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Abstract
We analyze the implications of strategic interactions between two heterogeneous groups
(i.e., young and old, men and women) in a macroeconomic–epidemiological framework. The
interactions between groups determine the overall prevalence of a communicable disease,
which in turn affects the level of economic activity. Individuals may lower their disease
exposure by reducing their mobility, but since changing mobility patterns is costly, each
group has an incentive to free ride negatively affecting the chances of disease containment
at the aggregate level. By focusing on an early epidemic setting, we explicitly characterize
the cooperative and noncooperative equilibria, determining how the inefficiency induced by
noncooperation (i.e., failure to internalize epidemic externalities) depends both on economic
and epidemiological parameters. We show that long-run eradication may be possible even
in the absence of coordination, but coordination leads to a faster reduction in the number
of infectives in finite time. Moreover, the inefficiency induced by noncooperation increases
(decreases) with the factors increasing (decreasing) the pace of the disease spread.
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1 Introduction

Infectious diseases represent still today a major source of morbidity and mortality in both
developing and industrialized countries, crucially affecting their prospects for economic
development [28,34]. Through their effects on health conditions and thus the pressure on
governments to finance health policy, the impact on communicable diseases extends to
macroeconomic outcomes affecting the labor market, productivity, saving and investment
decisions [8,26]. The analysis of such a health–economic relation is the focus on the eco-
nomic epidemiology literature which seeks to understand the effectiveness of different policy
tools inmitigating the economic consequences of infectious diseases [17,31], alongwith their
implications on macroeconomic dynamics and economic prosperity [18,26]. Despite their
differences in the economic framework, these papers share the same epidemiological setting,
given by the susceptible–infected–susceptible (SIS) model, in which individuals are either
susceptible to the disease or already infected and infectives, without ever acquiring perma-
nent immunity from infection [21,24]. The SIS framework represents one of simplest models
in mathematical epidemiology and is widely applicable to a range of traditional diseases,
such as the seasonal flu and the common cold, but also to novel diseases such as COVID-19,
since thus far there is no convincing evidence that after recovery individuals may become
immune from a second infection [35].

The ongoing COVID-19 pandemic is ravaging the entire planet showingmore clearly than
ever that sudden and unforeseeable epidemic episodes can dramatically hit not only devel-
oping countries but even the industrialized ones. The most widely used mitigation strategies
(i.e., social distancing and lockdowns) have not only generated beneficial effects on disease
incidence and prevalence, but also devastating economic consequences by forcing individ-
uals and firms to limit their social contacts and interactions both on the workplace and at
home. These striking facts have spurred a growing interest in understanding the mutual rela-
tion between epidemic and macroeconomic outcomes, and several works have explored the
macroeconomic implications of COVID-19 and the policy measures implemented to control
it [1,3,5,25]. Most of the papers analyze policymakers’ optimal response by determining
from a normative point of view the public policy tools to employ in order to achieve the first
best outcome, while limited has been thus far the focus on individuals’ voluntary choices
to reduce their disease exposure. However, several works document that individuals have
significantly reduced their mobility in an attempt to decrease their contacts with potentially
infective individuals [9,19]. To the best of our knowledge, very few papers have tried thus far
to characterize individuals’ response to the level of disease prevalence, discussing how their
behavioral change may improve health outcomes at the cost of deteriorating the economic
ones [16]. In this paper, we wish to contribute to this literature by analyzing the behavioral
response to disease prevalence of different demographic groups and what the interaction
between groups may imply for epidemic and macroeconomic outcomes.

One of most evident and potentially long-lasting economic consequences of COVID-19
concerns its heterogeneous impact on different population groups. The widespread adoption
of lockdown and social distancing measures, including school closures and remote working
arrangements, has generated important labor market shocks leading to a substantial income
reduction for a large share of the population resulting in growing concerns for the future and a
deterioration inmental health conditions [11,27]. The labormarket and income consequences
have been highly heterogeneous, hitting particularly younger workers, those with precarious
employment and from minority ethnic groups, along with individuals employed in contact-
intensive sectors precluded from remote working [4,15]. Moreover, such economic impacts
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have also been highly heterogeneous across gender and age:Women have suffered more than
men due to their traditional role as primary carer for children [2,22], while young people
have suffered more than old individuals as they have experienced more radical changes to
their lives and have gained less from disease containment measures [6,20]. Apart from the
direct and indirect implications of public policy, also the mitigation strategies voluntarily
employed within the population in order to reduce the risk of disease exposure have been
highly heterogeneous, and in particular women and the young have reduced their mobility by
larger amounts than men and the old, suggesting that overall gender and inter-generational
inequalities have been and may be widening during the COVID-19 crisis [7]. Understanding
thus how different demographic groups (i.e., men and women, young and old) may modify
their behavior following an epidemic shock is essential in order to shed some light on the
possible consequences of the COVID-19 pandemic on social inequalities and to develop
effective policy strategies.

In order to move forward in this direction, we develop a macroeconomic–epidemiological
model in which two heterogeneous population groups decide how to voluntarily modify their
behavior to lower their risk to contract the disease. Specifically, individuals in each group
choose the extent to which reducing their mobility, but changing mobility patterns is costly
since by affecting both production and leisure it decreases consumption and the enjoyment of
recreational services. Each group needs to balance the competing health (i.e., decrease new
infections) and economic (i.e., increase consumption and enjoy recreation) needs, moved by
an incentive to free ride in order to let the costly behavioral change fall on the other group,
which may result in a deterioration of the chances to contain the disease spread at the aggre-
gate level.We focus on an early epidemic setting in which the number of infectives follows an
exponential dynamics and both groups’ susceptible shares are proxied by their relative popu-
lation shares. This gives rise to a two-player differential game in which players differ in some
key epidemiological and economic factors and strategically interact in the pursuit of their
own self-interest. Differential games have been extensively employed to analyze a variety of
issues in environmental and natural resources management, industrial organization, epidemi-
ology [23,30,32], but to the best of our knowledge applications in economic epidemiology
have not been discussed yet. Specifically, in ourmacroeconomic–epidemiological differential
game we analyze the players’ mobility choices and disease dynamics both under cooperation
and noncooperation, comparing the equilibrium outcomes under such different scenarios.
We characterize how the noncooperative and cooperative equilibrium outcomes depend on
both economic and epidemiological parameters, determining how such parameters impact
the inefficiency induced by noncooperation (i.e., the failure to internalize the epidemic exter-
nalities that the two groups impose on each other). We show that in all scenarios the burden
of reducing mobility patterns falls more strongly on the group characterized by a smaller
population share and lower adjusted productivity (i.e., lower share of time allocated to labor
activities), and cooperation helps redistributing this burden between groups. We also show
that long-run eradication may be possible even in the absence of coordination, but coor-
dination leads to a faster reduction in the number of infectives in finite time, and that the
distortion induced by noncooperation increases with the factors increasing the pace of the
disease spread (i.e., the infectivity rate) and decreases with those reducing it (the recovery
rate and the adjusted productivity parameter).

Our paper makes thus a number of novel contributions to the literature. To the best of our
knowledge, it is the first work analyzing strategic interactions between groups in a differ-
ential game setting in the context of macroeconomic epidemiology. Moreover, it develops a
tractable framework which, given the specific linear-quadratic structure of the problem under
an early epidemic stage assumption, allows for closed-form solutions explicitly determining
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the players’ optimal closed-loop strategies and the optimal evolution of disease prevalence.
This permits us to derive interesting (and to some extent surprising) conclusions: (i) Eradica-
tionmaybepossible even in the absence of coordination,meaning that despite their free-riding
incentives the strategic interactions between groups may not preclude the achievement of the
long-run eradication goal; (ii) the burden of implementing behavioral changes to limit the
spread of the disease affects different groups unequally, and specifically, the impact of such
a burden depends on key groups’ demographic and economic characteristics. Such results
have important policy implications which can inform policymakers’ efforts to mitigate the
heterogeneous economic consequences of infectious diseases between different population
groups.

The paper proceeds as follows. Section 2 introduces our macroeconomic–epidemiological
differential game in which individuals of two groups decide the extent to which reducing their
mobility in order to lower their infection risk and such a choice affects also their consump-
tion and recreation. Section 3 characterizes the cooperative and noncooperative equilibrium
outcomes, deriving explicitly the players’ mobility reduction choices in both frameworks and
relying on numerical experiments to compare the cooperative and noncooperative solutions.
Section 4 analyzes the special case in which heterogeneity between the groups is ruled out
in order to derive explicitly some results which would otherwise be obtained only through
numerical analysis. Section 5 as usual presents concluding remarks and highlights directions
for future research. All mathematical technicalities are presented in Appendix A.

2 TheModel

We consider a macroeconomic–epidemiological differential game in which two groups (i.e.,
young and old, men and women) by interacting with each other determine the overall preva-
lence of a communicable disease and thus the level of economic activity. Individuals may
lower their risk to contract the disease by reducing their mobility, but since changingmobility
patterns is costly, each group has an incentive to free ride negatively affecting the chances of
disease containment at the aggregate level. A similar setting has been recently analyzed in
[25] in a single group context to determine the optimal social distancing policy, abstracting
thus from a game structure and the implications of strategic interactions on disease dynamics
and macroeconomic outcomes.

2.1 The Epidemiological Framework

We consider a two-group SIS framework in which the individuals of each group can be
either infectives or susceptible to the disease, but they cannot acquire permanent immunity.
Abstracting from vital dynamics, the total population N is assumed to be constant and to
be composed by individuals of group i and group j only: N = N i + N j . In the following,
we shall present the model’s structure and equations only for group i , but the same structure
and equations apply symmetrically to group j . Individuals in group i , N i , can be either
healthy but susceptible to infection Si

t or infectives who can transmit the disease by getting
in contact with susceptibles (of both groups) I i

t : Ni = Si + I i . The interactions between
susceptibles of a group and infectives of both groups determine the evolution of susceptibles
and infectives for a given group. For the sake of simplicity, independently of the group
they belong to, infectives spontaneously recover at the rate δ > 0, and susceptibles become
infective by interacting with infectives at the rate α > 0, measuring the number of social
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contacts required to give rise to a new infection. Therefore, for group i , given its initial levels
Si
0, I i

0 ≥ 0, the dynamics of susceptibles and infectives is given by the following equations:

Ṡi
t = δ I i

t − αSi
t

(
I i
t + I j

t

N

)
(1)

İ i
t = αSi

t

(
I i
t + I j

t

N

)
− δ I i

t , (2)

with j �= i . Note that in the above equations the total number of infectives I i
t + I j

t which
can generate new infections is normalized by the total population size N to represent that the
patterns of social interactions between individuals tend to remain stable over time and do not
change with the level of disease prevalence [18]. Since Ni = Si + I i , it follows that one of
the two equations above is redundant and thus it is possible to focus only on one of them. By
focusing on infectives, from Si = Ni − I i we can simplify the above system as follows:

İ i
t = α(Ni − I i )

(
I i
t + I j

t

N

)
− δ I i

t . (3)

By defining the share of infectives, susceptibles and population out of the total population

for each group as i i = I i

N , si = Si

N and ni = Ni

N , respectively, we can recast the evolution of
infectives in group i as follows:

i̇ i
t = α(ni − i i

t )(i
i
t + i j

t ) − δi i
t . (4)

The expression above, which applies symmetrically also to group j , suggests that the evo-
lution of infectives in both groups depends on the same parameters and the total number
of infectives between groups determines the disease incidence in each group. From a mere
epidemiological perspective, the two groups are homogeneous apart from their relative pop-
ulation shares; that is, ni and n j = 1 − ni are the only source of heterogeneity between
groups as all other parameters (α and δ) are assumed to be the same for both groups.

2.2 TheMacroeconomic Framework

We now extend the above epidemiological framework to account for how individuals’ deci-
sions to lower their infection exposure may impact disease dynamics and macroeconomic
outcomes. Specifically, in order to reduce the number of persons they get in contact with,
individuals may decrease their mobility (i.e., working from home rather than on the work-
place and meeting friends virtually rather than in person) by a certain share 0 < ui < 1
lowering thus the degree of infectivity and disease incidence, but also their productivity both
in the production and leisure sectors (i.e., most production processes and leisure activities
require face-to-face interactions and although online interactions are possible, they often
are less effective than the physical ones). Individuals exogenously split their unitary time
endowment between working in the production sector and enjoying leisure, resulting in the
production of goods and recreational services, respectively. Firms produce competitively the
unique consumption good by employing labor, while recreational services are produced as a
side-effect of leisure activities. Only susceptibles work and enjoy leisure, while infectives are
quarantined and receive income support financed via income taxes levied on susceptibles.
Households entirely consume their disposable income as follows: ci

t = qi
t − τ , where ct

denotes consumption, qt income and τ > 0 a lump-sum tax used to provide income support
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to infectives. The consumption good is produced through a linear production technology
depending only on the amount of time allocated to labor, and individuals’ reduction mobility
choices negatively affect productivity as follows: qi

t = βφi (1−ui
t )s

i
t , where β > 0measures

the productivity and 0 < φi < 1 is the share of time allocated to labor activities. The share of
nonworking time 0 < 1− φi < 1 is allocated to leisure through which recreational services
are produced (and instantaneously enjoyed), and also in this case, individuals’ reduction
mobility choices negatively affect productivity as follows: r i

t = θ(1 − φi )(1 − ui
t )s

i
t , where

r i
t is the recreational service output and θ > 0 is the productivity parameter. Individuals’
change in mobility patterns generates thus a personal loss xi

t equal to the consumption and
recreational losses given by: xi

t = ui
t q

i
t + ui

tr
i
t . The disease dynamics is described by the

following SIS equation: i̇ i
t = α(1− ui

t )s
i
t (i

i
t + i j

t )− δi i
t where individuals’ reduction mobil-

ity choices by lowering potentially infectious contacts slow down the disease transmission.
Individuals seek to minimize the personal cost from their behavioral change, which is given
by the discounted sum (ρ > 0 is the rate of time preference) of the instantaneous losses. The
instantaneous loss function is assumed to depend on the total spread of the disease i i

t + i j
t

and the personal loss due to the reduced mobility xt = [βφi + θ(1 − φi )]ui
t s

i
t and to take a

quadratic nonseparable form as follows [25,26]: 	i (i i
t + i j

t , xi
t ) = (i i

t +i j
t )2[1+(xi

t )
2]

2 , penaliz-

ing deviations from the disease-free status (i.e., i i
t + i j

t = 0) and from the no-personal-loss
scenario (i.e., xi

t = 0).
By recalling that si

t = ni − i i
t , the decision problem of group i can be summarized as

follows:

min
ui

t

Ci =
∫ ∞

0

(i i
t + i j

t )2
[
1 + (ξ i )2(ui

t )
2(ni − i i

t )
2
]

2
e−ρt dt (5)

s.t . i̇ i
t = α(1 − ui

t )(n
i − i i

t )(i
i
t + i j

t ) − δi i
t (6)

i̇ j
t = α(1 − u j

t )(n
j − i j

t )(i i
t + i j

t ) − δi j
t (7)

0 ≤ i i
t , i j

t ≤ 1 (8)

i i
0 > 0, i j

0 > 0 given (9)

where ξ i = βφi +θ(1−φi )measures the total time-allocation-adjusted productivity of group
i in the production and leisure sectors, which in the following we shall refer to as “adjusted
productivity” for the sake of expositional simplicity. From an economic perspective, the two
groups differ only by the parameters ξ i and ξ j via their different time allocation between
sectors: As the productivity parameters β and θ are assumed to be homogeneous between
groups, the only source of heterogeneity is represented by the groups’ time allocation. For the
sake of simplicity, we assume that for each group the productivity is higher in the production
than in the leisure sector (i.e., β > θ ) such that its adjusted productivity and sectoral time
allocation ξ i and φi (and the same is true for ξ j and φ j ) are positively related.

2.3 The Early Epidemic Framework

Since policymakers take time to understand how to respond to a new epidemic outbreak,
every epidemic dynamic is characterized by an early phase in which the disease spreads
freely across the population and individuals’ behavioral reactions to the disease prevalence
represent the main form of response to the epidemic. In our analysis, we specifically focus
on this setting which seems to best fit our model’s assumptions in which the effects of public
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policy (in the form of prevention or treatment interventions) are completely ruled out. In an
early epidemic phase, the number of infectives tends to grow at a constant rate and thus the
disease dynamics can be described by a linear differential equation by proxying both groups’
susceptible shares by their relative population shares, si

t = ni −i i
t � ni and s j

t = n j −i j
t � n j

[10,25,29]. Under such an assumption, the group i’s problem boils down to the following:

min
ui

t

Ci =
∫ ∞

0

(i i
t + i j

t )2
[
1 + (ξ i )2(ui

t )
2(ni )2

]
2

e−ρt dt (10)

s.t . i̇ i
t = αni (1 − ui

t )(i
i
t + i j

t ) − δi i
t (11)

i̇ j
t = αn j (1 − u j

t )(i
i
t + i j

t ) − δi j
t (12)

0 ≤ i i
t , i j

t ≤ 1 (13)

i i
0 > 0, i j

0 > 0 given (14)

The optimization problem above states that the total disease prevalence drives the personal
cost associated with individual mobility choices and the disease incidence for each group
which ultimately determines the group-specific level of disease prevalence. Since for each
group, both in the objective function and in the dynamic constraints, what really matters is
the total disease prevalence, by defining it = i i

t + i j
t and by recalling ni + n j = 1, we can

recast group i’s problem as follows:

min
ui

t

Ci =
∫ ∞

0

i2t
[
1 + (ξ i )2(ui

t )
2(ni )2

]
2

e−ρt dt (15)

s.t . i̇t = [α(1 − ui
t )n

i + α(1 − u j
t )n

j − δ]it (16)

0 ≤ it ≤ 1 (17)

i0 > 0 given (18)

Note that such an early epidemic setting assumption, jointly with our specification of the
instantaneous loss function, provides ourmodelwith a linear-quadratic structurewhich allows
for closed-form solutions explicitly determining the closed-loop strategies of the two groups
and the evolution of disease prevalence.1

In the optimization problem above, equation (16) states that the total disease prevalence
grows at a rate determined by the net infectivity rate (i.e., the infectivity rate adjusted for
each group’s mobility choices and relative population shares) and the recovery rate. This is
strictly related to the concept of basic reproduction number,R0, which measures the average
number of secondary infections produced by a typical infectious individual introduced into
a completely susceptible population [21]. Indeed, as extensively discussed in mathematical
epidemiology the long-run disease dynamics crucially depends on whether the basic repro-
duction number is larger or smaller than one, and in our setting, such a parameter turns out
to be given by the following expression:

R0 = α(1 − ui
t )n

i + α(1 − u j
t )n

j

δ
. (19)

1 In the absence of a linear-quadratic structure and of C1-regularity of the function satisfying the Hamilton–
Jacobi–Bellman equation (HJB), obtaining closed-form solutions would not be possible. If this is the case,
we might rely either on a numerical approach or on the notion of viscosity solution. Different from numerical
approaches, the viscosity solutions theory permits to guarantee existence and uniqueness (via comparison
principle) of the solution for problems which do not allow for classical closed-form solutions [12–14].
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If R0 < 1, that is the net infectivity rate is smaller than the recovery rate, the disease will
naturally die out over time, while if R0 > 1, that is the net infectivity rate is higher than the
recovery rate, the diseasewill spread andwill affect a larger and larger share of the susceptible
population over time. In the case of an epidemic outbreak of a disease characterized by a high
R0, individuals’mobility reduction choices by lowering the net infectivity rate can effectively
decrease the basic reproduction number below unity allowing to achieve a disease eradication
in the long run. In the following, we shall assume that in the absence of behavioral changes
(i.e., ui

t = u j
t = 0) the disease prevalence will naturally tend to increase over time (i.e.,

R0 > 1, which occurs whenever α > δ), and in such a setting, wewish to understandwhether
individuals’ unregulated decisions to reduce their mobility (i.e., ui

t , u j
t > 0) may eventually

reverse the disease growth pattern and lead in the long run to disease eradication (i.e., bringing
R0 below unity). In particular, we wish to explore whether free-riding opportunities between
groups may preclude the possibility of eradication along with how heterogeneity between
groups (driven by differences at epidemiological or economic levels, captured by the groups’
population size, ni vs n j , and adjusted productivity, ξ i vs ξ j , respectively) may affect the
equilibrium outcome.

In order to put our paper in perspective, it may be useful to comment on our model’s
assumptions and implications. (i) We consider an infinite horizon framework as in similar
macroeconomic–epidemiological settings it has been shown that the disease is likely to persist
in the long run reaching an endemic state [25], and thus, it makes sense also for single individ-
uals to plan their behavioral response to the level of disease prevalence accordingly. However,
since individuals are short sighted and short lived, considering such an infinite time horizon
may lead our conclusions to put excessiveweight on far distant events and outcomes, which in
reality would have a much lower impact on single individuals’ decisions. (ii) Different forms
of public policy and their implications on disease prevalence and incidence are completely
ruled out to focus only on individuals’ change in their behavioral patterns to contrast and
limit the spread of the disease. In reality, public policy clearly plays an important role in the
management of epidemic episodes by driving individuals’ behavioral response and imposing
stringent regulations (i.e., social distancing, lockdowns, travel bans), thus abstracting from
the analysis of the interaction between public policy and individuals’ mitigation strategies
precludes us from analyzing several aspects of the health–economic relationship highlighted
by the recent COVID-19 experience at world level. (iii) The absence of disease-induced mor-
tality and heterogeneity between groups in several epidemiological and economic parameters
limits the ability of our model to capture the peculiarities of the COVID-19 epidemics which
has given rise (either directly or indirectly) to significant increases in mortality rates and
significantly different impacts between groups (i.e., young vs old, men vs women).

3 EquilibriumOutcomes

We now analyze separately the scenarios in which the two groups’ individuals do not and do
cooperate in their mobility choices in order to compare the noncooperative and cooperative
outcomes and analyze the implications of heterogeneity between groups in key epidemio-
logical and economic characteristics.
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3.1 Noncooperation

In a noncooperative framework, the group i solves problem (15) - (18) by taking the behavior
of the other group j as given, meaning that each group cares only about its own personal
cost. It is possible to show (the proofs of all the propositions and results are presented in
Appendix A) that the following result holds true.

Proposition 1 Suppose that 0 < α − δ < Ai α2

(ξ i )2
+ A j α2

(ξ j )2
and Ai α

(ξ i )2
< ni < 1 − A j α

(ξ j )2
. The

noncooperative Cournot–Nash mobility reduction choice for groups i and j along with the
total infectives dynamics is, respectively, given by:

(ui
t )

N = Aiα

ni (ξ i )2
∈ (0, 1) (20)

(u j
t )

N = A jα

n j (ξ j )2
∈ (0, 1) (21)

i N
t = i0 e

[
α− Ai α2

(ξ i )2
− A j α2

(ξ j )2
−δ

]
t
, (22)

where Ai > 0 is given by (51) and A j > 0 is symmetrically determined. Furthermore, the
total number of infectives monotonically falls over time, as i̇ N

t < 0.

Provided that some technical conditions hold true, Proposition 1 determines in closed form
the expression for the mobility reduction choices of both groups and the dynamics of the total
infectives. Themobility reduction choices of both groups turn out to be constant over time and
large enough to reverse the disease growth pattern and lead to a monotonic reduction in the
number of infectives. This means that despite free-riding incentives noncooperation ensures
that the basic reproduction number in (19) is smaller than unity. For each group, the mobility
reduction rule monotonically decreases with its own-population share: Since the population
share of a group determines the cost of behavioral changes for that specific group, a higher
own-group population share directly lowers its incentive to implement such changes. Apart
from this intuitive result, we cannot say much about the effects of other epidemiological
and economic parameters on the two groups’ mobility reduction rules as the expressions in
(20) and (21) are particularly cumbersome, due to the fact that the parameters Ai and A j

are the solutions of fourth-degree equations. Therefore, in the following we will proceed by
presenting some numerical examples to visualize the impact of the main parameters on such
variables.

We rely on COVID-19 data based on the Italian experience during the first epidemic
wave to calibrate the model and present a real-world numerical example. Specifically, Italian
estimates show that R0 = 2.79 and the recovery time is about 3 weeks, which imply that
δ = 0.0476 and α = 0.1328 [25,33]). The sources of heterogeneity, n and ξ are instead
set arbitrarily and changed within a relevant parameter range to ensure that the required
technical conditions are met. In particular, we set ξ j = 15, and when we vary ξ i , we also
set ni = 0.4, while when we vary ni , we set ξ i = 1.6. We thus assume, without loss of
generality, that group i is characterized by a relatively lower population share and a lower
adjusted productivity than group j .

Figure 1 shows the impact of the group i’s adjusted productivity parameter, ξ i (top panels),
and population share, ni (bottom panels), on the mobility reduction rule for group i (left
panel), for group j (middle panel) and for the difference between them (right panel). We can
observe that intuitively (ui )N falls with ξ i , while (u j )N increases with it: A higher adjusted
productivity parameter for group i , on the one hand, increases group i’s cost of implementing
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Fig. 1 Effect of the group i’s adjusted productivity parameter, ξ i (top), and population share, ni (bottom), on
the mobility reduction rule: (ui )N (left), (u j )N (center), (ui )N − (u j )N (right), under noncooperation

behavioral changes lowering its incentive to reduce its mobility, and on the other hand, it
increases group j’s behavioral changes to compensate for the reduction in the behavioral
changes of group i . We can also note that the mobility reduction rule is larger for group i ,
and this is due to the fact that the adjusted productivity is lower for this group which thus
has relatively stronger incentive than group j to implement behavioral changes, which also
explains why (ui )N − (u j )N falls with ξ i . The figure shows also that, as expected, (ui )N

falls with ni , while (u j )N increases with it: The former result is consistent with what we
have discussed earlier, while the latter follows from the fact that n j = 1− ni . Exactly as we
have discussed for the adjusted productivity, the mobility reduction rule is larger for group i ,
since it is characterized by a smaller population share than group j , and (ui )N − (u j )N falls
with ni .

Therefore, we can conclude that the burden of reducing mobility patterns falls more
strongly on the smaller group and the group with lower adjusted productivity (i.e., the group
which allocates a lower share of its time endowment to labor activities). If we interpret
the two groups as men and women, our results are consistent with the empirical evidence
suggesting that women have suffered themost from the behavioral changes required to reduce
the risk of infection from COVID-19. Indeed, the smaller working group in the population
of most industrialized countries is represented by women, who also are those relatively less
involved on the workplace due to their traditional role as primary carers for children. If we
instead interpret the two groups as young and old, our results suggest that it is not possible to
determine which groupmight suffer themost from the required behavioral changes to contain
the COVID-19 epidemic, as young represent the smaller group in the working population but
also that with higher involvement in labor activities.

3.2 Cooperation

The noncooperative framework earlier discussed is clearly not optimal as it does notminimize
the joint social cost for the two groups, since the groups do not internalize the externality
that their mobility choices impose on each other through the epidemic dynamics. In order to
determine such a social optimum, we now focus on the cooperative setup assuming that the
two groups agree to mutually determine their behavioral changes. The cooperative problem
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can be stated as follows:

min
ui

t ,u
j
t

Ci + C j =
∫ ∞

0

i2t
[
2 + (ξ i )2(ui

t )
2(ni )2 + (ξ j )2(u j

t )
2(n j )2

]
2

e−ρt dt (23)

s.t . i̇t = [α(1 − ui
t )n

i + α(1 − u j
t )n

j − δ]it (24)

0 ≤ it ≤ 1 (25)

i0 > 0 given (26)

Similarly to the noncooperative case, also in a cooperative setting it is possible to prove
the following result.

Proposition 2 Suppose that ρ < α − δ and (ξ j )2

2α[(ξ j )2+(ξ i )2] (c + �) < ni < 1 −
(ξ i )2

2α[(ξ j )2+(ξ i )2] (c + �). The cooperative mobility reduction choice for groups i and j along
with the total infectives dynamics is, respectively, given by:

(ui
t )

C = (ξ j )2

2niα[(ξ j )2 + (ξ i )2] (c + �) ∈ (0, 1) (27)

(u j
t )

C = (ξ i )2

2n jα[(ξ j )2 + (ξ i )2] (c + �) ∈ (0, 1) (28)

iC
t = i0 e

1
2 (ρ−�)t (29)

where c = 2α − 2δ − ρ > 0 and � =
√

c2 + 8α2((ξ j )2+(ξ i )2)

(ξ j )2(ξ i )2
> −c. Furthermore, the total

number of infectives monotonically falls over time, as i̇C
t < 0.

Provided that some technical conditions are met, Proposition 2 determines in closed form
the expression for the mobility reduction choices of both groups and the dynamics of the
total infectives. As in the noncooperative case, individuals’ mobility change is constant over
time and large enough (ensuring that the basic reproduction number is smaller than unity)
to achieve disease eradication in the long run, but different from the previous case we can
now analytically determine the impact of the main parameters on such variables. In par-
ticular, we can show that each group’s mobility reduction choice monotonically increases
with the infectivity rate and the other group’s adjusted productivity parameter, and it mono-
tonically decreases with the recovery rate, its own adjusted productivity parameter and its
own population share. All these results are intuitive. A higher infectivity (recovery) rate
increases (decreases) the speedof disease spread and thus provides single groupswith stronger
(weaker) incentives to modify their behavior to reduce their exposure to infection. A higher
own adjusted productivity parameter increases the group’s cost of implementing behavioral
changes, and thus, it directly lowers its incentive to reduce its mobility. A higher other group’s
adjusted productivity parameter instead increases the group’s behavioral changes to compen-
sate for the reduction in the behavioral changes of the other group. A higher population share
by increasing the group’s cost of implementing behavioral changes lowers its incentive to
reduce its mobility.

By relying on the same parameter values earlier employed, Fig. 2 confirms these results
by showing that the mobility reduction rule for group i decreases with group i’s adjusted
productivity parameter and population share, while group j’s increases with them. As in
the noncooperative case, the mobility reduction rule for group i is larger than group j , and
(ui )C − (u j )C falls with both ξ i and ni . Exactly the same comments earlier discussed under
noncooperation apply.
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Fig. 2 Effect of the group i’s adjusted productivity parameter, ξ i (top), and population share, ni (bottom), on
the mobility reduction rule: (ui )C (left), (u j )C (center), (ui )C − (u j )C (right), under cooperation

Fig. 3 Effect of the group i’s adjusted productivity parameter, ξ i (top), and population share, ni (bottom), on

the distortion induced by noncooperation, (ui
t )

C − (ui
t )

N (left), and (u j
t )C − (u j

t )N (right)

3.3 Noncooperation versus Cooperation

The difference between the cooperative and noncooperative mobility reduction choices,
(ui

t )
C −(ui

t )
N and (u j

t )
C −(u j

t )
N , determines the size of the distortion imposed by free-riding

(i.e., the absence of cooperation) on epidemic dynamics. Given the cumbersomeness of the
noncooperative mobility rules, it is not possible to analytically determine the determinants
of such a distortion, but we will need to proceed via numerical analysis to investigate the role
of the main model’s parameters.
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Figure 3 shows how the size of the distortion for group i (left panels) and for group j
(right panels) depends on the group i’s adjusted productivity (top panels) and population
share (bottom panels). As expected, we can observe that the distortion is positive for both
groups as the failure to internalize the epidemic externalities induces each group to modify
their behavioral patterns by a lower amount than what would be optimal. Moreover, the
distortions for the two groups respond in a different way to a change in the parameters ξ i

and ni : (ui
t )

C − (ui
t )

N increases with ξ i and falls with ni , while (u j
t )

C − (u j
t )

N decreases
with ξ i and rises with ni . These results are consistent with what we have discussed in the
noncooperative and cooperative equilibrium outcomes: Under noncooperation, an increase
in ξ i pushes group i to reduce its behavioral change and dump the burden to group j ; under
cooperation such free-riding effects are internalized by redistributing this burden between
groups, such to demand an increase in the efforts by group i (and a decrease in those by group
j) as ξ i increases; this is entirely reflected in the size of the distortion. A similar argument
explains the response of the distortions for the two groups to a change in ni .

The fact that the distortion induced by free-riding is positive allows us also to comment
on the effectiveness of the noncooperative and cooperative strategies to contain the disease
spread. Indeed, even if long-run (i.e., asymptotically) eradication is possible both under non-
cooperation and cooperation, since the mobility reduction rule is higher under cooperation,
it follows that the number of infectives will decrease more rapidly (in finite time) when the
groups coordinate their efforts. Therefore, in order to achieve effective disease containment
it is essential to design appropriate policies to favor cooperation between different population
groups.

4 Symmetric Equilibrium

In a symmetric equilibrium, the two groups are exactly identical and thus all sources of
heterogeneity are ruled out, that is ξ i = ξ j = ξ and ni = n j = 0.5. In this setting, it is
possible to derive a more intuitive analytical expression in the noncooperative equilibrium
which allows us to perform an explicit analysis of the differences and determinants of both
the noncooperative and cooperative equilibria. The noncooperative and cooperative equilibria
under symmetry are characterized in the next proposition.

Proposition 3 Suppose that α − 2δ < ρ < α − δ and ξ2 > 4α
2δ−α+ρ

, and define c =
2α − 2δ − ρ > 0. Then, in a symmetric equilibrium:

• the noncooperative Cournot–Nash mobility reduction choice for both groups i and j
along with the total infectives dynamics is, respectively, given by:

uN
t = (ui

t )
N = (u j

t )
N = 1

3α
(c + η) ∈ (0, 1) (30)

i N
t = i0 e

1
6 (c+3ρ−2η)t > 0, (31)

where η =
√

c 2 + 12α2

ξ2
, and the total number of infectives monotonically falls over time,

i̇ N
t < 0;

• the cooperative mobility reduction choice for both groups i and j along with the total
infectives dynamics is instead, respectively, given by:

uC
t = (ui

t )
C = (u j

t )
C = 1

2α
(c + η̃) ∈ (0, 1) (32)
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iC
t = i0 e

1
2 (ρ−η̃)t > 0, (33)

where η̃ =
√

c 2 + 16α2

ξ2
, and the total number of infectives monotonically falls over time,

i̇C
t < 0.

Provided that some technical conditions hold true, Proposition 3 shows that both under
noncooperation and cooperation the mobility reduction choices are large enough to reverse
the disease growth pattern and lead the total number of infectives to monotonically decrease
over time in order to achieve in the long-run complete disease eradication. We can also note
that the noncooperative and the cooperative rules depend in the same way on the model’s
parameters. Specifically, it is straightforward to show that they both monotonically increase
with the infectivity rate α and monotonically decrease with the recovery rate δ and the
adjusted productivity parameter ξ . All these results are intuitive and consistent with what
earlier discussed in the nonsymmetric case. A higher infectivity (recovery) rate increases
(decreases) the speed of disease spread and thus provides single individuals with stronger
(weaker) incentives to modify their behavior to reduce their exposure to infection. A higher
ξ increases the cost of implementing behavioral changes, and thus, it directly lowers their
incentive to reduce their mobility.

Proposition 3 allows us also to directly compare the noncooperative and the cooperative
rules for the mobility reduction choices and for the evolution of the total infectives share.
Indeed, straightforward algebra suggests that the size of the distortion imposed by noncoop-
eration is given by the following expression:

uC
t − uN

t = c

6α
+

√
c2

4α2 + 4

ξ2
−

√
c2

9α2 + 4

3ξ2
> 0, (34)

which is strictly positive as expected. As discussed in the nonsymmetric case, even if long-
run (i.e., asymptotically) eradication is possible both under noncooperation and cooperation,
since the mobility reduction rule is higher under cooperation, it follows that the number of
infectives will decrease more rapidly (in finite time) when the groups coordinate their efforts.
Indeed, as confirmed by the following expression, the difference between the cooperative and
noncooperative number of infectives is strictly negative:

iC
t − i N

t = i0
[
e
1
2 (ρ−η̃)t − e

1
6 (c+3ρ−2η)t

]
< 0,

suggesting that the effects due to the distortion induced by noncooperation are reflected also in
the epidemic dynamics. Moreover, it is possible to show that the distortion in (34) depends on
themain parameters exactly in the sameway in which the noncooperative and the cooperative
mobility reductions rules do; that is, it monotonically increases with the infectivity rate and
monotonically decreases with both the recovery rate and the adjusted productivity parameter.
This suggests that these parameters have a relatively stronger effect on the noncooperative
rules than on the cooperative ones, and thus, their difference perfectly mimics their behavior.
Therefore, factors increasing the pace of the disease spread (the infectivity rate α) widen the
wedge between the cooperative and noncooperative solutions, while factors decreasing its
pace (the recovery rate δ and the adjusted productivity ξ ) reduce it.

From Proposition 3, we can also determine the evolution of the infectives in the two
groups. Indeed, by replacing the expression for the total number of infectives in (11), since
the mobility reduction rules uN

t and uC
t are constant over time, we obtain:
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(i i
t )

N = αn(1 − uN
t )(i i

0 + i j
0 )

1
6 (c + 3ρ − 2η) + δ

[
e( 16 (c+3ρ−2η)+δ)t − 1

]
e−δt + i i

0e−δt (35)

(i i
t )

C = αn(1 − uC
t )(i i

0 + i j
0 )

1
2 (ρ − η̃) + δ

[
e( 12 (ρ−η̃)+δ)t − 1

]
e−δt + i i

0e−δt , (36)

in the noncooperative and cooperative cases, respectively. By substituting the total number of
infectives in (12) and repeating the calculations, we obtain the same expression with swapped
superscripts i and j . With some algebra, it is possible to show that, as expected, the difference
between the cooperative and noncooperative infective shares is strictly negative:

(i i
t )

C − (i i
t )

N = n(i i
0 + i j

0 )

[
e

(
1
2 (2δ+ρ−η̃)−δ

)
t − e

(
1
3 (α+2δ+ρ−η)−δ

)
t
]

< 0;

that is, the effects due to the distortion from free-riding affect not only the dynamics of the
total infectives but also the evolution of the number of infectives in each single group.

5 Conclusion

The ongoing COVID-19 epidemic is ravaging the entire world showing more clearly than
ever that health and macroeconomic conditions are mutually related. Apart from its dramatic
consequences on economic production capabilities and the increase in mortality, the most
striking effect of the epidemic is related to its highly heterogeneous impacts on different
population groups (young and old, men and women). In order to shed some light on the pos-
sible determinants and implications of such heterogeneous effects, we develop a two-group
differential game in which the interactions between groups determine the overall prevalence
of an infectious disease, which in turn affects the level of economic activity. Individuals may
lower their disease exposure by reducing their mobility, but since changing mobility patterns
is costly, each group has an incentive to free ride negatively affecting the chances of disease
containment at the aggregate level. We determine and compare the groups’ mobility choices,
along with their implications on disease prevalence, under noncooperation and cooperation,
quantifying the inefficiency induced by the failure of single groups to internalize the exter-
nality that their mobility choices impose on each other through the epidemic dynamic. We
show that in all scenarios the burden of reducing mobility patterns falls more strongly on
the group characterized by a smaller population share and lower adjusted productivity (i.e.,
lower share of time allocated to labor activities), but cooperation leads to a redistribution of
the burden between groups. We also show that long-run eradication may be possible even
in the absence of coordination, but coordination leads to a faster reduction in the number of
infectives in finite time, and that the wedge between the cooperative and noncooperative solu-
tions increases with the factors increasing the pace of the disease spread (i.e., the infectivity
rate) and decreases with those reducing it (the recovery rate and the adjusted productivity
parameter).

To the best of our knowledge, this is the first paper analyzing the implications of strate-
gic interactions between groups in a macroeconomic–epidemiological setup. For the sake
of analytical tractability, we have developed a stylized early epidemic framework abstract-
ing from several key elements (i.e., disease-induced mortality, heterogeneity in the disease
transmission and recovery between groups, public health policy measures) of the COVID-19
epidemic experience. Extending the analysis to account for such factors, which would enrich
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our framework and increase its ability to provide real world policy recommendations, is left
for future research.

A Technical Appendix

A.1 Noncooperation

By defining V i the value function associated with the problem (15) - (18), the pair (it , ui
t ) is

its solution if V i solves the following HJB equation:

ρV i (it ) + max
ui

t

{
− i2t

2

[
1 + (ξ i )2(ui

t )
2(ni )2

]
− DV i (it )i̇t

}
= 0, (37)

where DV i (it ) is the first derivative of the value function V i with respect to it . The Hamil-
tonian H(it , ui

t , DV i (it )) associated with the optimal control problem above is:

H(it , ui
t , DV i (it )) = − i2t

2

[
1 + (ξ i )2(ui

t )
2(ni )2

]
− DV i (it )i̇t , (38)

and assuming V i (it ) = Ai i2t
2

, Ai ∈ R, we can apply the first-order condition ∂ H/∂ui
t = 0.

Hence, assuming it �= 0, we get:

ui
t = Aiα

ni (ξ i )2
. (39)

Similarly, the control of the group j obtained with similar reasoning as before yields:

u j
t = A jα

n j (ξ j )2
. (40)

By plugging the expressions of V i (it ), (39) and (40) into (37), we get

α2(Ai )2

(ξ i )2
+ Ai

(
−2α + ρ + 2δ + 2A jα2

(ξ j )2

)
− 1 = 0. (41)

Now, denoting by c = 2α − 2δ − ρ, the solutions of (41) are the following

Ai = (ξ i )2

2α2

⎛
⎝c − 2A jα2

(ξ j )2
+

√(
−c + 2A jα2

(ξ j )2

)2

+ 4α2

(ξ i )2

⎞
⎠ , (42)

Ai = (ξ i )2

2α2

⎛
⎝c − 2A jα2

(ξ j )2
−

√(
−c + 2A jα2

(ξ j )2

)2

+ 4α2

(ξ i )2

⎞
⎠ . (43)

By substituting (39) and (40) into (16) and by integrating with respect to t , we get

it = i0 e

(
α − Aiα2

(ξ i )2
− A jα2

(ξ j )2
− δ

)
t
. (44)

The transversality condition reads as follows:

lim
t→+∞ e−ρt V i (it ) = lim

t→+∞ e

(
2α − 2Aiα2

(ξ i )2
− 2A jα2

(ξ j )2
− 2δ − ρ

)
t

Ai i20
2

= 0, (45)
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which is verified if and only if:

2α − 2Aiα2

(ξ i )2
− 2A jα2

(ξ j )2
− 2δ − ρ < 0. (46)

It can be proved that (46) is satisfied with Ai as in (42).
By repeating the same analysis for group j following the same approach presented above

for group i , we assume that V j (it ) = A j i2t
2

, A j ∈ R, where A j is given by:

A j = (ξ j )2

2α2

⎛
⎝c − 2Aiα2

(ξ i )2
+

√(
−c + 2Aiα2

(ξ i )2

)2

+ 4α2

(ξ j )2

⎞
⎠ (47)

At this point, we need to determine the value of the coefficients Ai and A j in order to
obtain a unique expression of the optimal dynamics it and of the controls ui

t and u j
t . The

system between (42) and (47) reads as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ai = (ξ i )2

2α2

⎛
⎝c − 2A jα2

(ξ j )2
+

√(
−c + 2A jα2

(ξ j )2

)2

+ 4α2

(ξ i )2

⎞
⎠

A j = (ξ j )2

2α2

⎛
⎝c − 2Aiα2

(ξ i )2
+

√(
−c + 2Aiα2

(ξ i )2

)2

+ 4α2

(ξ j )2

⎞
⎠

(48)

By plugging the expression of A j in the first equation of (48), we get the fourth-degree
equation:

3α4(Ai )4

(ξ i )4
− 4α2 c (Ai )3

(ξ i )2
+ (Ai )2

(
c2 + 4α2

(ξ j )2
− 2α2

(ξ i )2

)
− 1 = 0. (49)

whose solutions are given by the cumbersome expression below:

Ai = 1

6

{
2c(ξ i )2

α2 ±
√
S i ± 3

√
Li
1 + Li

2

}
, (50)

where

Li
1 = 4c3(ξ i )6

9α6Si
+ 8(ξ i )2

(
(ξ j )2 − 2(ξ i )2

)
9α2(ξ j )2

,

Li
2 = 4c(ξ i )4

(
(ξ j )2(cSi + 6) − 12(ξ i )2

) − S
(

f i + (pi )2/3
)
(pi )

− 1
3

9α4(ξ j )2Si
,

S i = 2(ξ i )2
(
2α2

(
(ξ j )2 − 2(ξ i )2

) + c2(ξ j )2(ξ i )2
) + f i (pi )

− 1
3 + (pi )

1
3

α4(ξ j )2
,

f i = (ξ i )4
((

c2(ξ j )2(ξ i )2 − 2α2
(
(ξ j )2 − 2(ξ i )2

))2 − 36α4(ξ j )4
)

,

along with

pi = 6
√
3
√

gi + (ξ i )6
(

− 224α6(ξ j )6 − 6(ξ i )4
(
4α3(ξ j ) + αc2(ξ j )3

)2
+ (ξ i )6

(
4α2 + c2(ξ j )2

)3 + 96α4(ξ j )4(ξ i )2
(
5α2 − c2(ξ j )2

) )
,
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where

gi = α4(ξ j )4(ξ i )12
(
256α6c2(ξ j )2(ξ i )2

(
2(ξ j )6 − 3(ξ j )4(ξ i )2 − 3(ξ j )2(ξ i )4 + 2(ξ i )6

)
− c8(ξ j )8(ξ i )8 + 96α4

(
(ξ j )4 − (ξ j )2(ξ i )2 + (ξ i )4

)
×

(
8α4

(
(ξ j )4 − (ξ j )2(ξ i )2 + (ξ i )4

)
+ c4(ξ j )4(ξ i )4

))
.

Among the four solutions (51), let us consider the one with all positive factors for being
simultaneously respected the transversality condition of Ai and A j , that is:

Ai = 1

6

{
2c(ξ i )2

α2 +
√
S i + 3

√
Li
1 + Li

2

}
. (51)

Then, we get the unique expression of A j which coincide with the chosen Ai unless to
exchange the role of ξ i and ξ j . In conclusion, consider the chosen Ai (51) and the corre-
sponding A j , we obtain the closed-form expressions of the controls and the state variable,
given by (20), (21) and (22), respectively.

Cooperation

By defining V the value function associated with the problem (23) - (26), the pair (it , ui
t ) is

its solution if V solves the following HJB equation:

ρV (it ) + max
ui

t ,u
j
t

{
− i2t

2

[
2 + (ξ i )2(ui

t )
2(ni )2 + (ξ j )2(u j

t )
2(n j )2

]
− DV (it )i̇t

}
= 0. (52)

The Hamiltonian H(it , ui
t , u j

t , DV (it )) associated with the optimal control problem above
is given by:

H(it , ui
t , u j

t , DV (it )) = − i2t
2

[
2 + (ξ i )2(ui

t )
2(ni )2 + (ξ j )2(u j

t )
2(n j )2

]
− DV (it )i̇t . (53)

Assuming that V (it ) = Ai2t
2

, A ∈ R, we can apply the first-order conditions to get the

expression of the controls, i.e., ∇ H = 0, which is equivalent to impose that

(
∂ H

∂ui
t
,

∂ H

∂u j
t

)
=

(0, 0). Then, we have ⎧⎨
⎩

i2t (ξ i )2(ni )2ui
t − Ait

(
αni it

)
= 0,

i2t (ξ j )2(n j )2u j
t − Ait

(
αn j it

)
= 0,

from which follows that ⎧⎪⎨
⎪⎩

ui
t = Aα

ni (ξ i )2
,

u j
t = Aα

n j (ξ j )2
.

(54)
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Note that in order to derive ui
t and u j

t we suppose that it �= 0. By plugging (54) in (24) and
by integrating with respect to t , we get

it = i0e

(
α − Aα2 (ξ i )2 + (ξ j )2

(ξ i )2(ξ j )2
− δ

)
t
. (55)

By plugging the expressions of V (it ), ui
t and u j

t into the HJB (52), we obtain

α2
(

1

(ξ j )2
+ 1

(ξ i )2

)
A2 + (−2α + ρ + 2δ)A − 2 = 0. (56)

Now, denoting by

c = 2α − 2δ − ρ, � =
√

c2 + 8α2((ξ j )2 + (ξ i )2)

(ξ j )2(ξ i )2
,

the solutions of (56) are the following

A = (ξ i )2(ξ j )2

2α2((ξ i )2 + (ξ j )2)
(c + �) , (57)

A = (ξ i )2(ξ j )2

2α2((ξ i )2 + (ξ j )2)
(c − �) . (58)

From the transversality condition, we get which A as to be considered:

lim
t→+∞ e−ρt V (it ) = lim

t→+∞ e

(
2α − 2Aα2 (ξ i )2 + (ξ j )2

(ξ i )2(ξ j )2
− 2δ − ρ

)
t

A
i20
2

= 0

if and only if

2α − 2Aα2 (ξ i )2 + (ξ j )2

(ξ i )2(ξ j )2
− 2δ − ρ < 0 (59)

It is easy to verify that (59) is satisfied taking A as in (57). In conclusion, by replacing (57)
into (55) and (54) we get the closed-form expressions of the controls and the state variable,
given by (27), (28) and (29), respectively. The derivatives of the cooperative rule for the
mobility reduction choices for group i (those for group j are symmetrically determined)
with respect to the main parameters are given by the following expressions:

∂(ui
t )

C

∂α
= (ξ j )2 (2δ + ρ)(c + �)

2α2 ni � [(ξ j )2 + (ξ i )2] > 0,

∂(ui
t )

C

∂δ
= − (ξ j )2 (c + �)

α ni � [(ξ j )2 + (ξ i )2] < 0,

∂(ui
t )

C

∂ξ i
= −

(ξ j )2
(
(ξ i )4 � (c + �) + 4α2[(ξ j )2 + (ξ i )2]

)
α ni � (ξ i )3 [(ξ j )2 + (ξ i )2]2 < 0,

∂(ui
t )

C

∂ξ j
=

(ξ i )2(ξ j )2
(

c

√
(2δ + ρ)(2δ + ρ − 4α) + α2

(
4 + 8

(
(ξ j )2+(ξ i )2

(ξ j )2(ξ i )2

))
+ (2δ + ρ)(2δ + ρ − 4α)

)
α ni � (ξ j ) [(ξ j )2 + (ξ i )2]2

+
4α2

(
(ξ j )2 + (ξ i )2(1 + (ξ j )2)

)
α ni � (ξ j ) [(ξ j )2 + (ξ i )2]2 > 0,

∂(ui
t )

C

∂ni
= − (ξ j )2(c + �)

2α(ni )2[(ξ j )2 + (ξ i )2] < 0.
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A.3 Symmetry

We now assume that V i = V j , which implies that Ai = A j = A. In this setting, the controls
(39) and (40) take the same form given by:

ui
t = u j

t = 2Aα

ξ2
, (60)

respectively. By plugging the expressions of V (it ) = Ai2t
2

and (60) into (37), we get:

3α2

ξ2
A2 + (−2α + ρ + 2δ)A − 1 = 0 (61)

Denoting by:

c = 2α − 2δ − ρ, η =
√

c 2 + 12α2

ξ2
,

the solutions of (61) are:

A = ξ2

6α2 (c + η) , (62)

A = ξ2

6α2 (c − η) . (63)

The transversality condition is verified if and only if:

2α − 4α2

ξ2
A − 2δ − ρ < 0. (64)

It is easy to verify that (64) is satisfied taking A as in (62). In conclusion, we obtain the closed-
form expressions of the control and the state variable, given by (30) and (31), respectively.
The derivatives of the noncooperative rule for the mobility reduction choices with respect to
the main parameters are given by the following expressions:

∂uN
t

∂ξ
= − 4α

ξ2
√

c2ξ2 + 12α2
< 0

∂uN
t

∂α
= (2δ + ρ)(c ξ + √

c2ξ2 + 12α2)

3α2
√

c2ξ2 + 12α2
> 0

∂uN
t

∂δ
= −2(c ξ + √

c2ξ2 + 12α2)

3α
√

c2ξ2 + 12α2
< 0

In the cooperative case, the first-order conditions of the Hamiltonian associated with (52)
yield ∇ H = 0 if and only if: ⎧⎪⎨

⎪⎩
ui

t = 2Aα

ξ2
,

u j
t = 2Aα

ξ2
.

(65)

By substituting the expression of V (it ) and (65) into (52), we have:

2α2

ξ2
A2 + (−2α + ρ + 2δ)A − 2 = 0. (66)
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Denoting by:

η̃ =
√

c 2 + 16α2

ξ2
,

and taking c as before, the solutions of (66) are

A = ξ2

4α2 (c + η̃) , (67)

A = ξ2

4α2 (c − η̃) . (68)

As in the noncooperative case, it can be verified that the transversality condition requires
to consider A as in (67). Finally, the closed-form expressions of the control and the state
variable are given by (32) and (33), respectively. The derivatives of the cooperative rule for
the mobility reduction choices with respect to the main parameters are given by the following
expressions:

∂uC
t

∂ξ
= − 8α

ξ2
√

c2ξ2 + 16α2
< 0,

∂uC
t

∂α
= (2δ + ρ)(c ξ + √

c2ξ2 + 16α2)

2α2
√

c2ξ2 + 16α2
> 0,

∂uC
t

∂δ
= −c ξ + √

c2ξ2 + 16α2

α
√

c2ξ2 + 16α2
< 0.

The derivatives of the distortion imposed by noncooperation (34) with respect to the main
parameters are given by the following expressions:

∂(uC
t − uN

t )

∂ξ
= 4α

ξ2

(
1√

c2ξ2 + 12α2
− 2√

c2ξ2 + 16α2

)
< 0,

∂(uC
t − uN

t )

∂α
= 2δ + ρ

6α2

(
1 − 2ξ(2α − 2δ − ρ)√

(2α − 2δ − ρ)2ξ2 + 12α2
+ 3ξ(2α − 2δ − ρ)√

(2α − 2δ − ρ)2ξ2 + 16α2

)
> 0,

∂(uC
t − uN

t )

∂δ
= − 1

3α

(
1 − 2ξ(2α − 2δ − ρ)√

(2α − 2δ − ρ)2ξ2 + 12α2
+ 3ξ(2α − 2δ − ρ)√

(2α − 2δ − ρ)2ξ2 + 16α2

)
< 0.
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