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Abstract
We consider a large number of agents collaborating on a multi-armed bandit problem with a
large number of arms. The goal is to minimise the regret of each agent in a communication-
constrained setting. We present a decentralised algorithm which builds upon and improves
the Gossip-Insert-Eliminate method of Chawla et al. (International conference on artificial
intelligence and statistics, pp 3471–3481, 2020). We provide a theoretical analysis of the
regret incurred which shows that our algorithm is asymptotically optimal. In fact, our regret
guarantee matches the asymptotically optimal rate achievable in the full communication
setting. Finally, we present empirical results which support our conclusions.

1 Introduction

The classical stochasticmulti-armed bandit problem is specified by a collection of probability
distributions {Pk}Kk=1, commonly referred to as arms. Here, there is a single agent which
plays an arm It taking values in [K ] := {1, . . . , K } at each time step t ∈ [T ] and receives an
associated reward Xt ∼ PIt . The agent’s goal is to minimise the expected regret E[RT ] =
Tμ� −∑T

t=1 E[Xt ], where μk is the expectation of a random variable with distribution Pk ,
and � := argmaxk∈[k] μk is the largest mean of the arms. The agent’s decisions must be made
using only the knowledge acquired from previous actions and observed rewards.

We consider an extension of this problemwhere there are multiple agents collaborating on
a multi-armed bandit problem [3, 17]. The agents may communicate with one another, and
the agents decision’s of which arms to play can bemade using the information from both their
own reward history, and from the sequence ofmessages received from other agents. However,
communication between agents is tightly restricted as described in Sect. 2. Specifically, time
is divided into growing phases and each agent may receive only one message per phase.
Furthermore, a message is limited to recommending the id of a single arm; no additional
information may be exchanged. We show in Theorem 3.1 that, even with these restrictions
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on communication, it is possible to asymptotically match the optimal total regret achievable
with unlimited communication.

The multi-agent version of the multi-armed bandit problem is motivated by multiple
applications:

• Decentralised web advertising Consider the problem of selecting an advertisement to
be displayed on a website. The website will want to optimise which advertisements it
chooses to display with the goal of maximising click-through rate. To do this, the website
should react to its users interactions.Additionally, thewebsite could be hosted onmultiple
web servers operating in parallel to serve many users at once. Here, each web server will
select an advertisement to display each time a user requests the page. The web servers
can benefit from sharing information on the performance of each advertisement. The
web server communication will be limited by bandwidth and potentially geographical
constraints. This motivates the communication constraints imposed in our setting. A
bandit-based approach to ad selection is considered in [16].

• Decentralised network routing In this problem, a user wants to send data over a network
between two computers as fast as possible. In the network, there are many paths the data
can be sent along. These paths will have different latency’s and the user can measure the
latency of a path after using it. A bandit algorithm can be used with this information to
choose the best path to send the data along. In addition, it is likely that multiple people
are using the same network at once. These users can collaborate to the find the best paths
faster. In [4, 8], bandit algorithms are applied to network routing problems.

• Multi-robot systems Multi-agent multi-armed bandit algorithms can be used to operate
multi-robot systems. In particular [18], consider the problem of foraging using a group
of robots. In this problem, the robots need to search for the sites which they can forage
the most from. The robots can communicate with other nearby robots over a wireless
network which can be used to quickly identify the best sties to forage from. Since the
communication is constrained locally, it is similar to the setting we are considering.

It should be noted that in these examples contextual information could be used to improve
the decision-making and additionally the expected rewards may be non-stationary. In the
network routing example, there could be a penalty if more than one user chooses a single
path. However, we work in a simplified settings where we do not make these assumptions,
which is currently more feasible to prove results in.

There has recently been growing interest in multi-agent multi-armed bandits. A setting
in which agents communicate with a central node is considered in [9], while [2, 5, 15,
19] consider settings where agents can communicate rewards (not just arm ids) with their
neighbours. Kola et al. [10] considered a model where agents observe the rewards of their
neighbours. We follow the setting introduced in [3, 17] where agents may only communicate
arm ids and do this through a gossiping PULL protocol. This ensures that in each round
the number of bits communicated is bounded and relatively small. Additionally, we prefer a
decentralised system over a centralised system as it does not have a single point of failure.
Furthermore, a centralised system would have a high-communication overhead through its
central nodewhichmaybe limiting in applications. In a recentwork [1], the authors introduced
a method for achieving nearly minimax optimal regret in the gossiping and decentralised
setting.

A central problem in the multi-armed bandit literature is the search for algorithms which
perform optimally in the asymptotic regime of the time horizon T tending to infinity. Return-
ing to the single-agent setting, Lai and Robbins [11] proved a fundamental lower bound on
the regret incurred by any consistent algorithm. Here, we say that an algorithm is consistent
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if it achieves subpolynomial regret for all possible values of {Pk}Kk=1. (This precludes trivial
algorithms like one which always selects a specific arm and has zero regret if that happens
to be the best arm.) Lai and Robbins [11] showed that the regret of any consistent algorithm
satisfies the following lower bound:

lim inf
T→∞

∑
n E[RT ]
log(T )

≥
∑

i �=�

μ� − μi

KL(Pi , P�)
, (1)

whereKL denotes theKullback–Leibler divergence.A significant breakthroughwas achieved
by [6, 14] who demonstrated that this bound is attained by the KL-UCB algorithm in the
Bernoulli reward setting.

In this work, we consider the question of asymptotic optimality in the decentralised multi-
agent setting. Our contributions are as follows:

• We present a decentralised algorithmwhich builds upon and improves theGossip-Insert-
Eliminate method of Chawla et al. [3]. This algorithm leverages two innovations which
reduce the amount of superfluous exploration. Firstly, we include a more efficient elim-
ination mechanism which reduces the number of arms considered by each agent at any
given time. Secondly, in the spirit of [6, 14], we use KL-type confidence intervals, rather
than Hoeffding-type confidence intervals.

• We provide a theoretical analysis of the expected regret of the algorithm we propose
(Theorem 3.1). We show that it is optimal in the asymptotic regime. In particular, the
aggregate expected regret matches the lower bound implied by (1), showing that our
algorithm performs at least as well as any multi-agent algorithm, even with access to
unlimited communication resources, in the asymptotic regime.

• We find a regret bound which has a clear dependence on the graph structure (Theo-
rem 3.15). This is done in the setting where agents pull recommendations uniformly
at random from their neighbours. This will allow us to leverage an existing result of
Giakkoupis [7] on the spreading time of a rumour on a network following a PULL proto-
col where time is discrete. We conclude this section by comparing the impact that three
different graphs (complete, star and cycle) have on the scaling of regret bound.

• We present empirical results that demonstrate that our algorithm performs well in a wide
variety of settings, with lower finite sample regret than the baseline of [3] (Figs. 1, 2).
Interestingly, both modifications lead to a consistent improvement for a range of different
values of the gap between best and second-best arm.

2 Setting and Algorithm

We now present our problem setting and algorithm. Throughout N will denote the number
of agents, T the number of time steps and K the number of arms. Let Xn

k,s taking values in

{0, 1} denote the reward that agent n ∈ [N ] receives by playing arm k ∈ [K ] for the sth time.
We assume that these are i.i.d. Bernoulli(μk ) random variables. Let � ∈ argmaxμk and let
μ� := maxk∈[K ] μk . We assume throughout that there is a unique best arm, so � is uniquely
defined.

Communication between agents is constrained by a strictly increasing sequence (A j ) j∈N
of communication rounds and an N×N probabilitymatrix P as follows. The time horizon [T ]
is partitioned into phases, with phase j consisting of time steps t for which A j−1 < t ≤ A j

where A0 := 0. Communication between agents only occurs once per phase, on the time steps
A j , after each agent has played an arm. On these time steps, each agent PULLs a message
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from exactly one of their neighbours chosen at random, independently of everything else.
The neighbouring agent is selected randomly according to P , with P(n, q) denoting the
probability that agent n will receive a message from agent q at the end of each phase j .
We let Q ≡ Qn

j ∼ P(n, ·) be the random variable corresponding to the agent who sends a
recommendation to agent n at the end of phase j . The message, from agent Qn

j to n, is an

arm recommendation O j
n taking values in [K ].

To ensure that the recommendations can spread to all agents, we assume that P is strongly
connected, meaning that for any two agents i, j ∈ [N ] with i �= j there exists a sequence of
agents n1, . . . , nl ∈ [N ] such that P(i, n1), P(n1, n2), . . . , P(nk−1, nl), P(nl , j) > 0.

Let I nt denote the random variable, taking values in [K ], which specifies the index of the
arm played by agent n in round t . This must be a measurable function of an agent’s previous
reward history and the previous messages they have received.We let V n

k (t) :=∑t
s=1 1{I ns =

k} denote the number of times agent n plays arm k in the first t rounds. Let Xn(t) := Xn
Int ,V n

k (t)
denote the reward received by agent n in round t .

The goal for each agent n ∈ [N ] is to minimise their expected regret,

E[Rn
T ] := T · μ� −

∑

t∈[T ]
E[Xn(t)].

Our algorithm (Algorithm 1) is based on the Gossip-Insert-Eliminate algorithm of [3].
A key feature of this algorithm is that, during each phase j , each agent plays only a small
subset of the K arms which we call its active set. This is made up of a sticky set of arms,
which remains unchanged over time for each agent, and additional arms which evolve over
time based on recommendations.

In our algorithm, we begin by partitioning [K ] into nearly equal-sized sets {Sn◦ }n∈[N ],
so that for each agent n ∈ [N ], Sn◦ will act as the associated sticky set. The active sets are
initialised to be the same as the sticky sets, but will grow over time due to recommendations
and shrink due to eliminations of non-sticky arms. In each phase j ∈ N, each agent n ∈ [N ]
will only play arms from the active set Snj . For thefirst phase j = 1,we initialise each Sn1 = Sn◦ .
In subsequent phases j > 1 the active set Snj+1 consists of Sn◦ , along with (potentially)
additional arms.

We assume that each agent n is aware of Sn◦ , its own set of arms within the partition,
a priori. That is, Sn◦ may be taken as an input to our algorithm. Let μ̂n

k,s := 1
s

∑s
i=1 X

n
k,i .

Denote by μ̂n
k (t) := μ̂n

k,V n
k (t) the mean reward obtained by agent n from arm k in the first t

time steps.
We let Mn

j denote the most played arm by agent n in phase j so

Mn
j = argmaxk∈[K ]{V n

k (A j ) − V n
k (A j−1)}.

Following [3], when an agent q ∈ [N ] is asked for an arm recommendation at the end of
phase j , its recommendation will be its most played arm for that phase. Hence, when Q ≡
Qn

j ∼ P(n, ·) communicates with agent n ∈ [N ] at the end of phase j , the recommendation

will be O j
n = MQ

j .
Our algorithm (Algorithm 1) differs from that of [3] in two important respects.
Firstly, we use a more efficient elimination scheme. More precisely, in each phase j + 1,

the new active set Snj+1 will be constituted by the sticky set Sn◦ , together with the agent’s
most played arm Mn

j during phase j , and the recommendation, On
j , it receives at the end of

phase j . We assume that the random variable Qn
j is independent from everything else.
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The intuition is that, eventually, the best arm will become known to all agents, and Mn
j

and On
j will both be equal to �; consequently, Snj will be S

n◦ ∪ {�}.
Secondly, we use tighter KL based confidence intervals, following [6]. To define our

KL upper confidence bounds, we first let KL : [0, 1]2 → R ∪ {∞} be the Kullback–Leibler
divergence for twoBernoulli randomvariables and introduce a function fα(t) = 1+tα log2(t)
indexed by α. The upper confidence bound for arm k at agent n at time t is defined by

Un
k,α(t − 1) := max

{

u ∈ [0, 1] : KL(μ̂n
k (t − 1), u) ≤ log( fα(t))

V n
k (t − 1)

}

(2)

when V n
k (t − 1) > 0 and Un

k (t − 1) := ∞ otherwise. When α is clear from context we
suppress it for notational convenience.

Algorithm 1 gives the steps that each agent n ∈ [N ] will perform synchronously.

Algorithm 1: Asymptotically Optimal Gossiping Bandits (AOGB) for agent n
Input: Communication rounds A j , Sticky set Sn◦ , Communication probabilities matrix P , exploration

parameter α.
1 Init: j ← 1 and Sn1 ← Sn◦
2 for t ∈ N do
3 I nt ← argmaxk∈Snj U

n
k,α(t − 1) ; // Select arm to play according to (2)

4 if t == A j then
5 Q ← P(n, ·) ; // Choose neighbour to get recommendation from

6 On
j ← MQ

j ; // Save recommendation from neighbour

7 Snj+1 ← Sn◦ ∪ {On
j , M

n
j } ; // Update the active set of arms

8 j ← j + 1
9 end

10 end

3 Theoretical Analysis and Regret Bound

We now present our asymptotically optimal regret bound for Algorithm 1.

Theorem 3.1 Suppose there exists C ≥ 1, θ > 0 such that C−1 jθ ≤ A j − A j−1 ≤ C jθ for
all j ∈ N and suppose that all agents select arms with Algorithm 1 with α = 1. Then for
each agent n ∈ [N ], we have the asymptotic bound

lim sup
T→∞

E[Rn
T ]

log T
≤
∑

k∈Sn◦ \[�]

μ� − μk

KL(μk, μ�)
.

Let us consider the class of centralised algorithmsA in which an arm I nt in [K ] is selected
for each agent n ∈ [N ] and each time step t ∈ [T ] based on the combined reward history of
all the agents up to time t . We letAconst ⊆ A denote the subset of those which are consistent,
i.e. achieve subpolynomial total regret

∑
n E[Rn

T ] for any instance of the multi-armed bandit
problem. It follows from the result of Lai and Robbins (1) that for any algorithm in the class
Aconst,

lim inf
T→∞

∑
n E[Rn

T ]
log(T )

= lim inf
T→∞

(
log(NT )

log(T )
·
∑

n E[Rn
T ]

log(NT )

)

≥
∑

i �=�

μ� − μi

KL(μi , μ�)
. (3)
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Now note that we can view the classA as the collection of all multi-agent algorithms, with or
without communication constraints. In particular, the class of decentralised multi-agent with
strong communication constraints we consider in this paper correspond to a computationally
attractive subset of A. Observe that by summing over n ∈ [N ] in the regret bound given
in Theorem 3.1, we see that total regret of the system for our algorithm matches the lower
bound given by (3) for the full communication setting. This implies that our algorithm (with
limited communication) performs just as well as any algorithm, evenwith access to unlimited
communication constraints, in the asymptotic regime.

In addition to Theorem 3.1, which only certifies the performance in the asymptotic regime,
in Sect. 3.1, we continue the analysis of Algorithm 1 to derive a finite sample bound which
has a clear dependence on the graph structure. Furthermore, in Sect. 4 we shall see that our
algorithm also performs well empirically on a broad range of simulated data.

Before presenting the main proof of Theorem 3.1 we shall present a brief sketch. The
argument hinges upon a random time τ̂ which corresponds to a phase after which all of the
active sets Snj become fixed. After this time, all of the active sets become Sn◦ ∪ {�}, which
leads to an asymptotic regret bound for agent n governed by the relationship between μk

and μ� for k ∈ [K ]. The crucial difficulty then is to bound E[Aτ̂ ], the expected time until
the end of phase τ̂ . To bound E[Aτ̂ ], we show that, provided the phase lengths A j − A j−1

are sufficiently large in relationship to the gap, the probability of a suboptimal arm being the
most played and subsequently being recommended decays exponentially.

To bound the per agent expected regret of this system, we divide time into two parts;
before Aτ̂ and after Aτ̂ . The regret before time Aτ̂ is trivially upper bounded by E[Aτ̂ ], and
since, after time Aτ̂ , the set of active arms for each remains fixed, this reduces to bounding
the expected regret of a single-agent multi-armed bandit problem. For this, we consider the
approach given in [12], where we show that for a late enough time, we expect that the KL-
UCB for the optimal arm does not fall far below its true mean, and additionally, the KL-UCB
for all suboptimal arms does not exceed this value often.

The proof of Theorem 3.15 (finite sample bound) is similar to that of 3.1, but they differ
when bounding E[Aτ ]. The main difference is that Theorem 3.15 uses Lemma 3.13 instead
of Lemma 3.8.

We now proceed with proof itself, which goes through a sequence of lemmas. Let us
begin by introducing some notation used throughout. Firstly, fix the exploration function
f (t) := 1 + t log2(t) (i.e. α = 1). Next we define the suboptimality gap for each arm
k ∈ [K ] by

�k := μ� − μk,

and we define the smallest suboptimality gap,

�min := min
k∈[K ]\{�} �k > 0.

For each ε ∈ (0,�min) and each agent n ∈ [N ], we define a random variable

κn
ε := min

{

t ∈ N : max
s∈[T ]

(

d
(
μ̂n

�,s, μ� − ε
)− log( f (t))

s

)

≤ 0

}

,

where d(p, q) := KL(p, q) · 1{p ≤ q}. This random variable is the time whereafter the KL
upper confidence bound of the optimal arm will not fall below μ� − ε, no matter how many
times the optimal arm has been played.
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Next we define for every ε ∈ (0,�min), for every agent n ∈ [N ] and for every suboptimal
arm k ∈ [K ] \ {�},

νnε,k :=
T∑

s=1

1

{

KL(μ̂n
k,s, μ� − ε) ≤ log( f (T ))

s

}

.

This random variable is an upper bound for the number of times the KL upper confidence
bound of a suboptimal k arm exceeds μ� − ε.

Together, these random variables allow us to bound the regret. This is because after time
κn
ε the number of times any suboptimal arm is played is bounded above by νnε,k . To do this,
we require the following lemmas (Lemmas 3.2, 3.3), which are effectively the same as [12,
Lemma 10.7 & Lemma 10.8].

Lemma 3.2 For ε ∈ (0,�min), maxn∈[N ] E[κn
ε ] ≤ 2/ε2.

Lemma 3.3 For ε ∈ (0,�min) and n ∈ [N ], we have

E[νnε,k] ≤ inf
ε̃∈(0,�k−ε)

(
log f (T )

KL(μk + ε̃, μ� − ε)
+ 1

2ε̃2

)

.

To continue the proof, we define some further random variables that concern the optimal
arm and its movement around the network.

Firstly, for each agent n ∈ [N ] and each phase j we define a random variable

χn
j := 1{� ∈ Snj , Mn

j �= �, A j−1 ≥ κn◦ },
where κn◦ := κn

�min/2
. This variable indicates whether an agent has the best arm but has not

played it most over the phase j (and therefore it will not recommend it). Additionally, the
condition A j−1 ≥ κn◦ demands that we are in a late enough phase which is necessary for
Lemma 3.7.

For each agent n ∈ [N ], we define the following random variables:

τ̂ nstab := min{ j ∈ N : A j−1 ≥ κn◦ ,∀ j ′ ≥ j, χn
j ′ = 0}

τ̂stab := max
n∈[N ] τ̂

n
stab

τ̂ nspr := min{ j ≥ τ̂stab : � ∈ Snj } − τ̂stab

τ̂spr := max
n∈[N ] τ̂

n
spr

τ̂ := τ̂stab + τ̂spr.

These random variables highlight two key timings of the system (for each agent). The first
being the stabilisation phase τ̂ nstab; this is the phasewhereafter agent nwill always recommend
the best arm if it has the best arm. The second is the spreading time τ̂spr; this is the number
of phases after τ̂ nstab, where agent n will have the best arm for all subsequent phases. After
phase τ̂ , each agent will have the best arm and only recommend the best arm; therefore, the
set of active arms for each agent will be subsequently fixed. Lemma 3.4 proves this.

Lemma 3.4 For all phases j > τ̂ and all n ∈ [N ], we have Snj = Sn◦ ∪ {�}.
Proof For each agent n ∈ [N ], we see by induction that for any phase j ≥ τ̂ nspr + τ̂stab, we
have that Mn

j = � ∈ Snj .

Moreover, since Snj+1 = Sn◦ ∪ {Mn
j , M

Q
j } for some agent Q in [N ], it follows that Snj+1 =

Sn◦ ∪ {�}, for all j ≥ τ̂ = τ̂stab + τ̂spr. ��
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In the following lemma, we bound the number of times a suboptimal arm is played after
the phase τ̂ .

Lemma 3.5 For each agent n ∈ [N ] and each suboptimal arm k ∈ [K ]\{�}, we have
T∑

t=Aτ̂ +1

1
{
I nt = k

} ≤
{
infε∈(0,�min)

{
νnε,k + κn

ε

}
if k ∈ Sn◦

0 if k /∈ Sn◦ .

Proof Fix an agent n ∈ [N ]. First note that by Lemma 3.4 we have Snj = Sn◦ ∪ {�} for all
phases j > τ̂ . In particular, this means that I nt /∈ Sn◦ ∪ {�} cannot occur for t ≥ Aτ̂ + 1.
Now take ε ∈ (0,�min) and consider a suboptimal arm k ∈ Sn◦ \[�]. If I nt = k for some
t ≥ (Aτ̂ + 1) ∨ κn

ε , then we must have Un
k (t − 1) ≥ Un

� (t − 1) ≥ μ� − ε, and hence,

KL(μ̂n
k,V n

k (t−1), μ� − ε) ≤ log( f (t))

V n
k (t − 1)

≤ log( f (T ))

V n
k (t − 1)

.

Consequently,

T∑

t=(Aτ̂ +1)∨κnε

1
{
I nt = k

} ≤
T∑

t=(Aτ̂ +1)∨κnε

1

{

I nt = k and KL(μ̂n
k,Vn

k (t−1), μ� − ε) ≤ log( f (T ))

Vn
k (t − 1)

}

≤ νnε,k ,

and therefore,

T∑

t=Aτ̂ +1

1
{
I nt = k

} ≤ νnε,k + κn
ε .

The result then follows by taking an infimum over ε ∈ (0,�min). ��
This leads to the following regret bound.

Corollary 3.6 For each agent n ∈ [N ], we have

E[Rn
T ] ≤ E[Aτ̂ ] +

∑

k∈Sn◦ \[�]
�k inf

ε∈
(
0, �min

2

)

{
log f (T )

KL(μk + ε, μ� − ε)
+ 3

ε2

}

.

For the remainder of the proof, we must show that E[Aτ̂ ] may be bounded independently
of T .

We do this as follows: In Lemma 3.7, we show that if the length of a phase is large
enough, then the expected value ofχn

j decays exponentiallywith phase length; in Lemmas 3.8
and 3.10, we find high probability bounds for τ̂stab and τ̂spr, respectively; and we conclude
in 3.11 by showing E[Aτ̂ ] is finite and does not depend on the time horizon T .

Lemma 3.7 For every phase j ∈ N such that A j − A j−1 ≥ 8
�2

( K
N + 3
)
log f (A j ), we have

E[χn
j ] ≤ 8K

�2
min

exp

(

−�2
min(A j − A j−1)

16(K/N + 3)

)

.

Proof First observe that if χn
j = 1 then � ∈ Snj , A j−1 ≥ κn◦ and Mn

j �= �. Since Mn
j �= �, we

deduce that for some k ∈ [K ]\{�}, we have

V n
k (A j ) − V n

k (A j−1) ≥ A j − A j−1

|Snj |
≥ A j − A j−1

K/N + 3
,
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and so, for some A j−1 < t ≤ A j we have s = V n
k (t − 1) ≥ A j−A j−1

K/N+3 − 1 and I nt = k,
so Un

k (t − 1) ≥ Un
� (t − 1) as � ∈ Snj . Since t ≥ A j−1 ≥ κn◦ we deduce that Un

k (t − 1) ≥
Un

� (t − 1) ≥ μ� − �min/2. Hence, by Pinsker’s inequality

2

(

μ̂n
k,s − μ� + �min

2

)2
= 2

(

μ̂n
k (t − 1) − μ� + �min

2

)2
≤ KL

(

μ̂n
k (t − 1), μ� − �min

2

)

≤ log( fα(t))

V n
k (t − 1)

≤ log f (A j )

s
.

Thus, for some k ∈ [K ]\{�} and s ≥ A j−A j−1
K/N+3 − 1,

μ̂n
k,s ≥ μ� − �min

2
−
√
log f (A j )

2s
≥ μk + �min

2
−
√
log f (A j )

2s
≥ μk + �min

4
,

since A j − A j−1 ≥ 8
�2

( K
N + 3
)
log f (A j ). Thus, by Hoeffding’s inequality we have

E[χn
j ] ≤

∑

k∈[K ]\{�}

∑

s≥ A j−A j−1
K/N+3 −1

P

[

μ̂n
k,s ≥ μk + �min

4

]

≤ (K − 1)
∑

s≥ A j−A j−1
K/N+3 −1

exp

(

− s�2
min

8

)

≤ K
∫ ∞

A j−A j−1
K/N+3 −2

exp

(

− s�2
min

8

)

ds

≤ 8K

�2
min

exp

(

−�2
min(A j − A j−1)

16(K/N + 3)

)

.

��

In what follows, we let pmin := min
({P(i, j)}(i, j)∈[N ]2\{0}

)
and let diam(P) denote the

maximum length of a directed path between two distinct nodes corresponding to the graph
induced by P .

Lemma 3.8 For ξ ∈ N, P(τ̂spr ≥ ξ) ≤ N (1 − pdiam(P)
min )

⌊
ξ

2diam(P)
−1
⌋

.

Proof Recall that τ̂spr is the number of phases since τ̂stab, so we can assume that if an agent
has the best arm it will recommend it. Therefore, to find an upper bound for this probability,
we consider a single path from an agent with the optimal arm (n�) to the chosen node n and the
probability that there exists a single node in this path that does not request a recommendation
from the prior node. And therefore, the best arm does not spread along this path.

Fix an agent n ∈ [N ] and choose a sequence of nodes (�i )i∈[q]∪{0} ∈ [N ]q with q ≤
diam(P) and such that �0 = n�, �q = n and P(�i , �i−1) > 0 for each i ∈ [q]. Note that
the definition of diam(P) entails the existence of at least one such a sequence. Recall that
we let Qñ

j denote the node which sends a message to agent ñ and the end of phase j . Let
m = �ξ/(2q) − 1� and observe that if for some j0 ∈ {τ̂stab, . . . , τ̂stab + 2mq} we have

Q
� j− j0
j = � j− j0−1 for j ∈ { j0 +1, . . . , j0 +q} then τ̂ nspr + τ̂stab ≤ j0 +q < ξ + τ̂stab. Hence,
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we have

P(τ̂ nspr ≥ ξ) ≤ P

⎛

⎝
⋂

j0−τ̂stab∈{0,1,...,2mq}

⋃

j∈{ j0+1,..., j0+q}

{
Q

� j− j0
j �= � j− j0−1

}
⎞

⎠

≤ P

⎛

⎝
⋂

j0−τ̂stab∈{0,2q,...,2mq}

⋃

j∈{ j0+1,..., j0+q}

{
Q

� j− j0
j �= � j− j0−1

}
⎞

⎠

=
∏

j0−τ̂stab∈{0,2q,...,2mq}
P

⎛

⎝
⋃

j∈{ j0+1,..., j0+q}

{
Q

� j− j0
j �= � j− j0−1

}
⎞

⎠

=
∏

j0−τ̂stab∈{0,2q,...,2mq}

⎧
⎨

⎩
1 − P

⎛

⎝
⋂

j∈{ j0+1,..., j0+q}

{
Q

� j− j0
j = � j− j0−1

}
⎞

⎠

⎫
⎬

⎭

=
∏

j0−τ̂stab∈{0,2q,...,2mq}

⎧
⎨

⎩
1 −

∏

j∈{ j0+1,..., j0+q}
P

(
Q

� j− j0
j = � j− j0−1

)
⎫
⎬

⎭

≤ (1 − pqmin)
m ≤ (1 − pdiam(P)

min )

⌊
ξ

2diam(P)
−1
⌋

.

The lemma now follows by the union bound over [N ]. ��
The following lemma gives us a bound for the time at which each phase starts (and ends)

using the phase lengths.

Lemma 3.9 Suppose that there exist C ≥ 1, θ > 0 such that C−1 jθ ≤ A j − A j−1 ≤ C jθ

for all j ∈ N. Then we have C−1

1+θ
j1+θ ≤ A j ≤ C

1+θ
(1 + j)1+θ for all j ∈ N.

Proof We have that

A j =
j∑

i=1

A j − A j−1

since A0 := 0. Therefore,

C−1
j∑

i=1

iθ ≤ A j ≤ C
j∑

i=1

iθ .

Since jθ is increasing, we can bound the sums as follows

C−1
∫ j

0
iθdi ≤ A j ≤ C

∫ j

0
(i + 1)θdi .

And this gives the desired result:

C−1

1 + θ
j1+θ ≤ A j ≤ C

1 + θ
(1 + j)1+θ .

��
Now define the phase j(�min) ∈ N by

j(�min) := 4 + max

(

{0} ∪
{

j ∈ N : jθ <
8C(1 + θ)

�2
min

(
K

N
+ 3

)

log f

(
C

1 + θ
(1 + j)θ

)})

.
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Note that j(�min) is always finite since f (t) = O(log t). This phase is conveniently defined
by considering Lemma 3.9 and with the purpose of applying Lemma 3.7 in Lemma 3.10.

Lemma 3.10 Suppose that there exist constants C ≥ 1, θ > 0 such that C−1 jθ ≤ A j −
A j−1 ≤ C jθ for all j ∈ N. Then for all ξ ≥ j(�min) we have

P(τ̂stab ≥ ξ) ≤
∑

n∈[N ]
P(κn◦ > C−1(ξ − 2)1+θ ) + 8K N

�2
min

∑

j≥ξ

exp

(

− �2
min j

θ

16C(K/N + 3)

)

.

Proof Fix an agent n ∈ [N ] and suppose that τ̂ nstab ≥ ξ . Since τ̂ nstab := min{ j ∈ N : A j−1 ≥
κn◦ ,∀ j ′ ≥ j, χn

j ′ = 0} it follows that either Aξ−2 < κn◦ or χn
j = 1 for some j ≥ ξ − 1. Note

also that by the upper bound in Lemma 3.9 for j ≥ ξ ≥ j(�min) we have

A j − A j−1 ≥ C−1 jθ ≥ 8

�2
min

(
K

N
+ 3

)

log f

(
C

1 + θ
(1 + j)θ

)

≥ 8

�2
min

(
K

N
+ 3

)

log f (A j ).

Hence, by Lemmas 3.7 and the lower bound in 3.9 we have

P(τ̂ nstab ≥ ξ) ≤ P(Aξ−2 < κn◦ ) +
∑

j≥ξ−1

E[χn
j ]

≤ P(κn◦ >
C−1

1 + θ
(ξ − 2)1+θ ) + 8K

�2
min

∑

j≥ξ−1

exp

(

−�2
min(A j − A j−1)

16(K/N + 3)

)

≤ P(κn◦ >
C−1

1 + θ
(ξ − 2)1+θ ) + 8K

�2
min

∑

j≥ξ−1

exp

(

− �2
min j

θ

16C(K/N + 3)

)

.

Once again, conclusion of the lemma follows by union bounding over n ∈ [N ]. ��
Proposition 3.11 Suppose that there exist C ≥ 1, θ > 0 such that C−1 jθ ≤ A j − A j−1 ≤
C jθ for all j ∈ N. Then there exists a constant φ ≡ φ(�min,C, θ, N , K , pmin, diam(P))

depending on �min,C, θ, N , K , pmin, diam(P) but not T such that E[Aτ ] ≤ φ.

Proof Given Aτ̂ ≥ ζ ≥ C
1+θ

(1 + 2 j(�min))
1+θ ∨ C

1+θ
· {16diam(P)}1+θ then τ̂ ≥

(
ζ(1+θ)

C )
1

1+θ − 1, so τ̂spr ∨ τ̂stab ≥ {( ζ(1+θ)
C )

1
1+θ − 1}/2 ≥ j(�min). Hence, for ζ ≥ ψ ≡

ψ(�min,C, θ) := C
1+θ

(1 + 2 j(�min))
1+θ ∨ C

1+θ
{16diam(P)}1+θ ,

P(Aτ̂ ≥ ζ ) ≤ P

(

τ̂spr ≥ 1

2
{
(

ζ (1 + θ)

C

) 1
1+θ − 1}

)

+ P

(

τ̂stab ≥ 1

2
{
(

ζ(1 + θ)

C

) 1
1+θ − 1}

)

≤ N (1 − pdiam(P)
min )

⌊
(ζ(1+θ)/C)

1
1+θ

4diam(P)
−2
⌋

+ 8K N

�2
min

∫

z≥(ζ(1+θ)/C)
1

1+θ /2−3
exp

(

− �2
minz

θ

16C(K/N + 3)

)

dz

+
∑

n∈[N ]
P(κn◦ > {(ζ(1 + θ)/C)

1
1+θ /2 − 4}1+θ /(C(1 + θ))



318 Dynamic Games and Applications (2023) 13:307–325

≤ N (1 − pdiam(P)
min )

(ζ(1+θ)/C)
1

1+θ

24diam(P)

+ 8K N

�2
min

∫

z≥(ζ(1+θ)/C)
1

1+θ /2−3
exp

(

− �2
minz

θ

16C(K/N + 3)

)

dz

+
∑

n∈[N ]
P(κn◦ > (21+θC)−2 · ζ ).

And by Lemma 3.2, we have that
∑

n∈N

∑

ζ∈N
P(κn◦ > (21+θC)−2 · ζ ) =

∑

n∈N

∑

ζ∈N
P((21+θC)2κn◦ > ζ)

= (21+θC)2
∑

n∈N
E[kn◦ ] ≤ (21+θC)2

8N

�2
min

.

Therefore,

E[Aτ̂ ] ≤ ψ +
∑

ζ>ψ

⎧
⎨

⎩
N (1 − pdiam(P)

min )
(ζ(1+θ)/C)

1
1+θ

24diam(P)

⎫
⎬

⎭

+
∑

ζ>ψ

{
8K

�2
min

∫

z≥(ζ(1+θ)/C)
1

1+θ /2−3
exp

(

− �2
minz

θ

16C(K/N + 3)

)

dz

}

+ (21+θC)2
8N

�2
min

≡ φ < ∞.

where φ is a constant not depending on the time horizon T . ��
Theorem 3.1 follows from Corollary 3.6 combined with Proposition 3.11 and by taking

ε → 0.

3.1 Finite Sample Bound

To derive a finite sample bound, we will make two additional assumptions. Firstly, we will
assume that the neighbours that a recommendation is pulled from are chosen uniformly at
random (Definition 3.12). This will allow for a tighter bound on τ̂spr which will depend on
the conductance and degree of the nodes. We will also assume that the phase lengths grow
such that C−1 jθ ≤ A j − A j−1 ≤ C jθ where C ≥ 1, θ > 1. We now define the required
graph properties.

The degree of a node n ∈ [N ] is defined by
dn :=

∑

j∈[N ]
1{P(i, j) �= 0}.

The conductance φ of P is defined as

φ(P) := min
S⊂[N ],S �=∅

∑
i∈S, j∈Sc P(i, j)
1
N |S| · |Sc| .

Definition 3.12 We say that P satisfies the uniform-pull condition if for each i ∈ [N ], with
di =∑ j∈[N ] 1{P(i, j) �= 0} we have P(i, j) ∈ {0, 1/di } for all j ∈ [N ].
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We will bound τ̂spr by using that it is stochastically dominated by a random variable τspr
representing the time it takes for a rumour to spread on a graph according to a pull model
where neighbours are chosen uniformly at random. The following result from [7, Lemma 4]
gives us a bound on this rumour spreading time τspr.

Lemma 3.13 (Giakkoupis, 2011) For all β > 0, we have that

P

(

τspr > 50(β + 2) log N

(

φ−1 + dmax

�φ · dn��
))

≤ 3N−β,

where dmax := maxn∈[N ] dn is the maximal degree of the graph and n� the agent where
� ∈ Sn�◦ .

The following lemma, similar to Lemma 3.11, bounds E[Aτ ] from above with a time
horizon-independent expression. Owing to the additional assumptions we have made, we are
able to get a more explicit bound.

Lemma 3.14 Suppose that P satisfies the uniform-pull condition (3.12). Suppose further that
there exist C ≥ 1, θ > 1 such that C−1 jθ ≤ A j − A j−1 ≤ C jθ for all j ∈ N. Suppose that
each neighbour is equally likely to be chosen. Then we have that

E[Aτ̂ ] ≤ C

1 + θ
(1 + 2 j(�min))

1+θ + (21+θC)2
8N

�2
min

+ �θ�!128C2K64θ (K/N + 3)θ+1

�4+2θ
min

+ 3C�θ�!
(

400

(

φ−1 + dmax

�φ · dn��
))θ

.

Proof Given Aτ̂ ≥ ζ ≥ C
1+θ

(1 + 2 j(�min))
1+θ , then τ̂ ≥ (

ζ(1+θ)
C )

1
1+θ − 1, so τ̂spr ∨

τ̂stab ≥ {( ζ(1+θ)
C )

1
1+θ − 1}/2 ≥ j(�min). Hence, for ζ ≥ ψ ≡ ψ(�min,C, θ) := C

1+θ
(1 +

2 j(�min))
1+θ , and by the same approach as Proposition 3.11, we arrive at

E[Aτ̂ ] ≤ C

1 + θ
(1 + 2 j(�min))

1+θ

+ (21+θC)2
8N

�2
min

+
∑

ζ>ψ

{

P

(

τ̂spr ≥ 1

2

{(
ζ (1 + θ)

C

) 1
1+θ − 1

})}

+
∑

ζ>ψ

{
8K

�2
min

∫

z≥(ζ(1+θ)/C)
1

1+θ /2−3
exp

(

− �2
minz

θ

16C(K/N + 3)

)

dz

}

.

It suffices to bound the third and fourth terms. Firstly, wewill bound the third term using 3.13.
For notational convenience, define

� := 100 log N

(

φ−1 + dmax

�φdn��
)

.

We have that

1

3
·
∑

ζ>ψ

P

(

τ̂spr ≥ 1

4

{(
ζ (1 + θ)

C

) 1
1+θ

})

≤ 1

3
·
∑

ζ>ψ

P

(

τspr ≥ 1

4

{(
ζ (1 + θ)

C

) 1
1+θ

})
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≤
∑

ζ>ψ

N
− 1

4�

(
ζ (1+θ)

C

) 1
1+θ

≤
∫

ψ

N
− 1

4�

(
ζ (1+θ)

C

) 1
1+θ

dζ

≤
∫

ψ

exp

(

− log N

4�

(
ζ (1 + θ)

C

) 1
1+θ

)

dζ

≤ C

(
4�

log N

)θ ∫ ∞

0
xθ exp(−x)dx

≤ C

(
4�

log N

)θ

�(θ)

≤ C�(θ)

(

400

(

φ−1 + dmax

�φ · dn��
))θ

≤ C�θ�!
(

400

(

φ−1 + dmax

�φ · dn��
))θ

,

where the first inequality holds since τ̂spr is stochastically dominated by τspr, the second
inequality holds from Lemma 3.13 and the fifth inequality holds from a change of variables.

We will now bound the fourth term. We start by bounding the integral
∫ ∞

1
2 (

ζ(1+θ)
C )

1
1+θ −3

exp

(

− �2
minz

θ

16C(K/N + 3)

)

dz ≤
∫ ∞

1
2 (

ζ(1+θ)
C )

1
1+θ −3

exp

(

− �2
minz

16C(K/N + 3)

)

dz

≤ 16C(K/N + 3)

�2
min

exp

(

−1

2

(
ζ(1 + θ)

C

) 1
1+θ − 3

)

≤ 16C(K/N + 3)

�2
min

exp

(

−1

4

(
ζ(1 + θ)

C

) 1
1+θ

)

.

And therefore, we have

∑

ζ>ψ

{
8K

�2
min

∫ ∞
1
2 (

ζ(1+θ)
C )

1
1+θ −3

exp

(

− �2
minz

θ

16C(K/N + 3)

)

dz

}

≤ 128CK (K/N + 3)

�4
min

∑

ζ>ψ

exp

(

−1

4

(
ζ(1 + θ)

C

) 1
1+θ

)

≤ 128CK (K/N + 3)

�4
min

∫ ∞

ψ

exp

(

−1

4

(
ζ(1 + θ)

C

) 1
1+θ

)

dζ

≤ 128C2K64θ (K/N + 3)θ+1

�4+2θ
min

∫ ∞

0
xθ exp(−x)dx

≤ �θ�!128C2K64θ (K/N + 3)θ+1

�4+2θ
min

.

��
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The following result is a direct consequence of Corollary 3.6 and Lemma 3.14.

Theorem 3.15 Suppose that there exist C ≥ 1, θ > 1 such that C−1 jθ ≤ A j − A j−1 ≤ C jθ

for all j ∈ N. Then for each agent n ∈ [N ], we have the following regret bound

E[Rn
T ] ≤ C

1 + θ
(1 + 2 j(�min))

1+θ + (21+θC)2
8N

�2
min

+ �θ�!128C2K64θ (K/N + 3)θ+1

�4+2θ
min

+ 3C�θ�!
(

400

(

φ−1 + dmax

�φ · dn� )�
))θ

︸ ︷︷ ︸
Impact from graph

+
∑

k∈Sn◦ \[�]
�k inf

ε∈
(
0, �min

2

)

{
log f (T )

KL(μk + ε, μ� − ε)
+ 3

ε2

}

.

This bound provides an insight into effect the initial phases (before τ ) might have on the
regret. We observe this bound is large when either �min or the conductance φ are small or
when either θ or the ratio dmax

dn�
is large. Additionally, θ amplifies the affect of these parameters

on the regret bound.
Figure 3 shows the results of using different networks with Algorithm 1 from a series of

simulations. These simulations score the regret for different graphs, in order from lowest to
highest, as complete, cycle and star. The Impact from graph term from Corollary 3.14 can
help explain these results.

Firstly, the complete graph has conductance φ = N
2(N−1) so the impact of the complete

graph on the regret bound is

3C�θ�! (400 (4))θ .

For the cycle graph, the conductance is φ = 2/N so the graph impact is

3C�θ�! (400 (N/4))θ .

Finally, the impact of star graph depends on whether the best arm begins on the central node
or a leaf node. Since the conductance of the star graph is φ = N−1

N , we have the following
scaling in each case

3C�θ�! (400 (2))θ
︸ ︷︷ ︸

Central Node

3C�θ�! (400(N − 1))θ
︸ ︷︷ ︸

Leaf Node

.

4 Numerical Results

Here we will compare Algorithm 1 and the GosInE algorithm on a range of synthetic data.
We compare variants of both of these algorithms using Hoeffding and KL upper confidence
bounds. For GosInE, the Hoeffding and KL variants are, respectively, labelled UCB-GIE and
KLUCB-GIE, and for Algorithm 1, they are labelled GIE-FE (Gossip-Insert-Eliminate with
Fast Elimination) and AOGB.

The experiments are conducted in two settings: N , K = (20, 50) and N , K = (10, 100).
Each experiment consists of 100 independent runs, and in each run, the regret is averaged
over the nodes. In each experiment, the algorithms encounter the same reward sequence.
The first two experiments assume the agents are connected via a complete graph, while the
third experiment compares different graphs. We compute the regret over a time horizon of
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Fig. 1 Regret for different choices of α with μ� = 0.9 and the rest of the arms divide the interval [0.2, 0.8]
uniformly

Fig. 2 Regret for different choices of �min with α = 1. The best arm has mean μ� = 0.9 and the rest of the
arms divide the interval [0.9 − �min, 0.2] uniformly

T = 100, 000 and plot the sample mean along with 95% confidence intervals. Other than in
Fig. 4, we take the phase lengths to grow cubically, i.e. A j = j3, and other than in Fig. 3,
we assume that agents are connected via a complete graph.

Choice of α: We begin by comparing Algorithm 1 and GosInE for the two different
types of upper confidence bounds by varying the exploration function f (t) = 1+ tα log2(t)
by choosing different values for α. From Fig. 1, we identify that Algorithm 1 and GosInE
perform better when equipped with KL upper confidence bound. Additionally, Algorithm 1
outperforms GosInE when they are both equipped with the same upper confidence bounds.
Overall, performance is better for the smaller values of α and regret is minimised somewhere
in the region α ≤ 1. This implies that there may be more practical choices for fα(t) than the
asymptotically optimal choice at α = 1.
�min vs Regret: Now we consider the effect of changing the suboptimality gap �min. This
is the difference between the means of the best and the second-best arms. Figure 2 compares
Algorithm 1 and the GosInE algorithm for both types of confidence intervals. Similarly to the
previous experiment, we observe that both algorithms perform better when equipped with the
KL upper confidence bounds and that Algorithm 1 typically outperforms GosInE on average
when they are equipped with the same upper confidence bounds.
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Fig. 3 Regret over time for three different networks. Each in case we consider α = 1, �min = 0.1 and the
means of the remaining arms divide the interval [0.8, 0.2] uniformly

Fig. 4 Regret over time for different choices of A j . Each in case we consider α = 1, �min = 0.1 and the
means of the remaining arms divide the interval [0.8, 0.2] uniformly

Network Configurations Here we compare three different network configurations for
agents implementing Algorithm 1: a complete graph, a cycle graph and a star graph.

The results in Fig. 3 show that the cycle graph performs slightly worse than the complete
graph but the star graph struggles significantly along with a larger variance. In essence, this
is because the best arm needs to spread to centre of the star before it can spread to all of the
other nodes.
Phase Lengths

In Fig. 4, we see the effect of changing the communication rounds A j on the regret. We
consider three polynomial different functions, j2, j3, j4, as these satisfy the assumptions in
our theoretical analysis. We observe that increasing the phase lengths (and thus decreasing
the number of communication rounds) incurs more regret in the initial time steps in both
cases, which is as expected.
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5 Discussion

In this paper, we presented an algorithm (Algorithm 1) for multi-agent bandits in a decen-
tralised setting. Our algorithm builds upon the Gossip-Insert-Eliminate algorithm of [3] by
making two modifications. First, we use tighter confidence intervals inspired by [6]. Second,
we use a faster elimination scheme for reducing the number of arms that must be explored
by an agent. Both modifications yield significant empirical improvement on simulated data
(Fig. 2). Finally, we prove a regret bound (Theorem 3.1) which demonstrates asymptotically
optimal performance of our algorithm, matching the asymptotic performance of a collection
of agents with unlimited communication.

There is substantial scope for future work in this direction. One challenge of great practical
importance is the development of distributed algorithms which are robust to both malicious
agents and faulty communication [13]. An interesting theoretical challenge is to develop
a multi-agent bandit algorithm which is both asymptotically optimal and nearly minimax
optimal with limited communication. In very recent work of [1], an algorithm has been
proposed which is minimax optimal in the distributed setting, and it would be interesting to
synthesise this with the insights provided in the current paper.
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