitions. In Sect. 5
we provide an alternative definition of social rationalizability with mediation and we show
the equivalence with our original definition. Finally, we show that, if we restrict the behavior
of the mediator to be consistent with a permutation over alternatives, then we can guarantee
that individuals coordinate on the Pareto-dominant outcome.

2 Rationalizable Social Behaviors with Mediation

2.1 Social Environments

We study a social environment � = 〈I , Z , (ui )i∈I , {→S}S⊆I ,S �=∅, x0〉, where I is the finite
set of individuals, Z is the finite set of outcomes, {→S}S⊆I ,S �=∅ are effectiveness relations
defined on Z , for every individual i ∈ I , ui : Z → R is her utility function, and x0 ∈ Z is
the initial status quo. The relation →S represents what coalition S can do: x →S y means
that if x is the current status quo, then coalition S can make y the new status quo. It does

3 Alternative notions of farsightedness are suggested by Bloch and van den Nouweland [3], Diamantoudi and
Xue [5], Dutta et al. [6], Dutta and Vohra [8], Dutta and Vartianen [7], Herings et al. [11–14], Karos and Robles
[15], Kimya [16], Luo et al. [17], Mauleon and Vannetelbosch [18], Page et al. [21], and Page and Wooders
[20] among others.
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Fig. 1 An example of a social
environment with two individuals

x1 (1, 1) x0 (0, 0) x2 (2, 2)

x3 (3, 3)

{1, 2 {} 1, 2}

{1, 2}

not mean that coalition S can enforce y no matter what anyone else does; after S moves to
y from x, another coalition S′ might move to z, where y →S′ z. A priori no restrictions are
imposed on the effectiveness relations {→S}S⊆I ,S �=∅. For example, the effectiveness relation
can be empty, x →S x is allowed for, and x →S y does not imply y →S x . All actions or
moves are public and the individuals care only about the end outcome. Both non-cooperative
and cooperative games can be modeled as a social environment. The definition of a social
environment follows Chwe [4], except that our theory allows the set of stable outcomes to
depend on the initial status quo, which is therefore an explicit part of the description of our
social environment.

Figure 1presents an example of a social environment inwhich a coalitionof two individuals
may decide tomove from the initial status quo x0,where they both get a utility of 0, to outcome
x1 and getting both 1 unit of utility, or to outcome x2 and obtaining 2 units of utility each, or
to outcome x3 and receiving both 3 units of utility. The social environment is therefore given
by I = {1, 2}, Z = {x0, x1, x2, x3}, for k = 1, 2, 3, x0 →I xk are the only possible moves,
and, for i = 1, 2, for k = 0, 1, 2, 3, ui (xk) = k.

2.2 Individual and Social Behaviors

In what follows, we denote the move x →S y of coalition S from x to y by (xy, S).
When none of the coalitions is willing and able to move at x, then the no-move results,
which is denoted by (xx,∅). One has to distinguish between (xx,∅) and (xx, {i}). Indeed,
(xx, {i}) means that individual i can move from x to x . The set of all possible moves is
given by M = {(xy, S) | x, y ∈ Z , x →S y}. The set of all possible no-moves is equal
to N = {(xx,∅) | x ∈ Z}. We denote by h = (x0,m1,m2, . . . ,mk−1) a history of length
k, where x0 ∈ Z is the initial status quo, for j = 1, . . . , k − 2, m j = (m−

j m
+
j ,mc

j ) ∈ M ,

mk−1 ∈ M ∪ N , m−
1 = x0, and m

+
j = m−

j+1. The length of a history h is denoted by �(h).

The set of all histories is denoted by H∗. The set of all histories h ∈ H∗ such that
m�(h)−1 ∈ M, i.e., the set of non-terminal histories, is denoted by H . The set of feasible
moves after a non-terminal history h ∈ H is given by M(h) = {m ∈ M | m− = h+}
and, for i ∈ I , Mi (h) = {(xy, S) ∈ M(h) | i ∈ S} denotes the set of feasible moves after
history h involving individual i . The set containing the no-move after a non-terminal history
h is given by N (h) = {(h+h+,∅)}. There are no feasible moves after a history h such that
m�(h)−1 ∈ N , i.e., a terminal history.

To make the length of a history h explicit, we sometimes use the notation hk , where k is
the length of the history. Let h− = x0 be the initial status quo of h and h+ = m+

�(h)−1 be the
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end outcome of h. Given hk and j, k ∈ N with j ≤ k, we call h j a sub-history of hk if h j

consists of the first j elements of hk , and we write h j ≤ hk .4 If we write h j < hk, then h j

is a proper sub-history of hk, so j < k.
We denote by H(J ) the set of non-terminal histories with at most J moves. That is,

H(J ) = {h ∈ H | �(h) ≤ J + 1}. Temporarily, we fix J and consider only histories
in H(J ). Let Hi (J ) = {h ∈ H(J ) | Mi (h) �= ∅} be the set of non-terminal histories that
contain at most J moves and after which individual i is involved in a move. A social behavior
selects after any non-terminal history a move or the no-move. A social behavior is denoted
by s = (s(h))h∈H(J ), where s(h) ∈ M(h) ∪ N (h). Let SB be the set of all social behaviors.
Our aim is to find those social behaviors that are rationalizable. From the rationalizable social
behaviors, we derive the set of outcomes that are stable. To do this, we examine individual
behaviors first.

We model an individual behavior as, for each relevant history, the set of coalitional moves
the individual agrees to join and those she decides to block. Observe that the framework
of social environments does not exclude that an individual might agree to join more than
one coalitional move. Formally, a behavior of individual i is bi = (bi (· | h))h∈Hi (J ), where
bi (· | h) : Mi (h) → {0, 1}. If bi ((xy, S) | h) = 1 then i ∈ S agrees to join in the potential
move of coalition S from x to y. If bi ((xy, S) | h) = 0 then i ∈ S blocks the move of
coalition S from x to y. The set of all possible behaviors of individual i is denoted by Bi .

Let H0(J ) = {h ∈ H(J ) | M(h) �= ∅} be the set of histories that contain at most J moves
and after which there is at least one feasible move. It may happen that the individuals agree
on more than one move. We denote by M(h) = {M | M ⊆ M(h)} the collection of sets
of feasible moves after h ∈ H0(J ). Notice that M(h) contains at least two elements, one
of which is the empty set. For every history h ∈ H0(J ), the so-called agreement function
is a mapping f (· | h) : ∏

i∈I Bi → M(h) which associates to the profiles of individual
behaviors the set ofmoves after history h onwhich there is agreement, so f ((bi )i∈I | h) = M
if ∀(xy, S) ∈ M,∀i ∈ S, we have bi ((xy, S) | h) = 1 and ∀(xy, S) ∈ M(h) \ M , ∃i ∈ S
such that bi ((xy, S) | h) = 0. Notice that by this definition we have f ((bi )i∈I | h) = ∅ if
there is no move on which there is agreement.

A social behavior is inducedby a profile of individual behaviors if for each history themove
prescribed by the social behavior is a move on which there is agreement by all individuals
involved in the move, and the no-move when no agreement is possible. A profile of individual
behaviors may induce, potentially, multiple social behaviors.

2.3 Beliefs, Conjectures, and Payoffs

A problem or a conflict may arise when there are several moves on which agreement is
possible. We assume that there is a mediator, referred to as player 0, who always obtains a
payoff of zero. The mediator chooses one move among any set of possible agreements after
history h ∈ H0(J ). Histories h ∈ H(J ) \ H0(J ) are automatically followed by the no-move
in N (h). Let b0 = (b0(· | h))h∈H0(J ) be a behavior of player 0, where b0(· | h) : M(h) →
M(h) ∪ N (h) and b0(M | h) ∈ M whenever M �= ∅. If M = ∅, then b0(M | h) ∈ N (h).

Let B0 be the set of behaviors of player 0.
Rationalizability assumes that individuals form conjectures about each others’ behavior,

including the behavior of the mediator, player 0, and then optimize subject to these con-

4 A history is different from a path as used in the theory of stable standards of behavior. A path only gives a
sequence of outcomes, whereas for a history it also matters which coalition makes the move from one outcome
to another.
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jectures. We restrict the individuals to hold uncorrelated conjectures about the behaviors
of their opponents and player 0. After each history h ∈ Hi (J ) at which individual i is
involved in a move, she holds such conjectures. A conjecture of individual i is a mapping
ci : Hi (J ) → ∏

j �=i �(Bj ) × �(B0).5 For b−i ∈ ∏
j �=i B j , we denote by ci (h′)(b−i ) the

probability individual i conjectures at history h′ that her opponents’ behavior is b−i . We
denote by c ji (h

′)(b j ) ∈ �(Bj ) the probability individual i conjectures at history h′ that
player j’s behavior is b j , and by c0i (h

′)(b0) ∈ �(B0) the probability individual i conjectures
at history h′ that player 0’s behavior is b0.

A profile (bi , b−i , b0) ∈ Bi ×∏
j �=i B j × B0 is said to allow for h = (x0,m1, . . . ,mk) ∈

Hi (J ) if

(i) ∀ j ∈ {1, . . . , k}, ∀i ∈ mc
j , bi (m j | h j ) = 1,

(ii) ∀ j ∈ {1, . . . , k}, b0( f ((bi )i∈I | h j ) | h j ) = m j .

A conjecture ci is said to allow for h ∈ Hi (J ) if there is bi ∈ Bi and (b−i , b0) in the support
of ci such that (bi , b−i , b0) allows for h. A behavior bi ∈ Bi and set A−i ⊆ ∏

j �=i B j is said
to allow for h if there is (b−i , b0) ∈ A−i × B0 such that (bi , b−i , b0) allows for h.

2.4 Social Rationalizability with Mediation

We next propose a definition of social rationalizability with mediation that is motivated by
extensive-form rationalizability as defined in Pearce [22] and is based on a reduction proce-
dure. Social rationalizability is derived from two assumptions: (1) individuals are rational,
and (2) this is common knowledge at the initial status quo. A rational individual i maximizes
her expected payoff at each history h reached by the play, subject to her consistent updating
system of conjectures, ci .

Definition 1 A consistent updating system for individual i is a mapping ci : Hi (J ) →∏
j �=i �(Bj ) × �(B0) such that, for all g, h ∈ Hi (J ),

(i) ci (h) allows for h,
(ii) if g < h and ci (g) allows for h, then ci (g) = ci (h).

The consistency of the updating system requires that the conjecture at history h is such that
h is allowed for and that no conjecture is changed unless falsified. Notice that a conjecture
of individual i at history h is an element of

∏
j �=i �(Bj )×�(B0), so describes the behavior

of the other players for every possible sequence of moves. The conjecture at history h serves
as the prior. To form the posterior, individuals update according to Bayes rule.

The following example illustrates Bayesian updating on the basis of a consistent updating
system.

Example 1 Consider the social environment �, where I = {1, 2}, Z = {x0, x1, x2, x3}, and
the feasible moves are given by x0 →{1} x1, x1 →{2} x2, and x2 →{1} x3. We do not specify
utility functions as they are irrelevant for this illustration. The set H consists of four non-
terminal histories, h0 = (x0), h1 = (x0, (x0x1, {1})), h2 = (x0, (x0x1, {1}), (x1x2, {2})),
and h3 = (x0, (x0x1, {1}), (x1x2, {2}), (x2x3, {1})).After history h3, the no-move is the only
possibility. For J ≥ 3, the set H0(J ) of histories after which there is at least one feasiblemove
consists of the histories h0, h1, and h2. We have that M(h0) = M1(h0) = {(x0x1, {1})},
5 As general notation, we denote by �(X) the set of all probability measures on a finite set X and by �◦(X)

the set of all probability measures giving positive probability to each member of X .
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M(h1) = M2(h1) = {(x1x2, {2})}, and M(h2) = M1(h2) = {(x2x3, {1})}. Since there is
only one feasible move after each history, there is no need to introduce the mediator.

There are two possible behaviors for individual 2, b2 and b′
2, where b2(x1x2, {2}) = 0

and b′
2(x1x2, {2}) = 1, which indicate that individual 2 is willing, respectively not willing,

to move from state x1 to state x2. Individual 1 forms conjectures at histories h0 and h2.
Consider the case where c21(h0)(b2) = 1/2 and c21(h0)(b

′
2) = 1/2, so at h0, individual 1

considers both behaviors of individual 2 equally likely. Since c21 allows for h2, consistency of
the updating system requires that the conjectures of individual 1 at h2 coincide with those at
h0, so c21(h2) = c21(h0), which implies c21(h2)(b2) = 1/2 and c21(h2)(b

′
2) = 1/2. Applying

Bayes rule using the conjecture c21(h2) as prior yields that at h2 individual 1 puts weight 1
on b2 and weight 0 on b′

2.

Consider next the case where c21(h0)(b2) = 1 and c21(h0)(b
′
2) = 0, so at h0 individual 1

is certain that individual 2 behaves in conformity with b2. Since c21 does not allow for h2,
consistency of the updating system imposes no restrictions on c21(h2). For instance, one
possibility is c21(h2)(b2) = 1/3 and c21(h2)(b

′
2) = 2/3. Applying Bayes rule using the

conjecture c21(h2) as prior implies that at h2 individual 1 puts weight 1 on b2 and weight 0
on b′

2.

Formally, social rationalizability with mediation is the result of a reduction procedure that
is defined as follows.

Definition 2 Let P0 = ∏
i∈I Bi . For n ≥ 1, Pn = ∏

i∈I Pn
i is inductively defined as follows:

for all i ∈ I , bi ∈ Pn
i if

(i) bi ∈ Pn−1
i ,

(ii) there exists a consistent updating system ci such that for all h′ ∈ Hi (J ) that are allowed
by bi and Pn−1

−i it holds that

(iia) ci (h′) ∈ ∏
j �=i �

◦(Pn−1
j ) × �◦(B0),

(iib) for all b̂i ∈ Pn−1
i , Ui (h′)(bi , ci ) ≥ Ui (h′)(bi/b̂h

′
i , ci ), where Ui (h′)(bi , ci ) denotes

the expected payoff of individual i given (bi , ci ) conditional on reaching history h′ and
bi/b̂h

′
i is the behavior which results from bi when behavior at h′ and its followers g > h′

is specified by b̂i .

The set P∞(J ) = limn→∞ Pn is the set of rationalizable individual behaviors where histo-
ries contain at most J moves.

In Definition 2 individuals are cautious, meaning that they assign positive probability to
all behaviors of their opponents in Pn−1

−i and of player 0 in B0.

Let S∞(J ) denote the set of rationalizable social behaviors. A social behavior s ∈ SB
belongs to S∞(J ) if there exists (bi )i∈I ∈ P∞(J ) such that, for every h ∈ H(J ), s(h) ∈
M(h) implies s(h) ∈ f ((bi )i∈I | h) and s(h) ∈ N (h) implies f ((bi )i∈I | h) = ∅.

Let h−1({x}) = {h ∈ H(J + 1) | �(h) = J + 2 and h+ = x} ∪ {h ∈ H∗ \ H(J + 1) |
�(h) ≤ J + 2 and h+ = x} be the set of histories of length at most J + 2 ending at x ∈ Z .
We denote by Z∞

J (x0) the set of rationalizable outcomes with initial status quo x0 ∈ Z . It
is given by Z∞

J (x0) = {x ∈ Z | ∃(x0,m1, . . . ,mk) ∈ h−1({x}), ∃s ∈ S∞(J ) such that
∀ j = 1, . . . , k, s(x0,m1, . . . ,m j−1) = m j }. The set of socially rationalizable outcomes,
Z∞(x0), is obtained by letting J go to infinity, Z∞(x0) = lim supJ→∞ Z∞

J (x0). The set of
socially rationalizable outcomes is allowed to depend on the initial state x0. This is different
from the largest consistent set as defined in Chwe [4], which does not allow for such a
dependence.

The set of socially rationalizable outcomes is never empty.
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Theorem 1 Z∞(x0) �= ∅.

The proof of this theorem is similar to the proof of Theorem 2 in Herings et al. [10] and
is therefore omitted.

2.5 An Illustration

Remember that individuals hold conjectures about how a mediator (or a player whose payoff
is always zero) is going to choose a move among any set of feasible moves after any history.
That is, each individual who has the possibility of moving after a certain history holds beliefs
about the move chosen by the mediator (i.e., player 0) for each possible set of moves on
which the individuals could agree to join. Then, given the conjecture of individual i about the
others’ behavior and her belief on the moves chosen by player 0 among any set of feasible
moves, individual i chooses the behavior that maximizes her expected utility.

For the social environment of Fig. 1, social rationalizability with mediation works as
follows. To simplify notation, we denote by (1, 0, 1) for instance the behavior of player i
when bi ((x1, {1, 2}) | (x0)) = 1, bi ((x2, {1, 2}) | (x0)) = 0, and bi ((x3, {1, 2}) | (x0)) = 1.
In the first iteration, we can see that the behaviors (0, 0, 0), (1, 0, 0), and (0, 1, 0) are never
best responses whatever the conjecture of individual i about the behavior of individual j
and whatever the belief on the choice of player 0. In fact, the behavior (1, 0, 0) gives always
a higher expected utility for player i than (0, 0, 0), the behavior (1, 1, 0) gives always a
higher expected utility for player i than (1, 0, 0), and the behavior (0, 1, 1) gives always a
higher expected utility for player i than (0, 1, 0). However, the behavior (1, 1, 0) cannot be
eliminated since it is the unique best response against the conjecture that player j will have
the behavior (1, 0, 0) with probability 3/7, the behavior (0, 1, 0) with probability 3/7, and
the behavior (1, 1, 1)with probability 1/7, and assuming that the mediator chooses the move
to the best outcome when the set of moves on which there is agreement is formed by the first
two moves (i.e., the move to x1 and to x2), while she chooses the move to the worst outcome
for any other set of possible agreements. In Table 1 we give conjectures against which each
behavior bi , different from the four behaviors already discussed, is the unique best response,
assuming that the mediator only chooses the move to the best outcome when the set of
possible agreements coincides with the moves that bi does not block. The uniqueness of the
best response guarantees that there are also cautious conjectures against which the behavior
is the unique best response.

Hence, after the first iteration, we can only eliminate the behaviors (0, 0, 0), (1, 0, 0),
and (0, 1, 0). In the second iteration, we can show that the behavior (1, 1, 0) is never a best
response whatever the conjecture of individual i about the behaviors of individual j not
eliminated in the first iteration, and whatever the belief on the choice of the mediator. Notice
that the behavior (0, 1, 1) gives always a weakly greater expected utility for player i than
the behavior (1, 1, 0) given that (1, 0, 0) has been eliminated in the first iteration. For the
other behaviors, it can be shown that there are conjectures about the behavior of individual j
and beliefs on the choice of the mediator such that each of them is the unique best response
against that conjecture and belief. In Table 2 we give conjectures on the behavior of player
j against which each of these behaviors bi is the unique best response, assuming that the
mediator only chooses the move to the best outcome when the set of possible agreements
coincides with the moves that bi does not block when bi �= (1, 1, 1). For bi = (1, 1, 1), the
mediator only chooses the move to the best outcomewhen there is agreement on the moves to
x1 and x2 or there is agreement on any move. As before, the uniqueness of the best response
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Table 1 Unique best response
and conjecture

b j bi

(0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(0, 0, 0) 0 0 0 0

(0, 0, 1) 3
4

3
7

3
7

3
10

(1, 0, 0) 0 3
7 0 3

10

(0, 1, 0) 0 0 3
7

3
10

(1, 1, 0) 0 0 0 0

(0, 1, 1) 0 0 0 0

(1, 0, 1) 0 0 0 0

(1, 1, 1) 1
4

1
7

1
7

1
10

Table 2 Unique best response
and conjecture

b j bi

(0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)

(0, 0, 1) 3
4 0 0 0

(1, 1, 0) 0 1
7

3
7

1
2

(0, 1, 1) 0 0 3
7 0

(1, 0, 1) 0 3
7 0 0

(1, 1, 1) 1
4

3
7

1
7

1
2

guarantees that there are also cautious conjectures against which the behavior is the unique
best response.

Next, in the third iteration, once individual i knows that player j will play a behavior that
never blocks the move to x3, her behavior (0, 0, 1) will be the unique best response against
any cautious conjecture about the behavior of player j and the mediator. Hence, (0, 0, 1)
is the unique socially rationalizable behavior and the Pareto-dominant outcome, x3, is the
unique socially rationalizable outcome.

The next two sections study the case of two players who can move to an arbitrary number
of Pareto-ranked outcomes and the general case of more than two players who can move to
an arbitrary number of Pareto-ranked outcomes.

3 Two-Player Coalitional Rationality

We investigate if social rationalizability with mediation satisfies, in general, the property of
coalitional rationality. That is, in a situation in which a coalition of two or more individuals
can move from a status quo x0 to different outcomes that are Pareto ranked, does social
rationalizability with mediation prescribe that players coordinate on the outcome that Pareto
dominates all others? In the example of Fig. 1 with two players and three possible moves, we
have seen that the Pareto-dominant outcome is the unique socially rationalizable outcome.
Does this hold for the general case of two players and arbitrary Pareto-ranked payoffs?

For the case with two possible moves, using similar arguments as in the case with three
possible moves, the behaviors (0, 0) and (1, 0) are eliminated in the first iteration and the
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behavior (1, 1) in the second iteration, leaving the Pareto-dominant outcome again as the
unique socially rationalizable outcome. This section therefore focuses on the case with at
least four possible moves.

Consider the social environment�1,where I = {1, 2}, Z = {x0, x1, . . . , xK }with K ≥ 4,
the outcomes are Pareto ranked,

ui (xK ) > ui (xK−1) > · · · > ui (x1) > ui (x0) = 0, i ∈ I ,

and the feasible moves are given by x0 →I xk,where k = 1, . . . , K .We say that social ratio-
nalizability with mediation satisfies coalitional rationality if it selects the Pareto-dominant
outcome xK as the unique solution.

In the social environment �1, we have, for every i ∈ I , Hi = {(x0)} and M(x0) =
Mi (x0) = {(x0x1, I ), (x0x2, I ), . . . , (x0xK , I )}.Since there is only onenon-terminal history,
in this section we drop histories from the notation for behaviors, conjectures, and utilities. A
behavior of individual i ∈ I is denoted by bi = (bi1, . . . , biK ), where, for k ∈ {1, . . . , K },
bik = bi (x0xk, I ).A behavior of player 0 is of the form b0 = (b0(M))∅�=M⊆M with b0(M) ∈
M .

We introduce some additional notation. In this section, from now on, we fix an individual
i ∈ I and take j to be the other individual in I . Given bi ∈ Bi , let Ai (bi ) = {mi ∈ Mi |
bi (mi ) = 1} be the set of moves on which individual i agrees and let ai (bi ) = #Ai (bi ) be
the cardinality of this set. For bi ∈ Bi with ai (bi ) ≥ 1, we define k = max{k ∈ {1, . . . , K } |
bik = 1} and k = min{k ∈ {1, . . . , K } | bik = 1} as the number of the best and the worst
outcome, respectively, on which individual i agrees. For k ∈ {1, . . . , K }, we denote by e(k)
the individual behavior such that the kth component is 1 and the other components are 0, i.e.,
the individual only agrees with the move (x0xk, I ), and by 1 the vector of all ones, that is,
the behavior where the individual agrees to join every move.

We now show that coalitional rationality holds in general in the two-player social envi-
ronment �1. In order to do so, we use Lemmas 1–8. Lemma 1 states that if a behavior of
individual i is the unique best response against a conjecture ci ∈ �(B̃ j )×�(B0), where B̃ j

is some non-empty subset of Bj , then it is also the unique best response against some cautious
conjecture c∗

i ∈ �◦(B̃ j ) × �◦(B0). The proof of Lemma 1 follows from the continuity of
Ui and is left to the reader.

Lemma 1 Take any bi ∈ Bi . Let B̃ j be a non-empty subset of B j . If there exists ci ∈
�(B̃ j )×�(B0) such that, for every b′

i ∈ Bi \ {bi },Ui (bi , ci ) > Ui (b′
i , ci ), then there exists

c∗
i ∈ �◦(B̃ j ) × �◦(B0) such that, for every b′

i ∈ Bi \ {bi }, Ui (bi , c∗
i ) > Ui (b′

i , c
∗
i ).

Lemma 2 claims that the individual behavior bi = (0, . . . , 0), so individual i blocks all
moves, is never a best response whatever the cautious conjecture ci ∈ �◦(Bj ) × �◦(B0).

Indeed, the behavior b′
i = e(K ), so b′

i is the same as bi except that individual i joins the
move to xK , is always a strictly better response. All proofs that are not in the main text can
be found in the “Appendix”.

Lemma 2 Let bi = (0, . . . , 0). For b′
i = e(K ), for every ci ∈ �◦(Bj ) × �◦(B0), it holds

that Ui (b′
i , ci ) > Ui (bi , ci ).

Lemma 3 states that any individual behavior bi = e(k) with k < K , so individual i only
agrees to join a single move different from the move to xK , is never a best response whatever
the cautious conjecture ci ∈ �◦(Bj )×�◦(B0). Indeed, the behavior b′

i , where b
′
i is the same

as bi except that individual i joins the move to xk+1 is always a strictly better response.
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Lemma 3 Let bi = e(k) for some k < K . For b′
i = e(k) + e(k + 1), for every ci ∈

�◦(Bj ) × �◦(B0), it holds that Ui (b′
i , ci ) > Ui (bi , ci ).

Lemma 4 establishes that for any behavior bi where individual i agrees to move to at least
two outcomes or to move only to xK there exists a conjecture ci ∈ �(Bj )×�(B0) such that
bi is her unique best response. This conjecture is such that for every k such that bik = 1 it
puts positive weight on b j = e(k) as well as on b j = 1 and puts zero weight on any other
behavior. The positive weights on b j = e(k) guarantee that bi gives higher utility than a
behavior b′

i which blocks moves that are not blocked by bi . The positive weight on b j = 1,
together with a suitably chosen conjecture on the behavior of the mediator, implies that bi
outperforms any b′

i that agrees to strictly more moves than bi .

Lemma 4 Take any bi ∈ Bi such that either ai (bi ) ≥ 2 or bi = e(K ). Then, for all b′
i ∈

Bi \ {bi }, we have Ui (bi , ci ) > Ui (b′
i , ci ), where ci ∈ �(Bj ) × �(B0) is such that

c ji (b j ) =

⎧
⎪⎨

⎪⎩

ui (xK )
[ai (bi )·ui (xK )+ui (x1)]

if there is k ∈ {1, . . . , K } such that b j = e(k) and bik = 1
ui (x1)

[ai (bi )·ui (xK )+ui (x1)]
if b j = 1

0 otherwise

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai (bi ) and the
move to the worst outcome in M in any other non-empty set M ⊆ M .

From Lemmas 2, 3, and 4 we have that P1
i = {bi ∈ Bi | ai (bi ) ≥ 2} ∪ {e(K )}.

For the second iteration, we first show that the behavior bi = e(1) + e(2) ∈ P1
i does

not belong to P2
i . In fact, the behavior b′

i = (0, 1, . . . , 1) ∈ P1
i gives higher utility than bi

against all relevant cautious conjectures.

Lemma 5 Consider the behavior bi = e(1) + e(2) ∈ P1
i . Take the behavior b′

i =
(0, 1, . . . , 1) ∈ P1

i . Then, for every ci ∈ �◦(P1
j )×�◦(B0),we haveUi (b′

i , ci ) > Ui (bi , ci ).

We continue by showing that any behavior bi ∈ P1
i different from e(1) + e(2) belongs to

P2
i , i.e., is the best response of player i in P1

i against some cautious conjecture in �◦(P1
j )×

�◦(B0). We achieve this by showing that bi is the unique best response against a particular
conjecture ci ∈ �(P1

j ) × �(B0).

Lemma 6 Let bi ∈ P1
i \ {e(1) + e(2)}. Then, for all b′

i ∈ P1
i \ {bi }, we have Ui (bi , ci ) >

Ui (b′
i , ci ), where, for ε > 0 sufficiently small, ci ∈ �(P1

j ) × �(B0) is such that

c ji (b j ) =
⎧
⎨

⎩

1 − ε − ε2 if b j = bi
ε if b j = 1
ε2 if b j = e(1) + e(max{2, k})

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai (bi ) and the
move to the worst outcome in M for any other non-empty set M ⊆ M .

From Lemmas 5 and 6, it follows that P2
i = P1

i \ {e(1) + e(2)}. The set P2
i consists of

the behaviors bi such that ai (bi ) ≥ 2 and k ≥ 3 as well as the behavior bi = e(K ).

Lemma 7 shows that the behaviors bi ∈ P2
i that block the moves to the best K − 3

outcomes do not belong to P3
i . The behavior b′

i = (0, 0, 1, . . . , 1) ∈ P2
i gives a greater

utility against any cautious conjecture in �◦(P2
j ) × �◦(B0).



Dynamic Games and Applications (2023) 13:440–461 451

Lemma 7 Consider a behavior bi ∈ P2
i such that k = 3. Take the behavior b′

i =
(0, 0, 1, . . . , 1) ∈ P2

i . Then, for every ci ∈ �◦(P2
j ) × �◦(B0), we have Ui (b′

i , ci ) >

Ui (bi , ci ).

We continue by showing that any behavior bi ∈ P2
i such that k ≥ 4 belongs to P3

i , i.e., is
the best response of player i in P2

i against some cautious conjecture in �◦(P2
j ) × �◦(B0).

We achieve this by showing that bi is the unique best response against a particular conjecture
ci ∈ �(P2

j ) × �(B0).

Lemma 8 Let bi ∈ P2
i be such that k ≥ 4. Then, for all b′

i ∈ P2
i \ {bi }, we have Ui (bi , ci ) >

Ui (b′
i , ci ), where, for ε > 0 sufficiently small, ci ∈ �(P2

j ) × �(B0) is such that

c ji (b j ) =
⎧
⎨

⎩

1 − ε − ε2 if b j = bi
ε if b j = 1
ε2 if b j = e(1) + e(2) + e(max{3, k})

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai (bi ) and the
move to the worst outcome in M for any other non-empty set M ⊆ M .

Hence, by Lemmas 7 and 8 we have that every behavior bi in P3
i is such that ai (bi ) ≥ 2

and k ≥ 4 or bi = e(K ). Proceeding in this way, we obtain the following proposition.

Proposition 1 For 1 ≤ k ≤ K − 1, it holds that Pk
i = {bi ∈ Bi | ai (bi ) ≥ 2 and k ≥

k + 1} ∪ {e(K )}.
Proof The proposition has already been shown for k = 1, 2, 3. Assume the proposition is
true for some k ≤ K − 2. We show the proposition to hold for k + 1.

Weeliminate any behavior bi ∈ Pk
i such that k = k+1 by the behavior b′

i = ∑K
�=k+1 e(�).

The proof follows the steps of the proof of Lemma 7.
The other behaviors bi in Pk

i are such that ai (bi ) ≥ 2 and k > k + 1 or bi = e(K ). Such
a behavior bi is the unique best response, for ε > 0 sufficiently small, against the conjecture
ci ∈ �(Pk

j ) × �(B0) defined by

c ji (b j ) =
⎧
⎨

⎩

1 − ε − ε2 if b j = bi
ε if b j = 1
ε2 if b j = ∑k

�=1 e(�) + e(max{k + 1, k})
and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai (bi ) and the
move to the worst outcome in M for any other non-empty set M ⊆ M . The proof follows
the steps of the proof of Lemma 8. ��

Putting these results together, we are able to show the following main result.

Theorem 2 Consider the social environment �1. There is a unique behavior of individual i
that is socially rationalizable, PK

i = P∞
i = {e(K )}.

Proof From Proposition 1, we have PK−1
i = {bi ∈ Bi | k = K }. Finally, for every

ci ∈ �◦(PK−1
j ) × �◦(B0), the behavior bi = e(K ) gives to individual i a utility equal

to Ui (bi , ci ) = ui (xK ). For every b′
i ∈ PK−1

i \ {bi }, for every ci ∈ �◦(PK−1
j ) × �◦(B0),

Ui (b′
i , ci ) < ui (xK ) because for some k < K , b′

ik = 1, and the cautiousness of ci implies
that with positive probability the opponent of i follows a behavior b j such that b jk = 1
and the mediator chooses b0( f (bi , b j )) = xk, which leads to utility ui (xk) < ui (xK ). So,
PK
i = {e(K )} = P∞

i . ��
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The above result implies that social rationalizability with mediation satisfies the property
of two-player coalitional rationality. When the outcomes can be Pareto ranked, a coalition
of two players always selects the Pareto-dominant outcome. Each individual only agrees to
move to the Pareto dominating outcome and blocks all other moves.

Corollary 1 Consider the social environment �1. We have Z∞(x0) = {xK }.

Throughout the paper we consider the case where players hold uncorrelated conjectures
about the behavior of the other players and the mediator. It can be verified that the conclu-
sion of Corollary 1 remains valid when players are allowed to hold correlated conjectures.
Whenever a behavior is eliminated from Pk

i for some k, this is achieved by a behavior where
the worst possible agreement is at least as good as the best possible agreement under the
eliminated behavior. Such elimination still takes place when conjectures are allowed to be
correlated.Whenever a behavior survives against uncorrelated conjectures, it remains to do so
against correlated conjectures, since uncorrelated conjectures are a special case of correlated
ones.

4 Coalitional Rationality for More Than Two Players

Does social rationalizability with mediation satisfy, in general, the property of coalitional
rationality? We now provide an example of a social environment with three players which
violates this property.

Example 2 Consider the social environment �2 in which the coalition of three individuals
may decide to move from the status quo x0,where they all get a utility equal to 0, to outcome
x1 obtaining each 1 unit of utility, or to outcome x2 all getting 2 units of utility, or to outcome
x3 and receive 3 units of utility each. That is, I = {1, 2, 3}, Z = {x0, x1, x2, x3}, for every
k ∈ {1, 2, 3}, x0 →I xk are the only possible moves, and, for every i ∈ I , for every
k ∈ {0, 1, 2, 3}, ui (xk) = k.

In the social environment �2, we have, for every i ∈ I , Hi = {(x0)} and Mi (x0) =
M(x0) = {(x0x1, I ), (x0x2, I ), (x0x3, I )}.As in Sect. 3, since there is only one non-terminal
history, in this section we drop histories from the notation for behaviors, conjectures, and
utilities. In this section, from now on, we fix an individual i ∈ I .

By Definition 2, P0
i = Bi . We show that the behaviors (0, 0, 0), (1, 0, 0), and (0, 1, 0) do

not belong to P1
i . Let bi be any such behavior. Take b′

i ∈ Bi such that b′
i = bi + (0, 0, 1). It

is quite straightforward that for all ci ∈ ∏
j∈I\{i} �◦(Bj )×�◦(B0),Ui (bi , ci ) < Ui (b′

i , ci ).
Indeed, the behaviors bi and b′

i give the same payoff to individual i against the opponents’
behaviors b−i whenever the set of moves on which the opponents of individual i agree does
not include the move to outcome x3, i.e., when some opponents behavior b j is such that
b j3 = 0. But, b′

i does strictly better than bi against the opponents’ behaviors b−i such that
b j3 = 1 for all j ∈ I \ {i} and a mediator that chooses the move to x3 whenever that move
belongs to M .

Next, we show that for every bi ∈ Bi \ {(0, 0, 0), (1, 0, 0), (0, 1, 0)} there exists ci ∈∏
j∈I\{i} �(Bj ) × �(B0) such that bi is the unique best response against ci . We can extend

Lemma 1 to the setting of Example 2 and conclude that bi ∈ P1
i .
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In fact, we can use conjectures that are similar to the ones used in Lemma 4. We define
the conjecture ci ∈ ∏

j∈I\{i} �(P1
j ) × �(B0) by

c ji (b j ) =

⎧
⎪⎨

⎪⎩

ui (xK )
[ai (bi )·ui (xK )+ui (x1)]

if there is k ∈ {1, . . . , K } such that b j = e(k) and bik = 1
ui (x1)

[ai (bi )·ui (xK )+ui (x1)]
if b j = 1

0 otherwise

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai (bi ) and the
move to the worst outcome in M in any other non-empty set M ⊆ M .

The possible sets of moves on which both opponents agree are respectively equal to ∅, for
any k ∈ {1, . . . , K } such that bik = 1, {(x0xk, I )}, and M . The definition of b0 implies that
under bi the move to the best feasible outcome results, irrespective of the realization of M .

Any other behavior b′
i that is a best response should therefore also result in the move to the

best feasible outcome. Since opponents may only agree on the move to {(x0xk, I )} for any
k ∈ {1, . . . , K } such that bik = 1, this implies that Ai (bi ) ⊆ Ai (b′

i ). Since the opponents
may also agree on the set of all moves and b′

i �= bi , b0 selects the move to the worst outcome
in Ai (b′

i ) in this case. Since bi ∈ Bi \{(0, 0, 0), (1, 0, 0), (0, 1, 0)} and Ai (bi ) ⊆ Ai (b′
i ), the

move to theworst outcome in Ai (b′
i ) is inferior to themove to the best outcome in Ai (bi ).This

shows that bi is the unique best response to ci . Hence, P1
i = {(0, 0, 1), (1, 1, 0), (1, 0, 1),

(0, 1, 1), (1, 1, 1)}.
In the second iteration, individual i knows that any other individual j will play a behavior in

P1
j . We continue by defining for each behavior bi ∈ P1

i a conjecture ci ∈ ∏
j∈I\{i} �(P1

j )×
�(B0) such that bi is the unique best response against ci .

(i) The behavior bi = (0, 0, 1) is the unique best response against the conjecture ci such
that, for j ∈ I \ {i},

c ji (b j ) =
{
3/4 if b j = (0, 0, 1)
1/4 if b j = 1

and c0i (b0) = 1 where b0 is such that the move to the worst outcome in M is selected for
any non-empty set M ⊆ M . Indeed, for every b′

i ∈ Pi
1 \ {bi }, we have that Ui (bi , ci ) =

3 > Ui (b′
i , ci ).

(ii) Let I \ {i} = { j, j ′}. The behavior bi = (1, 1, 0) is the unique best response against the
conjecture ci such that

c ji (b j ) =
{
7/8 if b j = (1, 1, 0)
1/8 if b j = 1

c j
′

i (b j ′) =
{
7/8 if b j ′ = (1, 0, 1)
1/8 if b j ′ = 1

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai (bi ) and
the move to the worst outcome in M in any other non-empty set M ⊆ M . Indeed, for
every b′

i ∈ Pi
1 \ {bi }, we have that Ui (bi , ci ) = 72/64 > Ui (b′

i , ci ).
(iii) Let I \ {i} = { j, j ′}. The behavior bi = (1, 0, 1) is the unique best response against the

conjecture ci such that

c ji (b j ) =
{
7/8 if b j = (1, 0, 1)
1/8 if b j = 1

c j
′

i (b j ′) =
{
7/8 if b j ′ = (1, 1, 0)
1/8 if b j ′ = 1
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and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai (bi ) and
the move to the worst outcome in M in any other non-empty set M ⊆ M . Indeed, for
every b′

i ∈ Pi
1 \ {bi }, we have that Ui (bi , ci ) = 80/64 > Ui (b′

i , ci ).
(iv) Let I \ {i} = { j, j ′}. The behavior bi = (0, 1, 1) is the unique best response against the

conjecture ci such that

c ji (b j ) =
{
7/8 if b j = (0, 1, 1)
1/8 if b j = 1

c j
′

i (b j ′) =
{
7/8 if b j ′ = (1, 1, 0)
1/8 if b j ′ = 1

and c0i (b0) = 1 where b0 selects the move to the best outcome in M if M = Ai (bi ) and
the move to the worst outcome in M in any other non-empty set M ⊆ M . Indeed, for
every b′

i ∈ Pi
1 \ {bi }, we have that Ui (bi , ci ) = 136/64 > Ui (b′

i , ci ).
(v) The behavior bi = (1, 1, 1) is the unique best response against the conjecture ci such

that, for j ∈ I \ {i},

c ji (b j ) =

⎧
⎪⎪⎨

⎪⎪⎩

6/13 if b j = (1, 1, 0)
3/13 if b j = (1, 0, 1)
3/13 if b j = (0, 1, 1)
1/13 if b j = 1

and c0i (b0) = 1 where b0 selects the move to the best outcome in M in any non-empty
set M ⊆ M . Indeed, for every b′

i ∈ Pi
1 \ {bi }, we have that Ui (bi , ci ) = 351/169 >

Ui (b′
i , ci ).

We find that P1
i = P2

i = P∞
i . The set of socially rationalizable outcomes with mediation

coincides with the set of initial outcomes, Z∞(x0) = {x0, x1, x2, x3}. Therefore, social
rationalizability with mediation does not satisfy the property of coalitional rationality when
the number of players is greater than two. This conclusion remains valid when one allows
for correlated beliefs, since such beliefs can only expand the set of socially rationalizable
outcomes.

5 Discussion

5.1 An Equivalent Definition of Social Rationalizability

An alternative definition of social rationalizability with mediation is obtained by adapt-
ing Battigalli’s [1] notion of extensive-form rationalizability to social environments. Social
rationalizability based on the approach of Battigalli is derived from two assumptions: (1)
individuals are rational and endowed with a hierarchy of hypotheses, and (2) this is common
knowledge at the initial status quo. In Definition 3, R1

i is the set of individual behaviors of
i ∈ I that are individually rational. Higher degrees of rationality are constructed recursively.

Definition 3 Let R0 = ∏
i∈I Bi . For n ≥ 1, Rn = ∏

i∈I Rn
i is inductively defined as follows:

for all i ∈ I , bi ∈ Rn
i if there exists a consistent updating system ci such that

(i) For all h′ ∈ Hi (J ), ci (h′) ∈ ∏
j �=i �

◦(Rk∗
j ) × �◦(B0) where k∗ is the maximal element

in {0, 1, . . . , n − 1} such that Rk∗
−i allows for h

′,
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(ii) For all h′ ∈ Hi (J ), if bi allows for h′, then bi is a best response to ci (h′) at h′, that is,
for all b̂i ∈ Bi , Ui (h′)(bi , ci ) ≥ Ui (h′)(bi/b̂h

′
i , ci ), where bi/b̂h

′
i is the behavior which

results from bi when behavior at h′ and its followers g > h′ is specified by b̂i .

The set R∞(J ) = limn→∞ Rn is the set of rationalizable individual behaviors where histo-
ries contain at most J moves.

The sequence (R1
j ) j �=i , (R2

j ) j �=i , (R3
j ) j �=i , . . . in Definition 3 represents for individual i a

hierarchy of increasingly strong hypotheses about the behavior of individuals j �= i . When
individual i adopts a behavior bi ∈ R∞

i (J ), she always holds the strongest hypothesis which
is consistent with the history reached (part (i) in Definition 3) and optimizes accordingly.

Theorem 3 For all n ≥ 0, Rn = Pn.

Theorem 3 claims that both definitions of social rationalizability are equivalent. The proof
of this theorem is similar to the proof of Theorem 1 in Battigalli [1] and is therefore omitted.
From Theorem 3, we have that R∞(J ) = P∞(J ). Notice that the computation of the set
of socially rationalizable outcomes is greatly simplified by using the reduction procedure of
Definition 2.

5.2 A Permutational Mediator

Assume the mediator, player 0, is known to behave as follows. A behavior b0 = (b0(· |
h))h∈H(J ) of player 0 is such that after each history h she chooses a permutation of M(h)

that indicates the order according to which moves are implemented. For M ∈ M(h), the
highest ordered element in M according to this permutation is implemented. We refer to such
a mediator as a permutational mediator. We demonstrate next that for the social environment
�2 of Example 2 it is not possible that (1, 1, 0) survives the first round of elimination in case
of a permutational mediator.

Example 3 Consider the social environment �2 of Example 2. The conjecture against which
bi = (1, 1, 0) is the best response is such that the mediator selects the move to the best
outcome in M if M = Ai (bi ) and the move to the worst outcome in M in any other non-
empty set M ⊆ M . Such a mediator cannot be permutational, as a permutational mediator
that selects the move to x2 when there is agreement on both the move to x1 and the move
to x2 cannot select the move to x1 when there is agreement on all moves. The behavior
b′
i = (1, 1, 1) is at least as good against any conjecture than bi and strictly better against
some conjectures when there is a permutational mediator. Indeed, when the opponents agree
on a set containing the move to x3, then under behavior b′

i a permutational mediator either
selects the move to x3 or the same move as under behavior bi , and when the opponents agree
on a set not containing the move to x3, then a permutational mediator selects the same move
under b′

i and bi .

Consider the social environment �3 where I contains a finite number of individuals,
Z = {x0, x1, . . . , xK }, and there is one outcome which strictly Pareto dominates all other
outcomes,

ui (xK ) > ui (xk) > ui (x0), i ∈ I , k ∈ {1, . . . , K − 1}.
The possible moves are given by x0 →I xk for k = 1, . . . , K . We say that social ratio-
nalizability with mediation satisfies coalitional rationality if it selects the Pareto-dominant
outcome xK .
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Theorem 4 Consider the social environment �3 with a permutational mediator. There is a
unique behavior of individual i ∈ I that is socially rationalizable, P∞

i = {e(K )}.
The proof of this theorem is similar to the proof of Theorem 3 in Herings et al. [9] and

Theorem 6 in Herings et al. [18] and is therefore omitted.

Corollary 2 Consider the social environment �3 with a permutational mediator. There is a
unique socially rationalizable outcome, Z∞ = {xK }.

It can be shown that, in the case of two players, social rationalizability with mediation
requires K−2 additional rounds of elimination to obtain coordination on the Pareto-dominant
outcome compared to social rationalizability with a permutational mediator.

In the case of the social environment �2 (Example 1), social rationalizability with a
permuational mediator satisfies the property of coalitional rationality while social rational-
izability with mediation does not. The reason behind this fact is that once P1

i = {(0, 0, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}, the behavior (1, 1, 0) that blocks themove to thePareto-
dominant outcome cannot be eliminated when the mediator can arbitrarily select different
moves for different sets of possible agreements. On the contrary, a permutational mediator
holds a ranking over the feasible moves and chooses, for any set of possible agreements, the
agreement that is ranked highest.

Finally, instead of having a permutational mediator, one could simply assume that all
individuals have uniform implementability prior-beliefs on the set M(h). The likelihood of
a particular move in the set of moves on which there is agreement is then determined by
Bayesian updating. This results in uniform ex-post beliefs on the agreement set. Assuming
that the implementability prior-beliefs of the individuals are cautious, Herings et al. [9] show
that social rationalizability ends up selecting the Pareto-dominant outcome.

5.3 Conclusion

Social environments constitute a framework in which it is possible to study how groups of
agents interact in a society.We have proposed a new solution concept for social environments
that is based on individual rationality, called social rationalizability with mediation. One of
the basic steps in our construction is to model individual behavior in a social environment,
whichmakes a social environment apt to an analysis based on individual rationality. Individual
behavior within a coalition is modeled as the decision to agree to a coalitional move or to
block it. Since a coalition may have several moves available, and more than one coalition
may have the option to move at the same time, there can be many moves on which there
is agreement. Individuals therefore have conjectures about how a mediator, a player whose
payoff is always zero, is going to solve the conflicts of interest.

Social rationalizability with mediation identifies which coalitions are likely to form and
which outcomesmight occur when the individuals are rational and this is common knowledge
at the initial status quo. We have shown that for all social environments the set of socially
rationalizable outcomes with mediation is non-empty. Social rationalizability with media-
tion aims to be a weak concept that rules out with confidence. Its non-emptiness makes it
applicable to cases where traditional solution concepts fail to make predictions. It is also not
too weak in the sense that it satisfies individual rationality. As a theory of social behavior, we
have analyzed if social rationalizability with mediation is consistent with elementary notions
of coalitional rationality. For instance, when a coalition has to choose between a number of
Pareto-rankedmoves, it should select the Pareto dominating one for sure.We have shown that
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social rationalizability with mediation does not satisfy the property of coalitional rationality
for coalitions of more than two players. In fact, restrictions on the behavior of the medi-
ator are needed to guarantee that individuals coordinate on the Pareto-dominant outcome.
So, coalitional rationality does not necessarily follow from individual behaviors of rational
individuals.

We have made our point in the simplest social environment possible that enables us to
study coalitional rationality. There is an initial status quo that is Pareto dominated by a number
of Pareto-ranked alternatives and the grand coalition can move from the initial status quo to
any of the other states. An interesting variation would be where the grand coalition can move
between any two states. We expect that our conclusions survive in such a more complicated
social environment.

We have treated the mediator as an unbiased player 0. Our analysis can be extended to
cover the situation where the mediator is favoring one of the players. This is not necessarily
detrimental for the other players. For instance, in the social environments with a common
interest as studied in this paper, the mediator would behave like a permutational mediator
for one particular permutation, and coordination on the Pareto-dominant outcome would be
easier to sustain. What would happen in social environments without a common interest is
an interesting question for future research.
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Appendix

Proof of Lemma 2 (i) For all b j ∈ Bj with b jK = 0, we have that

Ui
(
b′
i , b j , c

0
i

) = Ui
(
bi , b j , c

0
i

) = 0.

(ii) For all b j ∈ Bj with b jK = 1, we have that

ui (xK ) = Ui
(
b′
i , b j , c

0
i

)
> Ui

(
bi , b j , c

0
i

) = 0.

It follows that, for every ci ∈ �◦(Bj ) × �◦(B0), Ui (b′
i , ci ) > Ui (bi , ci ).

��
Proof of Lemma 3 (i) For all b j ∈ Bj with b jk = b jk+1 = 0, we have

Ui
(
bi , b j , c

0
i

) = Ui
(
b′
i , b j , c

0
i

) = ui (x0).

(ii) For all b j ∈ Bj with b jk = 1 and b jk+1 = 0, we have

Ui
(
bi , b j , c

0
i

) = Ui
(
b′
i , b j , c

0
i

) = ui (xk).

http://creativecommons.org/licenses/by/4.0/
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(iii) For all b j ∈ Bj with b jk = 0 and b jk+1 = 1, we have

Ui
(
bi , b j , c

0
i

) = 0 < ui (xk+1) = Ui
(
b′
i , b j , c

0
i

)
.

(iv) For all b j ∈ Bj with b jk = b jk+1 = 1, we have

Ui
(
bi , b j , c

0
i

) = ui (xk) < Ui
(
b′
i , b j , c

0
i

)
.

Hence, for every ci ∈ �◦(Bj ) × �◦(B0), it holds that Ui (b′
i , ci ) > Ui (bi , ci ).

��
Proof of Lemma 4 (i) Consider the behavior bi = e(K ). Then,

Ui (bi , ci ) =
[

ui (xK )

ui (xK ) + ui (x1)

]

· ui (xK ) +
[

ui (x1)

ui (xK ) + ui (x1)

]

· ui (xK ) = ui (xK ).

For any b′
i ∈ Bi \ {e(K )} it holds that

Ui (b
′
i , ci ) ≤

[
ui (xK )

ui (xK ) + ui (x1)

]

· ui (xK ) +
[

ui (x1)

ui (xK ) + ui (x1)

]

· ui (xK−1) < ui (xK ),

where the expression after the weak inequality uses the fact that f (b′
i , 1) contains a move

leading to an outcome different from xK , so b0 selects a move leading to an outcome
worse than xK , or f (b′

i , 1) is equal to the empty set and outcome x0 results.
(ii) Consider any behavior bi ∈ Bi such that ai (bi ) ≥ 2. We have that

Ui (bi , ci ) =
[

ui (xK )
ai (bi )·ui (xK )+ui (x1)

]
· ∑

{k∈{1,...,K }|bik=1}
ui (xk) +

[
ui (x1)

ai (bi )·ui (xK )+ui (x1)

]
· ui (xk).

Two cases have to be considered. In Case 1 we consider b′
i ∈ Bi such that, for some

k ∈ {1, . . . , K }, bik = 1 and b′
ik = 0. In Case 2 we take b′

i ∈ Bi \ {bi } such that bik = 1
implies b′

ik = 1.
Case 1. It follows that

Ui (b′
i , ci ) ≤

[
ui (xK )

ai (bi )·ui (xK )+ui (x1)

]
·
[∑

{k∈{1,...,K }|bik=1} ui (xk) − ui (xk)
]

+
[

ui (x1)
ai (bi )·ui (xK )+ui (x1)

]
· ui (xK )

≤
[

ui (xK )
ai (bi )·ui (xK )+ui (x1)

]
·
[∑

{k∈{1,...,K }|bik=1} ui (xk)
]

< Ui (bi , ci ).

Case 2. It holds that

Ui (b′
i , ci ) ≤

[
ui (xK )

ai (bi )·ui (xK )+ui (x1)

]
·
[∑

{k∈{1,...,K }|bik=1} ui (xk)
]

+
[

ui (x1)
ai (bi )·ui (xK )+ui (x1)

]
· ui (xk)

< Ui (bi , ci ),

where the expression after the weak inequality uses the fact that f (b′
i , 1) is not equal to

f (bi , 1) and contains the move to outcome xk as an element, so b0 selects a move leading to
an outcome which is at best equal to xk . ��
Proof of Lemma 5 Since the behaviors (0, . . . , 0) and e(1) of individual j do not belong to
P1
j , it follows that, for every conjecture ci ∈ �◦(P1

j ) × �◦(B0),

Ui
(
b′
i , ci

) ≥ ui (x2) ≥ Ui (bi , ci ).
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Since such a conjecture ci puts positive weight on the behavior b j = e(K ) and

Ui
(
b′
i , e(K ), c0i

) = ui (xK ) > ui (x0) = Ui
(
bi , e(K ), c0i

)
,

we conclude that Ui (b′
i , ci ) > Ui (bi , ci ). ��

Proof of Lemma 6 It holds that

Ui (bi , ci ) = (
1 − ε − ε2

) · ui (xk) + ε · ui (xk) + ε2 · ui (xk),
where for k = 1 the expression in the last term follows from the fact that

(x0x1, I ) ∈ f (bi , e(1) + e(2)) = f (bi , e(1) + e(max{2, k})) �= Ai (bi ),

so bi selects the worst move in f (bi , e(1) + e(2)), which is equal to (x0x1, I ).
Let b′

i ∈ P1
i \ {bi }.

If b′
ik

= 0, then, for ε > 0 sufficiently small,

Ui
(
b′
i , ci

) ≤ (
1 − ε − ε2

) · ui
(
xk−1

) + (
ε + ε2

) · ui (xK ) < Ui (bi , ci ),

where the strict inequality makes use of the fact that ε is sufficiently small.
Assume b′

ik
= 1. If there is k < k such that b′

ik = 1, then, for ε > 0 sufficiently small,

Ui (b
′
i , ci ) ≤ (

1 − ε − ε2
) · ui

(
xk

) + ε · ui
(
xk−1

) + ε2 · ui (xK ) < Ui (bi , ci ),

where the strict inequality makes use of the fact that ε is sufficiently small.
Let the smallest k for which b′

ik = 1 be equal to k. It follows that bi �= e(K ), since k = K
together with the assumption that the smallest k for which b′

ik = 1 is equal to k implies
b′
i = e(K ). Since b′

i �= bi we have that bi �= e(K ). Since bi ∈ P1
i and bi �= e(1) + e(2), it

also follows that k ≥ 3. We have that

Ui (b
′
i , ci ) = (

1 − ε − ε2
) · ui

(
xk

) + ε · ui
(
xk

)
< Ui (bi , ci ),

where the second term in the expression after the equality follows from the fact that f (b′
i , 1) =

Ai (b′
i ) �= Ai (bi ), so the worst move (x0xk, I ) in Ai (b′

i ) is selected by b0. The expression
after the equality also uses that bi �= e(K ), so k < k, and f (b′

i , e(1) + e(max{2, k})) = ∅.

��
Proof of Lemma 7 Since, for every behavior b j ∈ P2

j , there is k ≥ 3 such that b jk = 1, it

follows that, for every conjecture ci ∈ �◦(P2
j ) × �◦(B0),

Ui
(
b′
i , ci

) ≥ ui (x3) ≥ Ui (bi , ci ).

Since such a conjecture ci puts positive weight on the behavior b j = e(K ) and

Ui
(
b′
i , e(K ), c0i

) = ui (xK ) > ui (x0) = Ui
(
bi , e(K ), c0i

)
,

we conclude that Ui (b′
i , ci ) > Ui (bi , ci ). ��

Proof of Lemma 8 We have that

Ui (bi , ci ) = (
1 − ε − ε2

) · ui
(
xk

) + ε · ui
(
xk

) + ε2 · ui
(
xk

)
,

where if k ≤ 2 the expression in the last term follows from the fact that
(
x0xk, I

) ∈ f (bi , e(1) + e(2) + e(3)) = f (bi , e(1) + e(2) + e(max{3, k})) �= Ai (bi ),
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so we find that bi selects the worst move in f (bi , e(1) + e(2) + e(3)), which is equal to
(x0xk, I ). The inequality in the last expression makes use of the fact that k ≥ 4.

Let b′
i ∈ P2

i \ {bi }. If b′
ik

= 0, then, for ε > 0 sufficiently small,

Ui
(
b′
i , ci

) ≤ (
1 − ε − ε2

) · ui
(
xk−1

) + (
ε + ε2

) · ui (xK ) < Ui (bi , ci ),

where the strict inequality makes use of the fact that ε is sufficiently small.
Assume b′

ik
= 1. If there is k < k such that b′

ik = 1, then, for ε > 0 sufficiently small,

Ui
(
b′
i , ci

) ≤ (
1 − ε − ε2

) · ui
(
xk

) + ε · ui
(
xk−1

) + ε2 · ui (xK ) < Ui (bi , ci ),

where the strict inequality makes use of the fact that ε is sufficiently small.
Let the smallest k for which b′

ik = 1 be equal to k. It follows that bi �= e(K ), since k = K
together with the assumption that the smallest k for which b′

ik = 1 is equal to k implies
b′
i = e(K ). Since b′

i �= bi it follows that bi �= e(K ). We have that

Ui
(
b′
i , ci

) = (
1 − ε − ε2

) · ui
(
xk

) + ε · ui
(
xk

)
< Ui (bi , ci ),

where the second term in the expression after the equality follows from the fact that f (b′
i , 1) =

Ai (b′
i ) �= Ai (bi ), so theworstmove (x0xk, I ) in Ai (b′

i ) is selected by b0.The expression after
the equality also uses that bi �= e(K ), so k < k, and f (b′

i , e(1)+ e(2)+ e(max{3, k})) = ∅.

��
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