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Abstract
This research proposes a periodic review multi-item two-layer inventory model. The main
contribution is a novel approach to determine the can-order threshold in a two-layer model
under time-dependent and uncertain demand and setup costs. The first layer consists of a
learning mechanism to forecast demand and forecast setup costs. The second layer involves
the coordinated replenishment of items, which is analysed as a Bayesian game with uncertain
prior probability distribution. The research builds on the concept of the (S, c, s) policy, which
is extended to the case of uncertain and time-dependent parameters.

Keywords Coordination game · Inventory control · Can-order policy · Bayesian game ·
Distributionally robust optimization

1 Introduction

This paper studies a periodic review multi-item two-layer inventory model to determine the
can-order threshold of a (S, c, s) policy in a coordinated replenishment problem. The (S, c, s)
policy was first introduced by Balintfy [3] and is useful in situations where the demand is
stochastic and where the setup costs are high.

In the (S, c, s) policy, an order is placed to take the inventory level to the order-up-to
threshold S. A replenishment occurs either when the inventory level is lower than the must-
order threshold s or when the inventory level is lower than the can-order threshold c and
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Fig. 1 Inventory evolution over time; in the grey area coordinated replenishment may occur

there is at least another item being ordered. The inventory evolution of a generic item i over
time under the (S, c, s) policy is illustrated in Fig. 1.

Various algorithms [4, 8, 18, 23, 29, 32, 33] and heuristics [6, 22, 34] to determine the
thresholds of the (S, c, s) policy are established and compared in the literature [12, 19, 21,
26, 27]. Federgruen et al. [8] proposed an algorithm to determine the optimal (S, c, s) policy
in a multi-item inventory system with compound Poisson demands. In the work of Zheng
[35], the author provides a method to determine the thresholds in a single-item continuous
review inventory system with Poisson demand. Similarly, in this work we assume that the
demand and discount opportunity of each item evolves according to two independent Poisson
processes. However, we consider that the rate parameters of these processes are unknown
and change over time.

In practice, demand is often assumed to be uncertain [2, 10, 20, 23–26, 28, 31] and
demand forecasting models are widely developed in order to cope with uncertainty [9]. In
this research, as the demand follows a Poisson distribution, we apply a Poisson regression
model to learn the future demand [5]. This technique is commonly used to forecast a count
variable that follows a Poisson distribution and it ensures that the estimated parameter takes
values in the set of nonnegative integers Z+. On the other hand, the setup costs can also be
uncertain [1]. In this case, we apply an exponential smoothing method to forecast the values
of the setup cost at each time t [11, 17]. The uncertainty in the parameters highlights the
versatility of the proposed method and its link to data-driven approaches. Indeed, the method
is effective even when we do not know a priori the values of the parameters. Furthermore,
considering setup costs as unknown parameters allows to accommodate real-life scenarios
where it is common that market conditions generate changes in transportation cost.

In this paper, we focus on determining how the optimal can-order level in a periodic
review systemwithmultiple items and discount opportunities can be obtained, while learning
uncertain setup cost and uncertain demand. We assume that each item is managed by an
independent decision maker. In addition, assuming that the decision-maker of each item
does not have information about the demand of any other item, we translate this coordinated
replenishment problem into a Bayesian game, where each item is considered as a player. The
theory about Bayesian games was introduced by Harsanyi [14–16]. However, in a Bayesian
game all the players need to know the prior probability distribution of the demand. In this
work, we assume that the players do not know the exact prior probability distribution, but
each player knows the set of possible probability distributions. To be protected against the
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uncertainty of not knowing the real probability distribution, we apply distributionally robust
optimization [30] to obtain the optimal can-order level that minimizes the expected cost.

The main contributions of this paper are:

• We present a new model to describe a coordinated replenishment game which involves a
learning mechanism to forecast uncertain and time-dependent parameters. This model is
based on Bayesian games and distributionally robust optimization to accommodate the
uncertainty in the probability distributions.

• We prove that the cost function is convex with respect to the can-order threshold and
that it is concave with respect to the set of probability distributions used for the robust
optimization problem. Furthermorewe prove that, in terms of Bayesian games, finding an
optimal can-order level that minimizes the cost function corresponds to finding a strategy
at a Bayesian Nash equilibrium.

• We provide a new method to determine the optimal-can order level that minimizes the
cost function.

• We conclude with a numerical analysis to corroborate our theoretical results.

This paper is organized as follows. In Sect. 2, we introduce the model for a specific
item and we extend the model to multi-item joint replenishment. In Sect. 3, we analyse the
coordinated replenishment model presented in Sect. 2 as a Bayesian game. In Sect. 4, we
present our main results. In Sect. 5, we provide a numerical analysis. Finally, in Sect. 6 we
draw conclusions and discuss future works.

2 Problem Statement andModel

Consider consecutive time intervals [t, t + 1) for all t = 0, 1, . . ., and let the set of items
N = {1, 2, ...n} be given. Let us assume that each item i ∈ N is managed by an independent
decision maker. For each specific item i ∈ N , we also assume that the customers arrive
one at a time. The arrival of a customer indicates the occurrence of a demand event. The
cumulative demand in a time interval [t, τ ], where τ ∈ [t, t + 1), is given by the number of
customers that arrive during that period of time. Let di (τ ) ∈ Z+ be the cumulative demand
of item i from time t to τ , where Z+ represents the set of nonnegative integers. The value
of the cumulative demand di (τ ) is reset at the beginning of each time interval [t, t + 1). It
means that when τ = t+, di (τ ) = 0, where t+ denotes the first time instant in the interval
[t, t + 1). We are interested in determining the cumulative demand that is observed at the
end of each discrete-time interval. Let us denote by Di (t +1) ∈ Z+ the observed cumulative
demand of item i from time t to t + 1. In addition, let us denote by (t + 1)− ∈ [t, t + 1) the
last time instant in the interval [t, t + 1). The cumulative demand at time t + 1 is given by
Di (t + 1) = di ((t + 1)−).

It is assumed that di (τ ) evolves according to a continuous time Poisson process with rate
λi (t) ∈ R+, where λi (t) represents the average number of demand events that occur during
the time interval [t, t + 1), and R+ denotes the set of positive real numbers. However, at the
beginning of each time interval the true value of the rate parameter λi (t) is unknown and has
to be estimated. Let us denote by λ̂i (t) the estimated parameter of the Poisson process. This
parameter is learned from past data by applying a Poisson regression model. In this Poisson
regression model, the estimated parameter depends on the historical observed cumulative
demand Di (t), as well as on the historical data of the minor and major setup costs, denoted
by ai (t) and A(t), respectively. The minor setup cost ai (t) ∈ R+ is the cost that has to be
paid when item i is ordered jointly with at least one other item j ∈ N , j �= i . On the other
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hand, the major setup cost A(t) ∈ R+ corresponds to the cost that has to be paid when an
order is placed and no other items are ordered at the same time.

Before explaining the Poisson regression model, let us introduce the forecast cumulative
demand of item i at time t+1, denoted by D̂i (t+1) ∈ Z+.We assume that the forecast cumu-
lative demand follows a Poisson distribution with rate λ̂i (t). Let Di (t) be the discrete-time
random variable of the forecast cumulative demand. The corresponding Poisson distribution
has the following probability mass function:

Pr(Di (t) = κ) = Pr(κ) = e−λ̂i (t)λ̂i (t)κ

κ! , κ ∈ Z+. (1)

It is important to remember that the expected value and variance of a Poisson distri-
bution correspond to the value of the rate parameter. Furthermore, we consider that the
forecast cumulative demand is given by the value of the estimated parameter λ̂i (t), namely
σ 2(Di (t)) = E(Di (t)) = λ̂i (t) = D̂i (t + 1).

For a specific item i , let us assume that we have historical data of the observed demand
and the setup costs. The data consist of m independent observations of the cumulative
demand Di (t), as well as of the major and minor setup costs A(t) and ai (t), respectively,
for all t = 0, 1 . . . ,m. In a Poisson regression model, Di (t) is the dependent variable and
(A(t), ai (t)) are the linear independent regressors that determine Di (t) at each time t . The
Poisson regression model in this case is defined by the following equations:{

Pr(Di (t)|(A(t), ai (t))) = e−λi (t)λi (t)Di (t)

Di (t)! ,

λi (t) = λi (A(t), ai (t), β1, β2) = eA(t)β1+ai (t)β2 ,
(2)

where Pr(Di (t)|(A(t), ai (t))) is the conditional probability distribution of the observed
cumulative demand given the independent variables A(t) and ai (t), and the unknown param-
eters β1, β2 ∈ R called regression coefficients. Observe that this conditional probability
distribution is also a Poisson distribution, where the parameter λi (t) is a continuous function
that depends on the variables (A(t), ai (t)) and also on the unknown parameters β1 and β2.

Let us denote by β = (β1, β2) the vector of unknown parameters and by β̂ = (β̂1, β̂2)

its corresponding vector of estimated parameters. In a Poisson regression model, these
parameters are estimated by maximum likelihood estimation (MLE). Given m independent
observations, the log-likelihood function is given by

lnL (β) = ln
m∏

k=1

e−λi (k)λi (k)Di (k)

Di (k)!

= ln
m∏

k=1

e−[eA(k)β1+ai (k)β2 ] [eA(k)β1+ai (k)β2
]Di (k)

Di (k)!

=
m∑

k=1

{
[A(k)β1 + ai (k)β2]Di (k) − eA(k)β1+ai (k)β2 − ln(Di (k)!)

}
. (3)

To maximize the log-likelihood function, we differentiate (3) with respect to β = (β1, β2)

and we set the derivative equal to zero. The estimated parameters β̂1 and β̂2 are obtained
from solving the set of nonlinear equations:{

∂[lnL (β)]
∂β1

=∑m
k=1 A(k)

[
Di (k) − eA(k)β1+ai (k)β2

] = 0,
∂[lnL (β)]

∂β2
=∑m

k=1 ai (k)
[
Di (k) − eA(k)β1+ai (k)β2

] = 0.
(4)
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Fig. 2 Demand evolves according to a Poisson process (left). The observed cumulative demand at discrete
time D(t) is used to estimate the Poisson rate in the interval [t, t +1) using a Poisson regression model (right)

Note that finding an analytical solution for β̂1 and β̂2 is prohibitive. However, it is com-
mon to apply iterative algorithms to obtain the values of the parameters that maximize the
log-likelihood function. The most common method that statistical programs use to find the
solution for the parameters is theNewton–Raphson iterativemethod. By applying thismethod
convergence is guaranteed, as the log-likelihood function (3) is globally concave.

On the other hand, at time t + 1 the values of the major and minor setup cost are also
unknown. The learning mechanism applied to forecast the setup costs is the exponential
smoothing. Let us denote by Â(t + 1) and âi (t + 1) the forecast values of the major and
minor setup costs at time t + 1, respectively. These values are obtained from the following
exponential smoothing model:{

E(ai (t)) = âi (t + 1) = αai (t) + (1 − α)âi (t),
E(A(t)) = Â(t + 1) = γ A(t) + (1 − γ ) Â(t),

(5)

where α and γ are the smoothing coefficients.
Finally, to forecast the value of the demand rate at time t + 1 we substitute in (2) the

estimated parameters (β̂1, β̂2), and the forecast setup costs ( Â(t + 1), âi (t + 1)) as follows:

E(Di (t + 1)) = λ̂i (t + 1) = eÂ(t+1)β̂1+âi (t+1)β̂2 . (6)

Figure 2(left) displays the continuous cumulative demand di (τ ) which evolves according
to a Poisson process and the cumulative demand Di (t) in the interval [t−1, t). The displayed
example repeats over three consecutive time periods. Once a Poisson regression model has
been fit for the historical information up to time t , we can use this model to forecast the
demand rate at time t + 1 as in Fig. 2(right).

In the (S, c, s) policy, item i is ordered as a result of a discount opportunity when its
inventory level is lower than its can-order threshold ci (t) ∈ R+ and there is, at least, an order
placed by the decision maker of another item j ∈ N , j �= i . We assume that the discount
opportunity events for item i are also modelled by a Poisson process with rate μi (t) ∈ R+.
However, similarly as in the rate parameter λi (t), the discount opportunity rate is unknown at
the beginning of each time interval [t, t + 1) and has to be estimated. Let us denote by μ̂i (t)
the estimated rate parameter of the Poisson process that describes the discount opportunity
events for item i . The discount opportunity rate can be calculated as follows:

μ̂i (t) =
∑

j∈N , j �=i

λ̂ j (t)

S j (t) − s j (t)
+

∑
j∈N , j �=i

λ̂ j (t)

S j (t) − c j (t)

∑
k∈N ,k �= j

λ̂k(t)

Sk(t) − sk(t)
. (7)

For the computation of the discount opportunity rate, in (7) we consider the possible events
that can generate a discount opportunity. For a specific item i , the first term in (7) corresponds
to the possibility that any other item j �= i is reordered separately. On the other hand, the
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Fig. 3 One iteration of the receding horizon optimization; three samples of observed demand Di (diamond),
and forecast demand D̂i (circles). Forecast is kept constant throughout the optimization horizon (dashed lines)

second term in (7) corresponds to the possibility that any item j ∈ N , j �= i , is reordered
jointly with a different item k ∈ N .

Note that the discount opportunity rate of item i depends on the demand rates of the other
items in N . In this work, we assume that the demand Poisson processes for the different items
are independent. In Sect. 3, we explain how each player i estimates the values of λ̂ j for all
j �= i , j ∈ N . It is important to observe that the demand and the discount opportunity are
two independent Poisson processes; therefore, any possible event, which involves either the
materializing of a demand or the occurrence of a discount opportunity, is determined by a
Poisson process with rate λi (t) + μi (t).

At each time t , an optimization problem over an infinite time horizon is formulated to
obtain the optimal thresholds of the can-order policy (Si , ci , si ). In doing this the values of the
demand parameters are regarded as constant and equal to the last forecast. This is illustrated
in Fig. 3, where D̂i (t) is the forecast demand at time t , which is regarded as a constant as
indicated by the horizontal line. At each time t , a new D̂i (t) is calculated and used in the
new optimization problem.

The must-order si (t) ∈ N level can be obtained as

si (t) := E(Di (t)) + k
√

σ 2(Di (t)) = λ̂i (t) + k
√

λ̂i (t). (8)

The term k is a safety factor that has to be set to ensure that in a specified percentage of the
possible cases shortage does not occur [13].

The order-up-to level Si (t) ∈ N consists of the safety stock SS and the economic order
quantity EOQi , namely Si := SS + EOQi . For the economic order quantity, we have
EOQi := √

2A(t)E(Di (t))/hi , where hi is the holding cost per unit time. Then, for the
order-up-to level we obtain

Si (t) := k
√

λ̂i (t) +
√
2A(t)λ̂i (t)

hi
. (9)

The dynamics of the inventory level for a specific item i is characterized by a Markov
decision-making process. Let us assume that the inventory level of item i at time t is y and
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λ̂ i(t)
λ̂ i(t)+μ̂i(t)

λ̂ i(t)
λ̂ i(t)+μ̂i(t)

Fig. 4 Markov decision process: inventory levels (nodes) and transitions (arcs)

when the next event occurs, the inventory goes to level x , the transition probabilities pyx (t)
between two inventory levels are given by

pyx (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 y ≤ si , x = Si ,
λ̂i (t)

λ̂i (t)+μ̂i (t)
si < y ≤ ci , x = y − 1,

μ̂i (t)
λ̂i (t)+μ̂i (t)

si < y ≤ ci , x = Si ,
μ̂i (t)

λ̂i (t)+μ̂i (t)
ci < y ≤ Si , x = y,

λ̂i (t)
λ̂i (t)+μ̂i (t)

ci < y ≤ Si , x = y − 1

0 otherwise.

(10)

The transition probabilities in Eq. (10) describe a data-driven time varying Markov chain.
The Markov decision process is illustrated in Fig. 4. The plot depicts transitions between
inventory levels. When at time t the inventory is si (t) + 1 the transition can be to si (t)

(unit demand) with probability λ̂i (t)
λ̂i (t)+μ̂i (t)

or to Si (discount opportunity) with probability
μ̂i (t)

λ̂i (t)+μ̂i (t)
. When the inventory is ci + 1 the transition can be to ci (unit demand) with

probability λ̂i (t)
λ̂i (t)+μ̂i (t)

or it remains at the same level in case of discount opportunity with

probability μ̂i (t)
λ̂i (t)+μ̂i (t)

. The expected time between consecutive events is given by 1/(λ̂i (t)+
μ̂i (t)).

Given the transition probabilities, the purpose is to determine the optimal policy that
minimizes the long-run average cost for each item i . The long-run average cost is defined
similarly as in the work of Zheng [35] and is given by

gi (Si , ci , si ) := Ii (Si ) + E(A)Qi (Si ) + E(ai )(1 − Qi (Si ))

Ti (Si )
. (11)

In the above, assuming that the inventory level is Si (we are at the beginning of a new
replenishment period), we denote the expected time until the next order is placed by Ti (Si ),
the expected holding and penalty costs incurred until the next order is placed by Ii (Si ), and
the probability that the next order is triggered by a demand by Qi (Si ).

Let us denote by y the inventory level of item i at time t and by Gi (y) its corresponding

one-step inventory cost. In addition, let us denote by θi (t) = λ̂i (t)
λ̂i (t)+μ̂i (t)

the probability that

the next event is the occurrence of a unitary demand. In the following result, we explain how
to obtain an explicit expression for each term in (11).
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Lemma 1 For the long-run average cost (11), the following equations hold:

Ti (Si ) := 1

λ̂i (t) + μ̂i (t)

(ci−si−1)∑
x=0

θ(t)x + 1

λ̂i (t)
(Si − ci ),

Ii (Si ) = 1

λ̂i (t) + μ̂i (t)

(ci−si−1)∑
x=0

θ(t)xGi (Si − x) + 1

λ̂i (t)

Si∑
x=ci+1

Gi (x),

Qi (Si ) = θ(t)(ci−si ).

Proof The proof is in the Appendix. ��
Since the parameters involved in the computation of the long-run average cost depend on

the thresholds Si (t), ci (t), and si (t), the minimization of the long-run average cost with fixed
Si (t) and si (t) consists in finding the optimal value of ci (t). The problem we wish to solve
can be formulated as follows:

For all i = 1, . . . , n

min
ci (t)∈N

gi (Si (t), ci (t), si (t)) := Ii (Si (t)) + E(A(t))Qi (Si (t)) + E(ai (t))(1 − Qi (Si (t)))

Ti (Si (t))
,

(12)

where the expressions for Ti (Si ), Ii (Si ) and Qi (Si ) are as in Lemma 1.
In the same spirit as in Zheng [35], an algorithm to calculate the optimal can-order level for

a single-item inventory system with Poisson demand and Markovian discount opportunities
on the setup cost is presented in the rest of this paper. In this research, the long-run average
cost formula is extended to a multi-item periodic review system, where the demand rate λ̂i (t)
is forecast by a Poisson regression model.

It is important to observe that the long-run average cost of a specific item i depends on
the decisions made for the other items. When item i is reordered as a result of a discount
opportunity theminor setup costai (t) is paid.Otherwise,whenever item i is reorderedwithout
a discount opportunity, the major setup cost A(t) is paid. Nevertheless, the decision-maker
of item i does not know the demand rate λ j (t) of any other item, for all j ∈ N , j �= i . In
the next section, we explain how the decision-maker of each item i can estimate the demand
rate λ̂ j (t), for all j ∈ N , j �= i and how it affects the computation of the optimal can-order
level that minimizes the long-run average cost (12). This estimation is based on the theory
of Bayesian games as introduced by Harsanyi [14–16].

3 Bayesian Game

In this section, we analyse the coordinated replenishment model presented in Sect. 2 as an
incomplete game, where each item i ∈ N represents a player. A game is called incomplete
when the players do not have complete information about the important parameters of the
game. As it is explained in the previous section, at each time t a new observation of the
demand is obtained based on which we estimate the future demand and setup costs. These
estimated parameters are used in the Bayesian game and in the computation of the optimal
can-order level c∗

i (t) that minimizes the expected long-run average cost. For the sake of
simplicity in the rest of this paper, we drop the dependence on time t .

First, let us introduce the control variable ui for a specific item i . This variable indicates
the possible amount to be reordered, which can be triggered either by the occurrence of
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a demand event or by a discount opportunity, and it is determined by the corresponding
(Si , ci , si ) policy. For any inventory level y, this strategy can be defined formally as follows:

ui (y) =

⎧⎪⎪⎨
⎪⎪⎩

Si − y, if y < si ,
Si − y, if si < y < ci and discount opportunity,

0, if si < y < ci and no discount opportunity,
0, if y ≥ ci .

(13)

Let us denote by G the incomplete game related to the initial coordinated replenishment
problem. We consider this as an incomplete game since the only information available to
player i is its own estimated parameter λ̂i . However, player i does not know the estimated
parameter λ̂ j of any other player j ∈ N , j �= i . Let λ̂ = (λ̂1, . . . , λ̂n) be the random vector
that contains the demand rates of all the players.Also, let λ̂−i = (λ̂1, . . . , λ̂i−1, λ̂i+1, . . . , λ̂n)

be the random vector that contains the demand rates of all the players, except player i . The
incomplete game G can be formally defined in normal form as follows:

G = 〈N , {Ui }ni=1, {Li }ni=1, {gi (Si , ci , si )}ni=1, {Pi }ni=1

〉
, (14)

where N = {1, . . . , n} is the set of players, Ui is set of strategies of player i , Li is the set of
possible values that the rate parameter λ̂i can take, gi (Si , ci , si ) is the long-run average cost
of player i . Pi = Pi (λ̂−i |λ̂i ) is the conditional probability distribution that player i uses to
describe the chance of having certain vector λ̂−i given that player i knows the value of its
estimated parameter λ̂i .

To determine the best strategy for player i , denoted by u∗
i , we need to define a complete

game that is Bayes-equivalent to the incomplete game G . This complete game is also called
Bayesian game, and it is denoted by Ḡ . To obtain the Bayesian game, we have to assume
that each player i knows not only its own estimated parameter λ̂i , but also the common
prior probability distribution of λ̂, represented by P̄(λ̂) = P̄(λ̂1, . . . , λ̂n). Given the prior
probability distribution P̄(λ̂), the complete game Ḡ can be formally defined by

Ḡ =
〈
N , {Ui }ni=1, {Li }ni=1, {gi (Si , ci , si , λ̂i )λ̂i∈Li

}ni=1, P̄
〉
. (15)

Note that Ḡ differs from G from the fact that the set of probability distributions {Pi }ni=1 is
replaced by P̄ , which is supposed to be known by all players. The games G and Ḡ are called
Bayes-equivalent because Pi (λ̂−i |λ̂i ) = P̄(λ̂−i |λ̂i ), where P̄(λ̂−i |λ̂i ) can be obtained from
P̄(λ̂) using the Bayes’ rule:

P̄(λ̂−i |λ̂i ) = P̄(λ̂)∑
L−i

P̄(λ̂)
. (16)

It is important to mention that in the Bayesian game instead of minimizing the long-
run average cost gi (Si , ci , si ) as in (12), we aim to minimize the conditional expected
long-run average cost. Let us denote the conditional expected long-run average cost by
E[gi (Si , ci , si )|λ̂i ], where

E[gi (Si , ci , si )|λ̂i ] =
∑

λ̂−i∈L−i

P̄(λ̂−i |λ̂i )gi (Si , ci , si ). (17)

Let u∗−i be the set of optimal strategies of all players except player i . In the rest of this
paper, we are going to make use of the following definitions.
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Definition 1 A best-response set in a Bayesian game is the set of all strategies that minimize
the expected long-run average cost:

Bi (u−i ) := {u∗
i |min

ci∈N

∑
λ̂−i∈L−i

P̄(λ̂−i |λ̂i )gi (Si , ci , si )}. (18)

The can-order level ci takes values between the upper threshold Si and the lower threshold
si . Therefore, we have a finite set of options for the values of the can-order level. As a result,
there is always an optimal strategy u∗ in the best-response set Bi (u−i ).

For compactness, let us denote the optimal strategy u∗
i = (Si , c∗

i , si ). This strategy cor-
responds to the optimal can-order level c∗

i that minimizes the expected long-run average
cost.

Definition 2 The strategy u∗
i is at Bayesian Nash equilibrium, if it holds for all item i ∈ N∑

λ̂−i∈L−i

P̄(λ̂−i |λ̂i )gi (u∗
i , u

∗−i ) ≤
∑

λ̂−i∈L−i

P̄(λ̂−i |λ̂i )gi (u∗
i , u−i ). (19)

Note that at a Nash equilibrium all players play a best-response, such that u∗
i ∈ Bi (u∗−i )

for all i ∈ N , and no player benefits from changing its reorder strategy.
The following result was borrowed from Harsanyi [15], and it states that if u∗ =

(u∗
1, . . . , u

∗
n) is a Nash equilibrium strategy of the complete game Ḡ , then it is also a Bayesian

equilibrium strategy for the incomplete game G .

Theorem 1 Let the incomplete game (14) and the Bayesian game (15) be given, such that
(15) is Bayes-equivalent to (14). In order to any given n-tuple of strategies u = (u1, ..., un)
be a Bayesian equilibrium point in the game (14), it is both sufficient and necessary that in
the normal form of the game (15) this n-tuple u be an equilibrium point in Nash’s sense.

However, defining a prior probability distribution P̄ that is knownby all players can be very
complicated. In this work we assume that the players do not know the exact prior probability
distribution P̄ , but each player knows the set of possible probability distributions P̄(λ̂−i |λ̂i ),
denoted by P . In order to be protected against the uncertainty of not knowing the real
probability distribution we reframe our approach within the context of distributionally robust
optimization. Distributionally robust optimization emerges from the idea of being protected
against the ambiguity in the probability distribution by taking the worst-case scenario, which
involves finding the probability distribution that maximizes the long-run average cost. As a
result, we can formulate the following robust optimization problem:

min
ci∈N

max
P̄(λ̂−i |λ̂i )∈P

E[gi (Si , ci , si )|λ̂i ] = min
ci∈N

max
P̄(λ̂−i |λ̂i )∈P

∑
λ̂−i∈L−i

P̄(λ̂−i |λ̂i )gi (Si , ci , si ).

(20)

Each player i ∈ N can define its best strategy u∗
i by finding the optimal solution of (20)

denoted by the point (c∗
i , P̄

∗(λ̂−i |λ̂i )). Observe that for fixed values of the upper and lower
thresholds Si and si , respectively, determining the optimal strategy that characterizes the
control variable ui consists first in finding the optimal probability distribution P̄(λ̂−i |λ̂i ) that
maximizes the long-run average cost gi (Si , ci , si ) for each possible can-order threshold ci .
Then, we can find an optimal can-order threshold ci that minimizes the expected long-run
average cost E[gi (Si , ci , si )|λ̂i ] for all P̄(λ̂−i |λ̂i ) ∈ P .

To find the optimal solution, it is important to define the correct set of possible probability
distributionsP . We assume thatP is a set of multi-variate Poisson probability distributions.
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Let us denote by MPoisson(η̄, λ̂−i ) the probability distribution of a multi-variate Poisson
randomvariable, where η̄ ∈ R

1×(n−1)
+ represents the vector of rate parameters of each random

variable λ̂ j ∈ λ̂−i , j �= i . Now we can formally define the set P as follows:

P = {MPoisson(η̄, λ̂−i )|η̄ = (η1, η2, . . . , ηi−1, ηi+1, . . . , ηn) ∈ R
1×(n−1)
+ , j �= i}.

(21)

We assume that the probability distributions in the setP satisfy the Bayesian-equivalence
Pi (λ̂−i |λ̂i ) = P̄(λ̂−i |λ̂i ). Under this assumption, we ensure that Theorem 1 is still satisfied.
In addition, we assume that from the perspective of player i the rest of the players are
homogeneous, namely the values of the parameters η j ∈ R+ are the same for all player j �= i .
Let us denote this general parameter by η ∈ R+. For the sake of simplicity and without loss
of generality, the random variables λ̂ j , j ∈ N , are independent and identically distributed
with parameter η.We have to solve the robust optimization problem to obtain a single optimal
value η∗ ∈ R+ for the multi-variate Poisson distribution. Based on these assumptions, the
expected long-run average cost is explicitly computed as follows:

E[gi (λ̂−i )|λ̂i ] =
∑

λ̂−i∈L−i

exp(−(n − 1)η)
η

∑
λ̂ j∈λ̂−i

λ̂ j∏
λ̂ j∈λ̂−i

λ̂ j !
gi (λ̂−i ). (22)

Note that in (22) we take the thresholds Si , ci , and si as fixed and for each term in the sum
we compute the long-run average cost as a function of λ̂−i .

4 Main Results

In this section, we show that the expected long-run average costE[gi (Si , ci , si )|λ̂i ] is convex
on the can-order threshold ci . Furthermore, we prove that finding an optimal threshold ci
corresponds to finding a Bayesian Nash equilibrium strategy.

To prove the convexity of the expected long-run average cost with respect to the can-
order threshold ci , first we are going to analyse the behaviour of the long-run average cost
gi (Si , ci , si ) for any possible vector λ̂−i .

Let us define

ωi = (Si − ci − 1)(1 − θ)∑ci+1−si
x=1 θ x + Si − ci − 1

. (23)

It is important to observe that ωi is a positive fraction, namely ωi ∈ (0, 1). Note that ωi

increases when the can-order level decreases.
Also let the following function be given

fi (ci , Si ) := λ̂iE(ai ) +∑Si
x=ci+1 G(x)

Si − ci
. (24)

The above is related to the cost of replenishing always with discount opportunity when the
inventory reaches the can-order level.

Lemma 2 For ωi as in (23), the following equation holds:

gi (Si , ci + 1, si ) = ωi fi (ci + 1, Si ) + (1 − ωi )gi (Si , ci , si ). (25)
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Proof Let θ = λ̂i/(λ̂i + μ̂i ). Since the inventory level is at Si and ci must be less than Si ,
for Ti (y) we have

Ti (Si ) = 1

λ̂i + μ̂i

(ci−si−1)∑
x=0

θ x + 1

λ̂i
(Si − ci ). (26)

Ii (y) at an inventory level of Si is given by

Ii (Si ) = 1

λ̂i + μ̂i

(ci−si−1)∑
x=0

θ xGi (Si − x) + 1

λ̂i

Si∑
x=ci+1

Gi (x), (27)

where Si > ci .
Qi at inventory Si can be written as:

Qi (Si ) = Qi (y − 1), (28)

where Si > ci .
LetNgi andDgi be the numerator and denominator of the cost function in (12). From (26)

we have that

λ̂iDgi = λ̂i Ti (Si ) = λ̂i

λ̂i + μ̂i

(ci−si−1)∑
x=0

θ x + Si − ci

=
ci−si∑
x=1

θ x + Si − ci .

From (27), we also have

λ̂iNgi = λ̂iE(ai ) + λ̂i (E(A) − E(ai )) θci−si

+
ci−si∑
x=1

θ xG(ci − x + 1) +
Si∑

x=ci+1

G(x).

The variables, Ti , Ii and Qi can be substituted into the objective function in (12), and this
yields

gi (Si , ci , si ) = λ̂iNgi

λ̂iDgi

= λ̂iE(ai ) + λ̂i (E(A) − E(ai )) θci−si∑ci−si
x=1 θ x + Si − ci

+ (
∑ci−si

x=1 θ xG(ci − x + 1)) +∑Si
x=ci+1(G(x))∑ci−si

x=1 θ x + Si − ci
.

(29)

Let us now substitute ci + 1 in (29), which yields:

gi (Si , ci + 1, si ) = λ̂iE(ai ) + λ̂i (E(A) − E(ai )) θci+1−si∑ci+1−si
x=1 θ x + Si − ci

+
∑ci+1−si

x=1 θ xG(ci − x + 2) +∑Si
x=ci+2 G(x)∑ci+1−si

x=1 θ x + Si − ci
.

(30)
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Note that for the last part of the numerator it holds

ci+1−si∑
x=1

θ xG(ci − x + 2) +
Si∑

x=ci+2

G(x)

=
ci+1−si∑
x=2

θ xG(ci − x + 2) + θ

Si∑
x=ci+1

G(x) + (1 − θ)

Si∑
x=ci+2

G(x).

Then, (30) can be rewritten as

gi (Si , ci + 1, si ) = λ̂iE(ai ) + λ̂i (E(A) − E(ai )) θci+1−si∑ci+1−si
x=1 θ x + Si − ci

+
∑ci+1−si

x=2 (G(ci − x + 2)) + θ
∑Si

x=ci+1 G(x) + (1 − θ)
∑Si

x=ci+2 G(x)∑ci+1−si
x=1 θ x + Si − ci

.

(31)

We also have

(Dωi ) · (1 − ωi )g(Si , ci , si )

=
ci+1−si∑
x=1

(
θ x + Si − ci

)
gi (Si , ci , si )θ

= λ̂iE(ai )θ + λ̂i (E(A) − E(ai )) θci+1−si

+ θ

ci−si∑
x=1

θ xG(ci − x + 1) + θ

Si∑
x=ci+1

G(x)

= λ̂iE(ai )θ + λ̂i (E(A) − E(ai )) θci+1−si

+
ci+1−si∑
x=2

θ xG(ci − x + 2) + θ

Si∑
x=ci+1

G(x).

(32)

Likewise, from (24) we have:

(Dωi ) · ωi fi (ci + 1, Si ) =(Si − ci − 1)(1 − θ) fi (ci + 1, Si )

=(1 − θ)λ̂iE(ai ) + (1 − θ)

Si∑
x=ci+2

G(x).
(33)

From (31)–(33), we can conclude that gi (Si , ci + 1, si ) = ωi fi (ci + 1, Si ) + (1 −
ωi )gi (Si , ci , si ) and (25) is proved. ��

A direct consequence of Lemma 2 is that gi (ci + 1) is in the convex hull between gi (ci )
and fi (ci + 1).

In the next result, we show that the optimal value of ci is located at a local minimum of
gi for any possible vector λ̂−i , under continuous relaxation for ci , namely ci ∈ R+. Let the
discrete difference operator be given ∂

∂ci
, which is defined as

∂

∂ci
gi (Si , ci , si ) := gi (Si , ci + 1, si ) − gi (Si , ci , si ).
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Lemma 3 Let the can-order threshold be ci ∈ R and in the interval [si , Si ]. Then, at a local
minimum it must hold

fi (ci + 1, Si ) − gi (Si , ci , si ) ≥ 0. (34)

Proof First, we obtain the derivative of gi (·) as
∂

∂ci
gi (Si , ci , si ) = ωi ( fi (ci + 1, Si ) − gi (Si , ci , si )) . (35)

At a local minimum it must hold ∂gi (Si ,ci ,si )
∂ci

≥ 0. Asωi is only zero when there is no demand,
the above implies fi (ci + 1, Si ) − gi (Si , ci , si ) ≥ 0 and (34) is proven. ��

In the next result, we establish the convexity of function gi (Si , ci , si ) in the decision
variable ci for any possible values of λ̂−i .

Lemma 4 The long-run average cost function is convex with respect to ci , and the following
inequality holds:

gi (Si , νci + (1 − ν)(ci + x), si ) ≤ νgi (Si , ci , si ) + (1 − ν)gi (Si , ci + x, si ), (36)

where ν ∈ [0, 1] and gi (·) is defined on positive real numbers.
Proof First note that gi (·) is defined on positive real numbers as the costs are nonnegative.
Now, take a value for ci which is a local minimum for gi (·) and denote it c̄i . Then the value
of gi (Si , ci , si ) on the interval range H(c̄i , ε) = [c̄i − ε, c̄i + ε] should be greater than or
equal to gi (Si , c̄i , si ). This is the case, if and only if the second derivative of gi (·) is greater
than or equal to zero. From the first derivative in (35), we obtain

∂2gi (Si , ci , si )

∂c2i
=∂ωi

∂ci
fi (ci + 1, Si ) + ωi

∂ fi (ci + 1, Si )

∂ci

− ∂ωi

∂ci
gi (Si , ci , si ) − ωi

∂gi (Si , ci , si )

∂ci
,

(37)

where ωi is as in (23).
To simplify the expression of (37), the result of (35) is substituted in (37), which yields

∂2

∂c2i
gi (Si , ci , si ) = ωi

∂ fi (ci + 1, Si )

∂ci
+
(

∂ωi

∂ci
− ω2

i

)
( fi (ci + 1, Si ) − gi (Si , ci , si ))

= ωi
∂ fi (ci + 1, Si )

∂ci
+
(

∂ωi

∂ci
− ω2

i

)
1

ωi

∂

∂ci
gi (Si , ci , si )︸ ︷︷ ︸

≈0

.
(38)

Note that ωi ≥ 0, ω2
i ≥ 0, gi (Si , ci , si ) ≥ 0 and fi (ci + 1, Si ) ≥ 0. We wish to show that

fi (ci + 1, Si ) is an increasing function, namely that (∂ fi (ci + 1, Si ))/(∂ci ) is positive. This
holds true if fi (ci + 2, Si ) ≥ fi (ci + 1, Si ) is proven. If the previous inequality is true, then
we have

λ̂iE(ai ) +∑Si
x=ci+3 G(x)

Si − ci − 2
≥ λ̂iE(ai ) +∑Si

x=ci+2 G(x)

Si − ci − 1
.

Furthermore, the above can be rewritten as
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⎛
⎝λ̂iE(ai ) +

Si∑
x=ci+3

G(x)

⎞
⎠ (Si − ci − 1) ≥

⎛
⎝λ̂iE(ai ) +

Si∑
x=ci+2

G(x)

⎞
⎠ (Si − ci − 2).

(39)

The previous condition yields

Si λ̂iE(ai ) − ci λ̂iE(ai ) − λ̂iE(ai )

+Si

Si∑
x=ci+3

G(x) − ci

Si∑
x=ci+3

G(x) −
Si∑

x=ci+3

G(x)

≥ Si λ̂iE(ai ) − ci λ̂iE(ai ) − 2λ̂iE(ai )

+Si

Si∑
x=ci+2

G(x) − ci

Si∑
x=ci+2

G(x) − 2
Si∑

x=ci+2

G(x),

which can be simplified as

SiG(ci + 2) − ciG(ci + 2) − 2G(ci + 2) −
Si∑

x=ci+3

G(x) − λ̂iE(ai )

= Si (ci + 2)hi − ci (ci + 2)hi − 2(ci + 2)hi −
Si∑

x=ci+3

G(x) − λ̂iE(ai ) ≤ 0.

(40)

Let us rewrite
∑Si

x=ci+3 G(x) = 1
2hi (Si − ci − 2)(ci + Si + 3), then we have

λ̂iE(ai ) ≥ hi (Si − ci − 2)

(
ci
2

+ 1

2
− Si

2

)
, (41)

where hi (Si − ci − 2) ≥ 0 and (
ci
2 + 1

2 − Si
2 ) ≤ 0, if Si ≥ ci + 1 which holds true.

Since E(ai ) > 0 and λ̂i > 0 hold true, then (41) is satisfied and we can conclude that
fi (ci + 2, Si ) ≥ fi (ci + 1, Si ) holds.
A direct implication of the above is that (∂ fi (ci + 1, Si ))/(∂ci ) is positive. This means

that the first term in (38) for ∂2gi (Si ,ci ,si )
∂c2i

is greater than or equal to zero, namely:

ωi
∂ fi (ci + 1, Si )

∂ci
≥ 0. (42)

In order to prove convexity, the rest of ∂2gi (Si ,ci ,si )
∂c2i

must be positive or smaller than (42).

Since from (35),we know that ∂gi (·)/∂ci is proportional to fi (ci+1, Si )−gi (Si , ci , si )which
becomes zero in a local minimum. Then in the neighbourhood of a stationary point fi (ci +
1, Si ) − gi (Si , ci , si ) is relatively small. This makes the second term in (38) approximately
equal to zero and therefore negligible. We can conclude that for any stationary point the
second derivative is nonnegative and therefore function gi (·) is convex on ci . ��

Lemma 4 proves that gi (Si , ci , si ) is convex on ci ; therefore, it is known that the optimal
can-order level is at the same time a local and global minimum.

In the following result, we prove the convexity of the function E[gi (Si , ci , si )|λ̂i ] with
respect to the decision variable ci , for a given parameter η that characterizes the probability
P̄(λ̂−i |λ̂i ).
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Theorem 2 The expected long-run average cost function is convex with respect to ci , and the
following inequality holds:

E[gi (Si , νci + (1 − ν)(ci + x), si )|λ̂i ] ≤ νE[gi (Si , ci , si )|λ̂i ] + (1 − ν)E[gi (Si , (ci + x), si )|λ̂i ],
(43)

where ν ∈ (0, 1) and gi (·) is defined on positive real numbers.

Proof Similarly as in Lemma 4 we have to prove that for any ci in the interval [c̄i −ε, c̄i +ε],
where c̄i is the localminimumofE[gi (·)|λ̂i ], the value ofE[gi (Si , ci , si )|λ̂i ] is greater than or
equal toE[gi (Si , c̄i , si )|λ̂i ]. This is satisfiedwhen the second derivative ofE[gi (Si , ci , si )|λ̂i ]
is greater than or equal to zero.

The first derivative of E[gi (Si , ci , si )|λ̂i ] with respect to ci is

∂E[gi (Si , ci , si )|λ̂i ]
∂ci

= ∂

∂ci

∑
λ̂−i∈L−i

exp(−(n − 1)η)
η

∑
λ̂ j∈λ̂−i

λ̂ j∏
λ̂ j∈λ̂−i

λ̂ j !
gi (Si , ci , si )

=
∑

λ̂−i∈L−i

exp(−(n − 1)η)
η

∑
λ̂ j∈λ̂−i

λ̂ j∏
λ̂ j∈λ̂−i

λ̂ j !
∂

∂ci
gi (Si , ci , si ).

Consequently, the second derivative is given by

∂2E[gi (Si , ci , si )|λ̂i ]
∂c2i

=
∑

λ̂−i∈L−i

exp(−(n − 1)η)
η

∑
λ̂ j∈λ̂−i

λ̂ j∏
λ̂ j∈λ̂−i

λ̂ j !
∂2

∂c2i
gi (Si , ci , si ). (44)

Based on Lemma 4, we know that ∂2

∂c2i
gi (Si , ci , si ) ≥ 0, and then each term in (44) is

greater than or equal to zero. We can conclude that for any stationary point and for any
parameter η, the second derivative is nonnegative and the function E[gi (Si , ci , si )|λ̂i ] is
convex with respect to ci . ��

The setP defined by (21) has to be determined in such a way that the expected long-run
average cost function is concave with respect to the parameter η. In the following lemma, we
prove that such a set P exists.

Lemma 5 Let η∗ ∈ R+ be an optimal value that maximizes (22). There exists ε, 0 < ε < η∗,
such that in the interval [η∗ − ε, η∗ + ε], the expected long-run average cost is concave with
respect to η.

Proof To prove the concavity of the expected long-run average cost with respect to η, we use
the second derivative criteria. The first derivative is computed as follows:

∂E[gi (Si , ci , si )|λ̂i ]
∂η

=
∑

λ̂−i∈L−i

gi (Si , ci , si )exp(−(n − 1)η)η

∑
λ̂ j∈λ̂−i

λ̂ j−1

⎡
⎣
∑

λ̂ j∈λ̂−i
λ̂ j − (n − 1)η∏

λ̂ j∈λ̂−i
λ̂ j !

⎤
⎦ .
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By computing the second derivative and evaluating it in η = η∗, we obtain:

∂2E[gi (Si , ci , si )|λ̂i ](η∗)
∂η2

= 1

η∗
∑

λ̂−i∈L−i

gi (Si , ci , si )exp(−(n − 1)η∗)η∗
∑

λ̂ j∈λ̂−i
λ̂ j−1

∏
λ̂ j∈λ̂−i

λ̂ j !

⎡
⎢⎣
⎛
⎜⎝ ∑

λ̂ j∈λ̂−i

λ̂ j − (n − 1)η∗

⎞
⎟⎠

2

−
⎛
⎜⎝ ∑

λ̂ j∈λ̂−i

λ̂ j − (n − 1)η∗

⎞
⎟⎠− η∗(n − 1)

⎤
⎥⎦ .

Observe that as η∗ is the optimal value that maximizes the expected long-run average cost,
the first two terms in the previous equation are equal to zero. Then, we have

∂2E[gi (Si , ci , si )|λ̂i ](η∗)
∂η2

= −(n − 1)
∑

λ̂−i∈L−i

gi (Si , ci , si )exp(−(n − 1)η∗)η∗
∑

λ̂ j ∈λ̂−i
λ̂ j−1

∏
λ̂ j∈λ̂−i

λ̂ j !
.

From the previous equation, we have that ∂2E[gi (Si ,ci ,si )|λ̂i ](η∗)
∂η2

< 0. Hence η∗ is a local

maximum.We can conclude that there exists an interval [η∗−ε, η∗+ε] such that the expected
long-run average cost is concave. ��
Remark 1 Note that as ci ∈ [Si , si ] and η ∈ [η∗ − ε, η∗ + ε], both variables are contained in
convex and compact sets. In addition, based on Theorem 2 and Lemma 5 we know that the
expected long-run average cost is convex with respect to ci and concave with respect to η, on
their respective intervals. Therefore, according to John von Neumann’s minimax theorem:

min
ci∈N

max
P̄(λ̂−i |λ̂i )∈P

E[gi (Si , ci , si )|λ̂i ] = max
P̄(λ̂−i |λ̂i )∈P

min
ci∈N

E[gi (Si , ci , si )|λ̂i ]. (45)

In the following result, we prove that finding an optimal can-order level ci that minimizes
(17) corresponds to finding a strategy at a Bayesian Nash equilibrium.

Theorem 3 Let for all players i ∈ N the upper threshold Si and the lower threshold si be
given. In addition for a given parameter η that maximizes the conditional expected long-run
average cost, let the optimal can-order threshold c∗

i be obtained by:

c∗
i := arg min

ci∈N

∑
λ̂−i∈L−i

P̄(λ̂−i |λ̂i )gi (Si , ci , si ). (46)

Then, the n-tuple (c∗
1, c

∗
2, . . . , c

∗
n) is at a Bayesian Nash equilibrium of the Bayesian game

Ḡ .

Proof Based on Theorem 2, we know that the expected long-run average cost is convex on
the can-order level ci . Moreover, the optimal value c∗

i is a global minimum. Therefore, the
can-order level c∗

i that minimizes the long-run average cost is unique.
By definition of best-response set in a Bayesian game Bi (u∗−i ), if we find the can-order

level that minimizes E[gi (Si , ci , si )|λ̂i ] for a player i ∈ N , given the optimal strategy of the
other players, then the optimal strategy of player i , u∗

i is in the set B(u∗−i ) defined by (18).
Hence, the strategy is at a Bayesian Nash equilibrium. ��
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Table 1 Setup cost and demand
parameters

t 1 2 3 4 5 6 7 8 9

ai 12 14 13 15 18 16 14 17 18

A 78 80 84 82 79 82 84 82 83

λi 10 10 5 4 7 8 5 5 10

10 11 12 13 14 15 16 17 18 19

20 17 18 21 23 20 25 23 24 24

79 77 78 80 78 82 80 84 87 85

8 9 8 11 12 13 16 16 15 17

20 21 22 23 24 25 26 27 28 29

19 18 17 16 17 18 20 21 23 24

82 80 82 84 82 83 81 81 82 80

6 9 10 7 7 13 11 13 12 16

30 31 32 33 34 35 36 37 38 39

23 20 21 20 20 21 21 18 16 12

79 83 80 84 78 80 80 79 78 79

14 11 11 7 13 11 12 12 10 11

5 Numerical Analysis

Let us consider a time interval of 39 months, where each month consists of 4 weeks. The sim-
ulated results are obtained by optimizing the can-order threshold for the minimum expected
long-run average cost at every time interval. Consider a system of N = 4 items which are
ordered at a single distribution centre. At every time period, we forecast the demand and
setup costs of a single item i to obtain the optimal can-order threshold of the (S, c, s) policy.

The parameters are selected as follows. The demand is measured over 39 consecutive
months. Each month consists of four weeks. The total number of weeks included in the
simulations is 156. The lead time is 1 week. The holding costs hi are e2 per month. We
consider 4 items involved in the coordinated replenishment. The major setup cost Â(1) is
initially forecast to be e80. The minor setup cost âi (1) is initially forecast to be e15. The
safety factor k is 3. The forecast coefficients α, γ are both 0.2. The initial demand is forecast
considering observed data for the first 12 months applying a Poisson regression model and
every month we add four more new observations (one for each week) to forecast the demand
for the next month. Finally, it is assumed that all items in the system face the same demand
uncertainty for the sake of simplicity and without the loss of generality. Note that Si (t) and
si (t) can therefore be represented by S(t) and s(t), respectively, as the levels are assumed to
be the same for all items. The demand is assumed to follow a Poisson distribution with mean
equal to λi and the setup cost are assumed to follow a Gaussian distribution with mean equal
to ai and A, see Table 1.

Since it is a forecasting model of the can-order policy, the demands and setup costs for
all weeks are forecast. Figure 5 displays the forecast D̂i (t) and actual demand Di (t) over a
39-month period. Similar to the demand, the setup costs influence the control variables of
the can-order policy and must therefore be redetermined at every time period.
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Fig. 5 Forecast demand D̂i (t) (dots) and actual demand Di (solid) over a 39-month period

In Algorithm 1, we present the pseudo-code used to obtain the optimal can-order level
at each month. Each month, the events are forecast again and the control variables of the
can-order policy are redetermined. The optimal can-order level is determined by increasing
the value of ci by one and calculating the corresponding expected long-run average cost for
each probability distribution in the setP as in equation (21). If the expected long-run average
cost calculated at (ci + 1) is higher than it was at the previous can-order level, the iterations
stop and the value of the previous can-order level is the optimal value of ci . As it is stated
in Theorem 2, the expected long-run average cost is convex with respect to ci . The optimal
can-order level is at the same time a local and a global minimum. As a result of the behaviour
of the long-run average cost and the iterative process of the algorithm, it is possible to say
that it converges to the optimal can-order level c∗

i that minimizes the expected cost in the
long run.

It is important to mention that for the Poisson regression model, we use the built-in
MATLAB function glmfit. This function uses a method called weighted least squares to
estimate the regression parameters β̂1 and β̂2. Weighted least squares is a generalization
of generalized least squares. It takes into account the weights that determine how much
each value influences the final parameter estimates. For the convergence of the weighted
least squares MATLAB uses a Newton–Raphson iterative method capturing the first-order
optimality conditions at the solution, resulting in strong local convergence rates.

The simulations of the expected long-run average cost are depicted in Fig. 6. The graph
corroborates the results in Theorem 2 and Lemma 5, as it shows that the expected long-run
average cost is a convex function on ci and concave on η. For all consecutive time periods,
the optimal can-order levels are listed in Table 2.

The optimal can-order levels which are determined in the previous step of the algorithm
are used to simulate the inventory reordering policy and the related inventory evolution over
time. Figure 7 shows that reordering also takes place at the can-order level. In addition, to
analyse the stability of the algorithm, we run 100 simulations to compute the 95% confidence
interval of the can-order level. The evolution over time of the can-order level and its 95%
confidence interval is depicted in Fig. 8. In this plot, we can observe that the optimal values
for the can-order level do not have a great variability as its confidence interval is small.
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Algorithm 1 Algorithm to obtain the can-order level
Input: Simulation parameters as in Table 1, holding cost hi , safety factor k, set of probability distributionP
defined by the parameter η as in (21)
Output: Optimal can-order level c∗i for each time period

1: Initialize forecast setup-costs Â(1) and âi (1)
2: for every time instance do
3: Generate new observed demand from a Poisson distribution with parameter λi from Table 1
4: Generate new observed minor setup cost from a Gaussian distribution with mean ai from Table 1
5: Generate new observed major setup cost from a Gaussian distribution with mean A from Table 1
6: Estimate the setup cost by applying exponential smoothing as in equation (5)
7: Fit a Poisson regression model to obtain the regression coefficients β̂1 and β̂2
8: Forecast the expected demand according to equation (6)
9: Compute the must-order level si and order-up-to level Si as in equations (8) and (9), respectively
10: for every probability distribution in set P do
11: for every inventory level ci between si and Si do
12: for every vector λ̂ ∈ R

n do
13: Compute the discount opportunity rate as in equation (7)
14: Compute Ti (Si ), Ii (Si ), and Qi (Si ) as explained in Lemma 1
15: Compute the expected long-run average cost E[gi (Si , ci , si )|λ̂i ] as in equation (17)
16: end for
17: if E[gi (Si , ci + 1, si )|λ̂i ] > E[gi (Si , ci , si )|λ̂i ] then
18: Save in a vector copt the value of ci for every probability distribution in P
19: Save in a vector the value of the expected long-run average cost for the optimal ci
20: Break
21: end if
22: end for
23: end for
24: c∗i is the value of the vector copt that solves the robust optimization problem (20)
25: end for

Fig. 6 Expected long-run average cost vs. can-order level for all probability distributions in the setP

Table 2 Monthly optimal value
of ci

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ci 25 25 27 27 29 31 31 32 32 32 31 31 29 29

15 16 17 18 19 20 21 22 23 24 25 26 27 28

27 27 27 27 29 29 31 32 32 34 36 36 38 39
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Fig. 7 Inventory evolution for the optimal (S, c, s) policy
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Fig. 8 Time evolution of c∗i (solid line) and its 95% confidence interval (dotted line)

6 Conclusions

In this research, we have developed a periodic review system with multiple items, with
uncertain demand and uncertain setup costs. The problem consists in learning the uncertain
demand and setup costs, while determining the values for the threshold of the can-order
policy by minimizing the expected long-run average cost.

Motivations arise from two-layer time-dependent logistic systems. The first layer con-
sists of a learning mechanism to obtain the uncertain input parameters. The setup cost and
demand are uncertain, and their forecasts are run using exponential smoothing and Poisson
regression, respectively. The second layer consists of a time dependent (S, c, s) policy where
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the must-order, can-order and order-up-to levels are determined every time new input data
are obtained. The proposed methodology is original in that the long-run average cost is opti-
mized under the assumption that the parameters are time-dependent. We translate the initial
coordinated replenishment problem into a Bayesian game, where the probabilities involved
in this computation are unknown. In order to deal with the uncertainty in the probability
distributions, we consider the worst-case scenario by making use of distributionally robust
optimization.

The main result is the proof of convexity of the cost function with respect to the can-
order level, according to which the can-order value can be optimized by solving a convex
problem. In addition, we show that there exists a set of probability distributionswhere the cost
function is concave with respect to the parameter of the corresponding distribution. Finally
we show that finding an optimal can-order level that minimizes the expected cost function
in the Bayesian game corresponds to finding a strategy at a Bayesian Nash equilibrium. The
developed model is validated on a numerical example.

An interesting approach for future works is to analyse the model from a different game
theory perspective, by focusing on minimizing the long-run average cost gi for all the items
at the same time applying, for example, the theory of strategic complements.
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Appendix

In this section, we provide the proof of Lemma 1 presented in Sect. 2.

Proof of Lemma 1 Note that the expected time until the next order is placed follows a semi-
Markov process that regenerates at the replenishment epochs. If the inventory level lays
between si < y ≤ ci , then Ti (y) is given by:

Ti (y) = 1

λ̂i (t) + μ̂i (t)
+ λ̂i (t)

λ̂i (t) + μ̂i (t)
Ti (y − 1). (47)

Here, the term 1
λ̂i (t)+μ̂i (t)

is the expected time interval between two consecutive events

and is obtained assuming that the events “demand occurrence” and “discount opportunity”
are independent and therefore the combination of the two events results in a Poisson pro-
cess with rate equal to the sum of the rates of the two underlying events. The second term

λ̂i (t)
λ̂i (t)+μ̂i (t)

Ti (y− 1) is the probability that the event is a “demand occurrence” which reduces

the inventory level of one unit times the value of the same variable in the new inventory.
To obtain a general expression for Ti (y), let us proceed with the following induction. Let

us first consider the case where the inventory level is si + 1, which means that theinventory

http://creativecommons.org/licenses/by/4.0/
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level is one item above the must-order level. Namely, we have

Ti (si + 1) = 1

λ̂i (t) + μ̂i (t)
+ λ̂i (t)

λ̂i (t) + μ̂i (t)
Ti (si ) = 1

λ̂i (t) + μ̂i (t)
. (48)

In the above, the time until the next order is placed Ti (si ) = 0 as the inventory level has
reached the must-order point. If the inventory level is two items above the must order level,
namely y = si + 2, then the expected time until the next order is placed changes as follows:

Ti (si + 2) = 1

λ̂i (t) + μ̂i (t)
+ λ̂i (t)

λ̂i (t) + μ̂i (t)
Ti (si + 1) = 1

λ̂i (t) + μ̂i (t)

(
1 + λ̂i (t)

λ̂i (t) + μ̂i (t)

)
.

(49)

Analogously for the case of y = si + 3, we obtain

Ti (si + 3) = 1

λ̂i (t) + μ̂i (t)
+ λ̂i (t)

λ̂i (t) + μ̂i (t)
Ti (si + 2)

= 1

λ̂i (t) + μ̂i (t)

⎛
⎝1 + λ̂i (t)

λ̂i (t) + μ̂i (t)
+
(

λ̂i (t)

λ̂i (t) + μ̂i (t)

)2
⎞
⎠ . (50)

For the case where y > ci , Ti (y) has a different structure. This can be seen by setting
the inventory level to y = ci + 1 and considering as next event only a demand occurring as
discount opportunities will be ignored. This yields

Ti (ci + 1) − Ti (ci ) = 1

λ̂i (t)
. (51)

From the above, we have

(λ̂i (t) + μ̂i )(Ti (ci + 1) − Ti (ci )) = 1 + μ̂i Ti (ci + 1) − μ̂i Ti (ci ), (52)

which can be rewritten as

(λ̂i (t) + μ̂i )Ti (ci + 1) = (λ̂i (t) + μ̂i )Ti (ci ) + 1 + μ̂i Ti (ci + 1) − μ̂i Ti (ci ). (53)

Using (53) we obtain

Ti (ci + 1) = 1

λ̂i (t) + μ̂i (t)
+ μ̂i (t)

λ̂i (t) + μ̂i (t)
Ti (ci + 1)δ(1) + λ̂i (t)

λ̂i (t) + μ̂i (t)
Ti (ci ), (54)

where δ(1) is the indicator function which takes value 1, if the inventory level is above ci
and 0 if the inventory level is less than or equal to ci .

From this, it becomes clear that the solution to the renewal equation has the following
general form:

Ti (y) := 1

λ̂i (t) + μ̂i (t)
+ μ̂i (t)

λ̂i (t) + μ̂i (t)
Ti (y)δ(y − ci ) + λ̂i (t)

λ̂i (t) + μ̂i (t)
Ti (y − 1).

(55)

Equation (55) has the following interpretation. Since the replenishment decision follows
a Markov renewal process, a decision can be made in correspondence to two discrete events.
One event corresponds to reducing the inventory of one unit, namely a unitary demand

materializes, which occurs with probability λ̂i (t)
λ̂i (t)+μ̂i (t)

. A second event is referred to as
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discount opportunity, which means that replenishment is triggered by another item which
has reached the must-order point, and this occurs with probability μ̂i (t)

λ̂i (t)+μ̂i (t)
. Combining

both events, which we assume to occur with a Poissonian clock and independently then we
obtain (55).

From the above, we then obtain the following compact formulation:

Ti (y) :=
⎧⎨
⎩

1
λ̂i (t)+μ̂i (t)

∑(y−si−1)
x=0 θ(t)x , if si < y ≤ ci ,

1
λ̂i (t)+μ̂i (t)

∑(ci−si−1)
x=0 θ(t)x + 1

λ̂i (t)
(y − ci ), if y > ci ,

(56)

where θ(t) = λ̂i (t)/(λ̂i (t) + μ̂i (t)) and δ(x) = 1 if x ≥ 1, and δ(x) = 0 if u ≤ 1.
An explicit expression for Ti (Si ) in (11) is then

Ti (Si ) := 1

λ̂i (t) + μ̂i (t)

(ci−si−1)∑
x=0

θ(t)x + 1

λ̂i (t)
(Si − ci ). (57)

To obtain the expected holding and penalty costs incurred until the next order is placed
similarly to the calculation of Ti (y), we first consider the case where the inventory level is
between si < y ≤ ci . Then, Ii (y) is given by:

Ii (y) = Gi (y)

λ̂i (t) + μ̂i (t)
+ λ̂i (t)

λ̂i (t) + μ̂i (t)
Ii (y − 1), (58)

where Gi (x) is the one-step inventory cost and is assumed to be quasi-convex with
lim|u|→∞ Gi (x) = ∞. All cases of linear holding and penalty costs, and fixed cost for
each backorder item are included in the same spirit as in the work of Federgruen and Zheng
[7]. To see how to obtain the above equation, first the inventory level is set to y = si + 1,
which yields

Ii (si + 1) = Gi (si + 1)

λ̂i (t) + μ̂i (t)
+ λ̂i (t)

λ̂i (t) + μ̂i (t)
Ii (si ) = Gi (si + 1)

λ̂i (t) + μ̂i (t)
. (59)

To determine the above for y = si + 2, we can write

Ii (si + 2) = Gi (si + 2)

λ̂i (t) + μ̂i (t)
+ λ̂i (t)

λ̂i (t) + μ̂i (t)
Ii (si + 1)

= 1

λ̂i (t) + μ̂i (t)

(
Gi (si + 2) + λ̂i (t)

λ̂i (t) + μ̂i (t)
Gi (si + 1)

)
. (60)

The above expression contains a combination of the result of (59) and a new part. The

previous inventory level, si + 1 is reduced by one with probability λ̂i (t)
λ̂i (t)+μ̂i (t)

, as depicted in

the Markov decision process in Fig. 4.
For y = si + 3, we then have

Ii (si + 3) = Gi (si + 3)

λ̂i (t) + μ̂i (t)
+ λ̂i (t)

λ̂i (t) + μ̂i (t)
Ii (si + 2)

= 1

λ̂i (t) + μ̂i (t)
(Gi (si + 3) + λ̂i (t)

λ̂i (t) + μ̂i (t)
Gi (si + 2) + λ̂i (t)2

(λ̂i (t) + μ̂i (t))2
Gi (si + 1)).
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In the case where y > ci , Ii (y) presents a similar structure as Ti (y), namely:

(Ii (ci + 1) − Ii (ci )) = Gi (ci + 1)

λ̂i (t)
, (61)

where Gi (ci + 1) divided by λ̂i (t) is the expected average holding and penalty cost until the
next demand occurs. The above can be rewritten as

λ̂i (t)

λ̂i (t) + μ̂i (t)
(Ii (ci + 1) − Ii (ci )) = Gi (ci + 1)

λ̂i (t) + μ̂i (t)
. (62)

From the above, we obtain that the solution to the renewal equation is given by:

Ii (y) := Gi (y)

λ̂i (t) + μ̂i (t)
+ μ̂i (t)

λ̂i (t) + μ̂i
Ii (y)δ(y − ci ) + λ̂i (t)

λ̂i (t) + μ̂i (t)
I (y − 1). (63)

Also in compact form we can write

Ii (y) :=
⎧⎨
⎩

1
λ̂i (t)+μ̂i (t)

∑(y−si−1)
x=0 θ(t)xGi (y − x), if si < y ≤ ci ,

1
λ̂i (t)+μ̂i (t)

∑(ci−si−1)
x=0 θ(t)xGi (y − x) + 1

λ̂i (t)

∑y
x=ci+1 Gi (x), if y > ci ,

where θ = λ̂i (t)/(λ̂i (t) + μ̂i (t)) and again δ(x) = 1 if x ≥ 1, and δ(x) = 0 if x ≤ 1.
An explicit expression for Ii (Si ) in (11) is then

Ii (Si ) = 1

λ̂i (t) + μ̂i (t)

(ci−si−1)∑
x=0

θ(t)xGi (Si − x) + 1

λ̂i (t)

Si∑
x=ci+1

Gi (x). (64)

Finally, denote the probability that an order is triggered by a demand by Qi (y). When the
inventory level is y > ci , no replenishment decision is made and therefore Qi (y) is given
by

Qi (y) = Qi (y − 1). (65)

Note that in the region of si < y ≤ ci , Qi (y) is given by:

Qi (y) = θi (t)
(y−si ). (66)

Observe that the latter is the probability that y − si unitary demand events occur consec-
utively. When this happens, the inventory level reaches the must-reorder point and a reorder
must occur.

To see how to obtain (66), let y = si + 1, which results in the following:

Qi (si + 1) = θ(t)Qi (si ) = θ(t) = λ̂i (t)

λ̂i (t) + μ̂i (t)
. (67)

In the above, we use the fact that Qi (si ) = 1, as an order is placed directly when the
inventory level is equal to the must-order level si . By repeating the same reasoning for
y = si + 2, we obtain

Qi (si + 2) = θ(t)Qi (si + 1) =
(

λ̂i (t)

λ̂i (t) + μ̂i (t)

)2

. (68)
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For y = si + 3, we obtain:

Qi (si + 3) = θ(t)Qi (s + 2) =
(

λ̂i (t)

λ̂i (t) + μ̂i (t)

)3

. (69)

From the above, we derive that the solution to the renewal equation can be written as

Qi (y) := Qi (y − 1)δ(y − ci ) + (1 − δ(y − ci ))θi (t)
(y−si ). (70)

In compact form, we can write

Qi (y) :=
{

θ(t)(y−si ), if si < y ≤ ci ,

Qi (y − 1), if y > ci .
(71)

An explicit expression for Qi (Si ) in (11) is then

Qi (Si ) = θ(t)(ci−si ). (72)

��
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