
Dynamic Games and Applications (2022) 12:443–484
https://doi.org/10.1007/s13235-021-00392-1

Dynamic Information Design: A Simple Problem on Optimal
Sequential Information Disclosure

Farzaneh Farhadi1,2 · Demosthenis Teneketzis1

Accepted: 26 May 2021 / Published online: 26 June 2021
© The Author(s) 2021

Abstract
We study a dynamic information design problem in a finite-horizon setting consisting of
two strategic and long-term optimizing agents, namely a principal (he) and a detector (she).
The principal observes the evolution of a Markov chain that has two states, one “good” and
one “bad” absorbing state, and has to decide how to sequentially disclose information to
the detector. The detector’s only information consists of the messages she receives from the
principal. The detector’s objective is to detect as accurately as possible the time of the jump
from the good to the bad state. The principal’s objective is to delay the detector as much as
possible from detecting the jump to the bad state. For this setting, we determine the optimal
strategies of the principal and the detector. The detector’s optimal strategy is described by
time-varying thresholds on her posterior belief of the good state. We prove that it is optimal
for the principal to give no information to the detector before a time threshold, run a mixed
strategy to confuse the detector at the threshold time, and reveal the true state afterward. We
present an algorithm that determines both the optimal time threshold and the optimal mixed
strategy that could be employed by the principal. We show, through numerical experiments,
that this optimal sequentialmechanism outperforms any other information disclosure strategy
presented in the literature.We also show that our results can be extended to the infinite-horizon
problem, to the problem where the matrix of transition probabilities of the Markov chain is
time-varying, and to the case where the Markov chain has more than two states and one of
the states is absorbing.
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1 Introduction

The decentralization of information is an inevitable facet ofmanaging a large system. Inmod-
ern technological systems, agents constantly face the challenge of making decisions under
incomplete and asymmetric information. This challenge arises in many different applica-
tions, including transportation, cyber-security, communication, energy management, smart
grids and E-commerce.

There is a large body of literature on the issues related to decision making in information-
ally decentralized systems when the agents are cooperative and jointly wish to maximize a
social welfare function which is usually the sum of their utilities [4,19]. The problem is more
challenging when the agents are selfish and not concerned about the society as a whole, but
only aim at maximizing their own utility. Currently there exist two approaches to the design
of efficient multi-agent systems with asymmetric information and selfish/strategic agents. In
the following, we briefly describe these approaches.
1.Mechanism design In this approach, each of the strategic agents is assumed to possess some
private information. There is a coordinator who wishes to optimize a network performance
metric which depends on the agents’ private information. To elicit strategic agents’ true
information, the coordinator (he) needs to provide incentives to them so as to align their
strategic objectives (e.g., maximization of a strategic agent’s utility) with his own objective
(e.g. maximization of social welfare). In this situation, the system’s information structure
(who knows what and when) is fixed, and the coordinator’s goal is to design a mechanism
that aligns the agents’ incentives with the coordinator’s incentives (see [23,40,51,56–58,69]
and references therein).
2. Information design In this approach, the coordinator knows perfectly the evolution of the
system’s state, but the decision making is done by the strategic agents who have incom-
plete/imperfect knowledge of the state. To incentivize strategic agents to take actions that are
desirable for the coordinator, he can provide, sequentially over time, information about the
system’s state to them. The goal of information provision/disclosure is the alignment of each
agent’s objectivewith the coordinator’s objective. In this situation, the game-form/mechanism
is fixed but the system’s information structure is not fixed. It has to be designed by the coor-
dinator through the sequential disclosure/provision of information to the strategic agents so
as to serve his goal (see [12,18,74] and references therein).

This paper addresses an information design problem. Information design problems are
also referred to as Bayesian persuasion problems because the strategic agents are assumed
to understand how information is generated/ manipulated and react to information in a ratio-
nal (Bayesian) manner. Therefore, information design problems can be seen as persuading
Bayesian agents to act in desirable ways. The coordinator whowould like to lead other agents
to act as he wants is usually referred to as the principal. The system state is the principal’s
private information which can be used to persuade others to serve his goal.

Information design problems in dynamic environments involving a principal and long-
term-optimizing strategic agents are challenging (see our discussion in Sect. 3.2). Currently,
very little is known about the design of optimal sequential information disclosure policies
in dynamic environments with long-term-optimizing agents. Therefore, we focus on a very
simple problem that allows us to highlight how sequential information provision/disclosure
strategies can be designed in dynamic environments with long-term optimizing strategic
agents.

We consider a version of the quickest detection problem [70]with a strategic principal (that
we call “he”) and one strategic agent/detector (that we call “she”). These gender pronouns are
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arbitrarily assigned only for a clear referral to the agents. The detector wants to detect when
a two-state discrete-time Markov chain jumps from the “good” state to the “bad” absorbing
state. The detector cannot make direct observations of the Markov chain’s state. Instead,
she receives, at each time instant, a message from the principal about the Markov chain’s
state. The principal observes perfectly the evolution of the Markov chain; his objective is
to delay, as much as possible, detection of the jump by the detector. At the beginning of
the process, the principal commits to a sequential information disclosure strategy/policy
which he announces to the detector. The detector’s knowledge of the policy shapes her
interpretation of the messages she receives. For each fixed sequential information disclosure
policy of the principal, the detector is faced with a standard quickest detection problem with
noisy observations. The principal’s goal is to determine the sequential information disclosure
policy that convinces the detector to wait as long as possible before declaring the jumps. A
precise formulation of this problem is presented in Sects. 2 and 3.

The key features of our problem are:

• The problem has a dynamic nature;
• The principal and the agent/detector are long-term optimizers;
• The principal’s private information varies/evolves over time;
• The principal has the power of commitment.

These features are not all simultaneously present in any work available so far (see literature
survey in Sect. 1.1).

In this paper, we discover an optimal sequential information disclosure strategy for the
principal. We prove that it is optimal for the principal to give no information to the detector
before a time threshold, run a mixed strategy to confuse the detector at the threshold time,
and reveal the true state afterwards.We present an algorithm that determines both the optimal
time threshold and the optimal mixed strategy that could be employed by the principal.

We compare the performance of the policy we discover with that of other sequential infor-
mation disclosure policies (see Sect. 5). The comparison shows that the policy we discover
outperforms the sequential information disclosure policies currently available in the litera-
ture. We extend our results to the case where the Markov chain has n > 2 states, one of
which is absorbing.

The contribution of this paper is threefold. (i) The novelty of our model (see the features
of our model listed above). (ii) The analytical approach to the solution of the dynamic
information design problem. This approach is based on technical arguments that are different
from the standard concavification method that is commonly used in the information design
literature (see literature survey inSect. 1.1). (iii) The extension of our results ton-stateMarkov
chains containing one absorbing state.

1.1 Review of RelatedWorks

Information disclosure mechanisms can be seen as a communication protocol between an
information transmitter (he) and one or multiple receivers. A significant part of the existing
works in this area have studied the nonstrategic case, where the information transmitter and
receivers are cooperative and jointly wish to maximize the global utility [50,54,75–77].

The strategic case of information disclosure mechanisms (Bayesian Persuasion), where
the transmitter (principal) and receiver havemisaligned objectives, is in tradition of cheap talk
[3,8,17,38,39,61], and signaling games [34,71]. In signaling games, the transmitter’s utility
depends not only on the receiver’s actions, but also on his type (private information).However,
in information design problems neither the principal’s type nor his actions enter his utility
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directly; they only influence his utility through the effect they have on the receivers’ actions.
This feature of the model enables us to investigate/analyze the pure effect of principal’s
private information on the receivers’ behaviors.

Themain difference between cheap talk and information design is the level of commitment
power they give to the principal. In the cheap talk literature, the principal has no commitment
power; he decides on the information message to be sent after seeing the realization of
his private information. The cheap talk model induces a simultaneous game between the
principal and the agents. Thus, the main goal of this strand of works is to characterize the
(Nash) equilibria of the induced game. Most of the existing work has focused on the static
setting [3,8,17,61].

The work of [17] shows that when the state of the system (principal’s private information)
is one-dimensional, it has compact domain, and both the principal’s and the agent’s utilities
have certain properties, stated explicitly in [17], then the principal’s equilibrium strategy
employs quantization.

More general models of cheap talk, such as multidimensional sources [8], noisy commu-
nication [61] and multiple principals with misaligned objectives [3], have been studied in
the literature for static settings. There are a few works that study the dynamic version of the
cheap talk communication [38,39]. These works show that allowing for dynamic information
transmission improves the informativeness of communication.

In information design problems, the transmitter is endowed with full commitment power.
In this model, the transmitter is allowed to send any distribution of messages as a (mea-

surable) function of the historys of system state and messages, but he should choose and
announce his information disclosure policy before observing the system state and then stay
committed to it forever. By committing to an information disclosure policy at the very begin-
ning of the system’s operation, the transmitter attempts to persuade all other agents to employ
strategies that achieve his objective.

The fact that a player in a game can improve his outcome through commitment was first
established in [66,67,72] (see also [41]). The full commitment assumption holds in many
economic ([11,32,37]) and engineering ([18,74]) multi-agent systems.

The literature on information design is generally divided into two main categories: static
and dynamic information design problems.
Static information design problems The static version of the problem, where the state of
the system is fixed and no time is involved, has been studied extensively in the literature.
The authors of [1] consider a problem of static information disclosure where the state of the
system is Gaussian and the utilities are quadratic, and show that there exists a linear policy
for the principal that leads to a Stackelberg equilibrium. In [12,43], the authors propose a
concavification method for deriving an optimal information provision mechanism in static
settings. The concavification approach was first developed by a group of U.S. economists and
game theorists, led by R. Aumann and M. Maschler, with the context of the negotiations for
the Strategic Arms Limitation Treaty (SALT) between the U.S. and U.S.S.R. (see [6]). The
approach was developed for problems that can be modeled as repeated games of incomplete
information. For over half a century, this idea played an important role in the analysis of
repeated games (see [27,80] and references therein) but has not been applied to information
design problems until 2011 [43].

Following [43], the information design problem has been studied for more general set-
tings, such as costly communication [33],multi-dimensional state [59,73],multiple principals
[30,48], multiple receivers [9,10], and receivers with different prior beliefs [2]. A case of
information design problem with transfers where the principal can provide both information
and monetary incentives to the receiver is also studied in [47]. There is a group of works
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in static information disclosure which are more applied and aim to understand or improve
real-world institutions via information design. Research in this strand includes applications
to grading in schools [16], research procurement [79], medical testing [68], price discrimi-
nation [11], insurance [29], and routing software [18,45,74,78,81]. A through discussion of
the literature on information design up until 2018 appears in [42].
Dynamic information design problems The dynamic version of the information design prob-
lem, where the informed-player/principal can disclose his superior information sequentially
over time, has recently been attracting rapidly growing interest. In dynamic environments,
agents’ decisions at each instant of time affect their opponents’ decisions, not only at present
but also in the future. The problem becomes more tangled if the information transmitter has
commitment power. In this case, the information disclosure policy that the principal commits
to for the future, has a direct effect on the receivers’ estimation of what they can gain in
the future, and hence on their current decisions. The interdependency among the agents’
decision-making processes over time makes the dynamic information design problems very
complex and challenging.

Most of the available works avoid this challenge by assuming that the agents are myopic,
that is they only look at each instant at the immediate consequence of their actions, ignoring
the subsequent (future) effects. In [26] and [62], both the information transmitter and receivers
are assumed to be myopic. Under this simplifying assumption, [62] shows that the principal’s
optimal information disclosure policy is a set of linear functions of the current state.

To make the problem closer to reality, the authors of [14,15,21,49,60,63–65] consider the
myopic assumption only for the information receivers (In [63–65], the information receiver is
myopic as a result of the model and their objective.). This set of works studies the interactions
between a long-term-optimizing principal and either amyopic receiver or a sequence of short-
lived receivers. In the latter case, at each instant of time a new receiver enters the system, forms
her belief about the sender’s strategy by observing the history of the past messages, takes
her action, and then exits the system. In such a case, since the receivers leave the system
after taking only one action, they are not concerned about the subsequent effects of their
decisions. Therefore, considering a sequence of short-lived receivers is exactly equivalent to
assuming that the receiver is myopic. Under this assumption, [21] proposes a generalization
of the concavification method for dynamic information design problems. The authors of [60]
show that when the receiver is myopic, the greedy disclosure policy where the principal
minimizes the amount of information being disclosed in each stage, under the constraint that
it maximizes his current payoff, is optimal in many cases, but not always.

There are only a few papers which study the dynamic information design problem with
both long-term-optimizing principal and long-term-optimizing receivers [5,20,22,25,35,36,
52,55,74]. In [35,36,55], principal is assumed to have no commitment power. This assumption
simplifies the problem as in this case, the principal’s policy at each time instant affects the
receiver’s decisions only at the future and not at the past. Although in some of these works
communication is costly, they could be seen, due to lack of commitments, as dynamic versions
of cheap-talk problem. The authors in [5,20,22,25,52,74] study the dynamic interactions
between a long-term-optimizing principal who has full commitment power and a long-term
optimizing receiver. In [5,20,22], the private information of the principal is considered to be
constant and not varying with time. The problem with time-varying private information for
the principal is discussed in [25,52,74] for dynamic two-stage settings. The authors of [52]
also tackle the information design problem in an infinite-horizon setting. In this setting, they
first simplify the problem by restricting attention to a special class of information disclosure
mechanisms and then characterize a mechanism that improves the principal’s utility, but is
not always optimal.
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There are also a few works that combine mechanism design and information design (See
[7,20,31,44]). In these papers, the principal chooses both the game form and the informa-
tion structure so as to persuade the agent to follow the recommendations. The scope of the
problems discussed in this line of research is distinctly different from that of our paper.

In our problem, we consider information design in a dynamic setting with an arbitrary
time horizon and long-term optimizing principal/transmitter and detector/receiver, when the
principal has full commitment power and his private information evolves over time. Because
of all these features, our model and problem are distinctly different from those appearing in
the literature on information design that we reviewed above.

1.2 Organization of the Paper

The rest of the paper is organized as follows. We present our dynamic information design
problem with strategic and long-term-optimizing agents in Sect. 2. In Sect. 3, we formulate
the principal’s problem as a dynamic information design problem and discuss its main fea-
tures. We describe the optimal sequential information disclosure mechanism we propose for
the solution to this problem in Sect. 4. In Sect. 5, we show the superiority of our proposed
mechanism by comparing it to non-optimal mechanisms that are used in real-world applica-
tions. We present extensions of our results to more general settings in Sect. 6. We conclude
our paper in Sect. 7. The proofs of all the technical results appear in Appendices 1-9.

1.3 Notation

We use the following notation. Normal font letters x , bold font letters x, and calligraphic font
letters X stand for scalars, vectors, and sets, respectively. Scalars with a sub-index, e.g., xt ,
represent elements of the vector with the same name. xt1:t2 , with t2 ≥ t1, represents a vector
consisting of t1-th through t2-th elements of vector x , i.e. xt1:t2 = (xt1 , xt1+1, .., xt2). The
superscript asterisk (*) indicates an optimal value of the corresponding variable. A vector
to the power of an integer, e.g., xn , indicates a vector containing n copies of the original
vector x. Using this notation, a vector that repeats the same value a, n times, is denoted by
(a)n . Notation ((a)n, (b)m) represents a vector with n first elements being a and the next m
elements being b. A set X raised to the power of an integer n, i.e., X n , denotes the Cartesian
product of set X with itself n times.

The strategy of the principal is denoted by ρ. For a fixed strategy ρ, notations mρ and
P(A|ρ) represent the messages sent by the principal based on strategy ρ and the conditional
probability of an event A given ρ, respectively. Notation E

ρ
t1:t2{ f |A} denotes the expected

value of function f from time t1 to t2 when the principal commits to strategy ρ and event A
has occurred. 1{A} is the indicator function of an event A.

2 Model

2.1 General Framework

Consider a Markov chain {st , t ∈ T = {1, 2, . . . , T }} with state space {g(good), b(bad)}
and a one-step transition probability matrix
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P =
(
1 − q q
0 1

)

The chain starts in the good state with probability μ, i.e. P(s1 = g) = μ, and then at each
instant of time t = 2, . . . , T , may switch from g to b with probability q . State b is an
absorbing state, meaning that once the Markov chain goes to the bad state, it remains in that
state forever. We denote the random time when Markov chain jumps from the good state to
the bad state by θ . The situation where the Markov chain starts in the bad state is captured
by considering θ = 1. If the Markov chain remains in the good state until the end of the time
period T , we consider θ = T + 1. Therefore, the distribution of the random variable θ is as
follows:

P(θ = θ ′) =

⎧⎪⎨
⎪⎩
1 − μ, if θ ′ = 1,

μ (1 − q)θ
′−2 q, if 2 ≤ θ ′ ≤ T ,

μ (1 − q)T−1, if θ ′ = T + 1,

(1)

There is a strategic detector (she) in the system who wants to detect the jump to the bad
state as accurately as possible. Let τ denote the (random) time the detector declares that the
jump has occurred. The detector’s cost associated with declaring the jump at time τ is

J D(τ, θ) = 1{τ<θ} + 1{τ≥θ}c(τ − θ), (2)

where 1{A} is the indicator function of an event A, which takes value one if A occurs, and
zero otherwise. The detector pays one unit of cost if she declares the jump before it actually
happens (i.e., false alarm), and pays c units of cost per unit of delayed detection. The goal
of the detector is to choose a detection time τ so as to minimize the expected value of the
cost (2). The detector does not observe the Markov chain’s state st , but she receives some
information about it from another agent called the principal.

At each instant of time t , the principal (he) observes perfectly the Markov chain’s
state st and sends, according to some information transmission/ disclosure strategy ρ =
(ρ1, . . . , ρT ), a message mt to the detector. When the detector receives the message mt , she
updates her belief about the state of the system in a Bayesian way (using ρ), and based on her
new belief she decides whether or not to declare that the jump has occurred. Let at ∈ {k, d}
denote the detector’s action at time t ∈ T , where at = k indicates that the detector keeps
silent at time t and does not declare a jump, and at = d indicates that she declares that the
jump has occurred. For any fixed choice of the principal’s strategy ρ, the detector has to
solve a quickest detection problem [70] to find her best sequence of actions. Therefore, the
detector’s optimal strategy at each time instant t is described by a threshold; these thresholds
are time-varying and depend on the choice of the principal’s strategy ρ.

The principal’s objective is to delay detection of the jump. Therefore, utilizing his superior
information about the state of the Markov chain, the principal attempts to provide informa-
tional incentives to the detector so as to persuade her to keep silent. The principal’s utility
is

U P (τ ) = τ − 1. (3)

Assumption 1 The parameters of the model, including transition probability matrix P ,
prior belief μ, delay cost c, and action set {k, d}, are common knowledge between
the principal and the detector. The objectives of the principal and the detector are
also common knowledge. The only private information in the model is the Markov
chain’s state which is perfectly observed only by the principal and not by the
detector.
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The detector’s decision depends on her belief about the evolution of the system’s
unknown state st ; this belief depends on the principal’s strategy ρ. Therefore, the
principal must design a dynamic (over time) information disclosure mechanism in
order to influence the evolution of the detector’s beliefs and therefore her sequence of
actions.

Remark 1 Our model is similar to Ely’s model [21] in that they both consider an unin-
formed agent (detector) who wants to detect the transition of a two-state Markov chain
to its absorbing state. In both models, the goal of the information provider is to delay
such detection. However, there is a fundamental difference between our model and that
of Ely. In Ely’s model, the detector uses a time-invariant decision rule that is charac-
terized by a fixed threshold p∗. Specifically, the detector declares that the jump from
the “good” state to the “bad” state occurs, at the first time instant τ at which her
(posterior) belief that the Markov chain is in the bad state exceeds p∗. Such a deci-
sion strategy is not optimal for either a finite-horizon or an infinite-horizon quickest
detection problem. In the finite T-horizon quickest detection problem, the detector’s
optimal decision rule is characterized by a sequence of time-varying thresholds that
depend on the parameter c (see Eq. (2)) and on the functional form of her obser-
vations (i.e., the principal’s information disclosure strategy). In the infinite-horizon
quickest detection problem, the detector’s optimal decision rule is characterized by a
time-invariant threshold as long as the functional form of her observations (i.e., the
principal’s information disclosure strategy) is time-invariant. It turns out that in our
problem as well as in Ely’s problem [21] the principal’s (optimal) information disclo-
sure strategy is not time-invariant; therefore, the detector’s optimal decision strategy is
not characterized by a time-invariant threshold. In our problem, the detector’s decision
rule is the optimal decision rule for the T-horizon quickest detection problem where
the functional form of her observations is the principal’s optimal information disclosure
strategy.

In Sect. 3, we formulate the above-mentioned problem as a dynamic information design
and present a dynamic information disclosure mechanism that maximizes the principal’s
utility. But before that, we briefly present some applications that motivate the model
of this section and illustrate some of the fundamental issues in dynamic information
design.

2.2 Motivating Applications

As pointed out in Remark 1, our model is similar to that of Ely [21]. Thus, it is moti-
vated by applications similar to those described in [21], specifically, by the manner
the information technology department of an organization (principal) provides infor-
mation to the organization’s employees (detectors) over time so as to influence their
productivity, and by the manner a bank (principal) releases, over time, reports about
its financial status so as to convince its customers (agents) not to withdraw their
savings.

In general, this model captures fundamental issues arising in more general strategic
information transmission problems, where one strategic agent (the principal) has superior
information about the status of a system as compared to other agents. In these situations,
through appropriate observable actions/signaling, the principal attempts to control the other
agents’ perception of the system’s status so as to induce them to act in line with his own
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interest. Such problems frequently occur in Cyber-physical systems, such as power, trans-
portation, and security systems.

3 The Dynamic Information Design Problem

3.1 Problem Formulation

A dynamic information disclosure mechanism specifies the set of messages Mt that the
principal sends to the detector at each instant of time t ∈ T , along with a distribution over
Mt given all the information available to the principal at time t . The principal’s information
at time t consists of (1) the history of evolution of the state (which the principal observes
perfectly) up to time t , i.e. s1:t , (2) the history of his past messages to the detector, i.e.m1:t−1,
and (3) the history of the detector’s past actions, i.e. a1:t−1. The set of dynamic information
disclosure mechanisms is completely general, it includes the extremes of full information, no
information, and all conceivable intermediate mechanisms. The full information mechanism
is the rule that reveals perfectly the current state st : i.e., Mt = {g, b} and P(mt = st ) = 1.
A no-information mechanism is obtained when the set of messagesMt has only one element
and the principal sends that single message irrespective of the system state.

As it is clear from the above examples, a dynamic information disclosure mechanism
could be very complicated since there is no restriction on the set of messages Mt or the
probability distribution on Mt , t ∈ T . However, it is shown in [43] that there is no loss of
generality in restricting attention to direct dynamic information disclosure mechanisms that
are obedient.

The intuition behind this result is that for any information disclosuremechanism�, we can
construct an obedient direct information disclosure mechanism that achieves the same per-
formance as �. Thus, in this paper, we concentrate on direct dynamic information disclosure
mechanisms that are obedient.

In a direct information disclosuremechanism, at each instant of time, the principal directly
recommends to the detector the action she should take. In our problem, the detector’s possible
actions at each time t are to either keep silent (at = k) or declare the jump (at = d).
Therefore, the set of messages used by the principal at each time t is Mt = M = {k, d},
where k is a recommendation to keep silent, and d is a recommendation to declare a jump.
As a result, the principal’s behavior in a direct information disclosure mechanism can be
described by a recommendation policy ρ = (ρ

s1:t ,m1:t−1,a1:t−1
t , t ∈ T ), where ρ

s1:t ,m1:t−1,a1:t−1
t

is the probability according to which the principal sends message k to the detector (i.e.,
recommends her to keep silent), when the sequence of the states he has observed up to time t
is s1:t = (s1, . . . , st ), the history of the pastmessages he has sent ism1:t−1 = (m1, . . . ,mt−1),
and the history of the detector’s past actions is a1:t−1 = (a1, . . . , at−1). For each t ∈ T ,
s1:t ∈ {g, b}t , and m1:t−1, a1:t−1 ∈ {k, d}t−1, the principal sends message d to the detector
with probability 1 − ρ

s1:t ,m1:t−1,a1:t−1
t . There are two features in our problem that help us to

simplify the principal’s information.
(1) At each instant of time, the detector has two actions one of which (i.e., declaring the jump)
terminates the whole process. Therefore, making a recommendation at time t is meaningful
for the principal only if the detector kept silent at all the previous times, i.e., a1:t−1 = (k)t−1.
Thus, a1:t−1 can be omitted from the principal’s information.
(2) The bad state of our Markov chain is an absorbing state. Therefore, the state evolution
of the Markov chain until time t is of the form s1:t = ((g)θt−1, (b)t−θt+1), where θt could
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take any integer value between 1 and t + 1. We define θt as the earliest possible time for the
jump based on the principal’s information at time t ; i.e. θt = min (θ, t + 1). The parameter
θt is equal to θ if the jump has occurred up to time t ; however it takes value t + 1 when
the principal finds the Markov chain in the good state at time t . Because of this feature,
we can represent the recommendation policy ρ

s1:t ,m1:t−1
t of each time t by ρ

θt ,m1:t−1
t , where

θt ∈ {1, . . . , t + 1}.
When the principal designs an information disclosure mechanism, he announces the cor-

responding recommendation policy ρ to the detector and commits to it.
The detector is strategic and long-termoptimizing; she utilizes the information she receives

from the principal to her own advantage and does not necessarily follow the actions rec-
ommended by the principal. Therefore, to achieve his goal, the principal must design an
information disclosure mechanism that possesses the obedience property, that is, it provides
the detector with strong enough incentives to follow his recommendations.

At each time t ∈ T , the long-term-optimizing detector obeys the principal if the recom-
mended action mt satisfies the following set inclusion:

mt ∈ arg min
at

[
min
γt+1:T

E
ρ
t :T {J D(τ, θ)|m1:t }

]
, ∀t,m1:t , (4)

where γt+1:T denotes her decision strategy profile from time t + 1 up to T , and
minγt+1:T E

ρ
t :T {J D(τ, θ)|m1:t } is her minimum expected continuation cost conditional on

her information m1:t when the principal commits to the information disclosure strat-
egy/mechanism ρ. Constraint (4) ensures that at each time t ∈ T , following the principal’s
recommendation mt minimizes the detector’s expected continuation cost. Therefore, to
check the obedience property of a direct information disclosure mechanism at any time
t , t = 1, 2, . . . , T , we need to solve the series/sequence of optimization problems

min
at

[
min
γt+1:T

E
ρ
t :T {J D(τ, θ)|m1:t }

]
, (5)

for all m1:t . Solving these optimization problems is a challenging and time-consuming task.
However, the one-shot deviation principle allows us to derive the obedience constraints by
assuming that the detector sticks to the obedient strategy in the future. Specifically, consid-
ering a fixed direct information disclosure mechanism, the whole process can be seen as a
finite extensive-form game between the detector and nature (principal), where at each stage t
nature sends a signal mt to the detector according to ρt and then the detector takes an action
at . With this interpretation, the set of obedience constraints (4) is a necessary and sufficient
set of conditions for the strategy profile at = mt , for t ∈ T , to be a subgame-perfect Nash
equilibrium (SPNE) [53]. According to the one-shot deviation principle, a strategy profile γ

is a SPNE if and only if no player can increase their payoffs by deviating from γ for one
period and then reverting to the strategy [28]. Therefore, a simpler version of the obedience
constraints is as follows:

mt ∈ arg min
at

[
E

ρ
t :T {J D(τ, θ)|m1:t , at+1:T = mρ

t+1:T }
]
, (6)

for all t and m1:t , where the condition at+1:T = mρ
t+1:T of the expectation reflects the fact

that the detector obeys the recommendations from time t+1 onward, and the notationmρ
t+1:T

indicates that the messages mt+1:T are generated according to the policy ρ.
Equation (6) includes

∑T
t=1 2

t = 2(2T − 1) constraints. These constraints force the
detector to obey the recommendations after each message history m1:t . However, due to the
nature of our problem, the first time the detector is recommended to declare a jump in an
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obedient mechanism, she will do so and the process will terminate. Therefore, the message
histories with at least one d in the past are not going to occur and need not be checked. This
feature reduces the obedience constraints need to be considered to the following:

E
ρ
t :T {J D(τ, θ)|m1:t = (k)t , at = k, at+1:T = mρ

t+1:T }
≤ E

ρ
t :T {J D(τ, θ)|m1:t = (k)t , at = d},∀t ∈ T , (7)

E
ρ
t :T {J D(τ, θ)|m1:t = ((k)t−1, d), at = k, at+1:T = mρ

t+1:T }
≥ E

ρ
t :T {J D(τ, θ)|m1:t = ((k)t−1, d), at = d},∀t ∈ T , (8)

(2T constraints).
Now that we derived the obedience constraints, we go through calculating the principal’s

utility. When the detector follows the recommendation policy ρ, the expected utility the
principal gets is

E
ρ{U P (τ )} = E

ρ{τ − 1} = E
ρ

{
T∑
t=1

1{a1:t=(k)t }

}

=
T∑
t=1

P(a1:t = (k)t |ρ) =
T∑
t=1

P(mρ
1:t = (k)t )

=
T∑
t=1

T+1∑
θ ′=1

P(θ = θ ′)
t∏

t ′=1

ρ
min (θ ′,t ′+1),(k)t

′−1

t ′ .

(9)

Therefore, we can formulate the information design problem (Problem P) for the principal
as follows:

max
ρ

E
ρ{U P (τ )}, (P)

subject to the obedience constraints (7)–(8),

0 ≤ ρ
θt ,m1:t−1
t ≤ 1, ∀t, θt ,m1:t−1.

That is, the principal wants to choose a feasible dynamic information disclosure mechanism
ρ that satisfies the obedience constraints (7)–(8) and maximizes his expected utility given by
(9).

3.2 Features of The Problem

Solving the optimization problem (P) is a formidable task as the optimization variables
are strongly coupled with many non-convex constraints. This strong coupling can be seen
by taking a closer look at the expectations appearing in the obedience constraints (7)–(8).
According to (2), the detector’s expected continuation cost from time t onward when she has
received messages m1:t and decides to declare the jump at time t is

E
ρ
t :T {J D(τ, θ)|m1:t , at = d} = P(st = g|m1:t ), (10)

i.e., the probability of false alarm at t . If the detector decides to keep silent at time t and
sticks to the obedient strategy at the future, her expected continuation cost is

E
ρ
t :T {J D(τ, θ)|m1:t , at = k, at+1:T = mρ

t+1:T }
= c(1 − P(st = g|m1:t )) + E

ρ
t+1:T {J D(τ, θ)|m1:t , at = k, at+1:T = mρ

t+1:T }, (11)
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where the first term on the right-hand side is the expected delay cost at time t , and the second
term denotes the expected value of all the future costs from time t + 1 onward. Substituting
(10)–(11) in (7)–(8) shows that at each time t , the detector’s decision to obey or disobey the
principal’s recommendation depends on two factors:

(i) the belief the detector has about the good state of theMarkov chain, i.e.,P(st = g|m1:t );
this belief is constructed according to Bayes’ rule from the past messages m1:t she received,
hence the past recommendation rules ρ

θt ′ ,m1:t ′−1
t ′ (t ′ ≤ t) that generate these messages;

(ii) the cost the detector expects to incur in the future if she remains silent at time t
and follows the recommendations afterwards, i.e., Eρ

t+1:T {J D(τ, θ)|m1:t , at = k, at+1:T =
mρ

t+1:T }. This expected cost depends on the messages the detector expects to receive in the
future. These messages depend on the future recommendation rules to which the principal

commits, i.e. ρ
θt ′ ,m1:t ′−1
t ′ , t ′ > t , ∀θ .

Therefore, the detector’s decision at each time t depends not only on the recommendation
policy for time t , but also on the recommendation policies for all times before and after t .
The dependence of the detector’s decision at each time t on the recommendation policy for
the entire horizon makes the discovery of an optimal information disclosure mechanism that
satisfies the obedience property very challenging. This is mainly because any change in the
principal’s recommendation policy at any time t affects the detector’s decisions at all times.
Therefore, the principal cannot optimize the recommendation policies of different time slots
separately just by considering the obedience constraints at that time, instead he needs to
optimize the recommendation policies of the whole horizon simultaneously.

4 An Optimal Sequential Information Disclosure Mechanism

In this section, we present the main result of the paper, namely a dynamic information
disclosure mechanism that solves the principal’s problem, expressed by Problem (P). The
mechanism is described in Theorem 1. To state Theorem 1, we need the following definitions.

Definition 1 Defineby�M the class of informationdisclosuremechanismsρ = (ρ
st ,m1:t−1
t , t ∈

T )where ρ
st ,m1:t−1
t depends on the message profilem1:t−1 received by the detector up to time

t − 1 and only the current state st of the Markov chain at time t (not on the state evolution
s1:t ).

Definition 2 A mechanism ρ = (ρ
st ,m1:t−1
t , t ∈ T ) ∈ �M is called time-based prioritized if:

(i) ρ
g,m1:t−1
t = 1 for all t and all m1:t−1;

(ii) there is no time t , t ∈ T , such that ρ
b,(k)t

t+1 > 0 while ρ
b,(k)t−1

t < 1, where (k)t =
(k, . . . , k) is a vector of length t with all components equal to k; and

(iii) for all t ∈ T , ρb,m1:t−1
t is arbitrary, 0 ≤ ρ

b,m1:t−1
t ≤ 1, when m1:t−1 �= (k)t .

We denote by �MP the class of time-based prioritized mechanisms. In information dis-
closure mechanism ρ ∈ �MP , the priority of keeping the detector silent at each time
t > θ is higher than keeping her silent at t + 1. Therefore, if st = b the princi-
pal does not put any effort in manipulating the detector’s information at t + 1 unless
there is no room for improving his own performance at time t . As a consequence
of Definition 2, for each mechanism ρ ∈ �MP , there is a threshold n p such that
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Algorithm 1: Computing parameters of the optimal time-based prioritized information
disclosure mechanism
1 for n p = 1, . . . , T do

2 qnp ← mint≤n p

{
1

P(θ≤n p)
(
P(θ>t)

c −∑n p−1
l=t P(θ ≤ l))

}
;

3 if qnp < 1 then
4 break;
5 end
6 end
7 n∗

p ←− n p ;
8 q∗

n p ←− qnp .;

9 Output: n∗
p, q

∗
n p . The optimal mechanism is TbP(n∗

p, q
∗
n p )

ρ
b,(k)t−1

t =

⎧⎪⎨
⎪⎩
1, t < n p,

0, t > n p,

qnp , t = n p, qnp ∈ [0, 1] .

(12)

Therefore, any ρ ∈ �MP can be uniquely described by two parameters n p and qnp .We denote
any time-based prioritized mechanism with parameters n p and qnp as ρ = TbP(n p, qnp ).

Theorem 1 Without loss of optimality, in Problem (P) the principal can restrict attention to
time-based prioritized mechanisms. Determining an optimal time-based prioritized mecha-
nism ρ∗ for Problem (P) is equivalent to finding n∗

p + q∗
n p

= max
{
n p + qnp

}
such that the

mechanism TbP(n p, qnp ) satisfies all the obedience constraints. The parameters of the opti-
mal time-based prioritized information disclosuremechanism can be obtained byAlgorithm1
above.
The principal’s expected utility at ρ∗ = TbP(n∗

p, q
∗
n p

) is

E
ρ∗ {U P } = n∗

p − 1 + P(θ ≤ n∗
p)q

∗
n p

+
T∑

t=n∗
p

P(θ > t). (13)

Outline of the proof of Theorem 1
Theorem 1 provides us with an optimal sequential information disclosure mechanism.We

prove this theorem in three steps.
In the first step, we reduce the complexity of the optimization problem (P) by reduc-

ing/simplifying the domain of ρ. To this end, we show that:
(1) the recommendation policy the principal uses at any time t when he has advised the
detector to declare the jump at least once before t , plays no role in problem (P);
(2) without loss of optimality, the principal can restrict attention to mechanisms ρ =
(ρ

st ,m1:t−1
t , t ∈ T ) ∈ �M . In this class of mechanisms, the recommendation policy at any

time t depends only on the state st of theMarkov chain and the principal’s previous messages
m1:t−1 (not on the state evolution s1:t−1).

In the second step, we prove that ρg,m1:t−1
t = 1, for t ∈ T and all m1:t−1. Thus, when the

Markov chain is in the good state, the principal always recommends the detector to wait.
In the third step, we use the results of the first two steps to prove that restricting attention

to the class of time-based prioritized mechanisms is without loss of optimality. Then, we
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determine an optimal solution for the dynamic information disclosure problem (P) in this
class.
Proof of Theorem 1:We prove in Appendix the lemmas appearing in each step.
Step 1 As we discussed in Sect. 3, the principal’s behavior in a direct dynamic information
disclosure mechanism is described by a recommendation policy ρ = (ρ

θt ,m1:t−1
t , t ∈ T ),

where ρ
θt ,m1:t−1
t is the probability with which the principal recommends the detector to keep

silent at time t , when θt = min (θ, t + 1) and the message profile that has been sent so far
is m1:t−1. For each time t , θt could take any integer value between 1 and t + 1. Moreover,
the principal’s message may take two values at each time slot, so we can have 2t−1 different
message profiles at each time t . Therefore, to design an optimal direct dynamic information
disclosure mechanism we need to determine the optimal values of

∑T
t=1 2

t−1(t + 1) = 2T T
different variables. This number grows exponentiallywith the horizon length T . Furthermore,
these variables are coupledwith one another through the obedience constraints (7)–(8); hence,
their optimal values must be determined simultaneously. Since such a determination is a
difficult problem, our goal in this step is to reduce the number of design variables, without
any loss of optimality. We achieve our goal via the results of Lemmas 1 and 2. Before stating
Lemmas 1 and 2, we define the following function that counts the number of time epochs the
detector was recommended to declare the jump in the past.

Definition 3 For each time t and each message history m1:t−1, we define Nd(m1:t−1) as the
number of time slots where message d has been sent to the detector.

Lemma 1 For each time t, the recommendation policy ρ
θt ,m1:t−1
t needs to be designed only

for message profiles m1:t−1 with Nd(m1:t−1) ≤ 1. The part of the recommendation policy
related to cases where the message d has been sent more than once has no effect on either
the obedience property of the mechanism or the utility it gets to the principal.

As a result of Lemma 1, an optimal recommendation policy must determine the optimal
values of

∑T
t=1 t(t + 1) = 1

3T (T + 1)(T + 2) variables. This number grows polynomially
rather than exponentially with the horizon length T , so the complexity of the information
disclosure problem is significantly reduced.

Lemma 2 Without loss of optimality, for each message profile m1:t−1, the principal can
restrict attention to recommendation policies that depend, at each time t, on the current state
st of the Markov chain and not on the exact time the jump has occurred.

As a result of Lemma 2, at each time t , and for each message profile m1:t−1, the principal
needs to consider only two recommendation strategies, one when st = g the other when
st = b. Therefore, the total number of design variables is

∑T
t=1 2t = T (T +1), which grows

as T 2 rather than T 3.
Step 2 We derive an optimal recommendation strategy for the principal when the Markov
chain is in the good state.

Lemma 3 If at any time t the Markov chain is in the good state, irrespective of the message
profile m1:t−1, it is always optimal for the principal to recommend the detector to keep silent.
That is

ρ
∗ g,m1:t−1
t = 1,∀m1:t−1,∀t ∈ T , (14)

The result of Lemma 3 is intuitive, becausewhen the state of theMarkov chain is good there is
no conflict of interest between the principal and the detector. In this state, the principal wants
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to prevent the detector from declaring a jump, and the detector herself has no incentive to
create a false alarm. Therefore, there is no incentive for the principal to mislead the detector.

As a result of Lemma 3, when the detector is recommended to declare a jump, she is abso-
lutely sure that the Markov chain is in the bad state, and thus, she declares a jump. Therefore,
the obedience constraints (8) corresponding to situations where the detector receives rec-
ommendation mt = d are automatically satisfied and can be neglected in the rest of the
design process. Moreover, if any message d has been sent by the principal in the past, the
detector declares a jump right after receiving d and the whole process terminates. Therefore,
we do not need to design a recommendation policy for message profiles that contain at least
one d . Consequently, the only variable we should design at any time t , is the probability of
recommending the detector to declare a jump when st = b andm1:t−1 = (k)t−1. Finding the
optimal values of these variables is the subject of the next step.
Step 3 First, we show that, without loss of optimality, the principal can restrict attention to
time-based prioritized mechanisms. Then, we determine such optimal mechanism.

Lemma 4 Without loss of optimality, the principal can restrict attention to the class of time-
based prioritized mechanisms.

We proceed now to complete the proof of our main result (Theorem 1). The expected
utility of a principal who uses time-based prioritized mechanism ρ = TbP(n p, qnp ) is

E
TbP(n p,qn p ){U P } = n p − 1 + P(θ ≤ n p)qnp +

T∑
t=n p

P(θ > t). (15)

This can be seen as follows. Before the threshold time is reached, the detector is always
recommended to keep silent. Therefore, at the first n p − 1 time slots silence is guaranteed.
At the threshold period n p , if the Markov chain is in the bad state (prob. P(θ ≤ n p)), the
detector remains silent with probability qnp . However, if the Markov chain is in the good
state (prob. P(θ > n p)), the detector remains silent for sure. At each time t after the threshold
period, the detector keeps quiet only if the jump has not occurred. The probability of this
event is P(θ > t).

Equation (15) shows that for each constant threshold n p , the principal’s expected
utility is an increasing linear function of qnp . Moreover, we have E

TbP(n p,1){U P } =
E
TbP(n p+1,0){U P }. This is true, simply because ρ = TbP(n p, 1) and ρ′ = TbP(n p + 1, 0)

are actually two representations of the same mechanism. We can easily conclude from these
two facts that the principal’s expected utility is a piecewise linear function of n p + qnp as
depicted in Fig. 1. The slope of the segments increases whenever the variable n p + qnp takes
an integer value.

The arguments above show that finding the optimal time-based prioritized mechanism
is equivalent to finding the maximum value of n p + qnp such that the mechanism ρ =
TbP(n p, qnp ) satisfies the obedience constraints. With some algebra, it can be shown that
for a time-based prioritized mechanism ρ the obedience constraints (7) can be simplified to

c

⎛
⎝n p−1∑

l=t

P(θ ≤ l) + P(θ ≤ n p)qnp

⎞
⎠ ≤ P(θ > t),∀t ≤ n p. (16)

These constraints are very intuitive as for each time t , 1) the right-hand side of (16) is
the expected cost of declaring the jump at time t ; and 2) the left-hand side of (16) is the
expected continuation cost that the detector incurs from time t onward, when she follows the
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Fig. 1 An example of the
principal’s utility function in a
time-based prioritized
mechanism

recommendations made by the mechanism ρ = TbP(n p, qnp ). Therefore, constraints (16)
simply say that a time-based prioritized mechanism is obedient if and only if the detector
finds declaring the jump more costly than keeping silent at each time t ≤ n p when she is
recommended to stay quiet.

The left-hand side of each obedience constraint in (16) is increasing in terms of qnp .
Therefore, if the obedience conditions are satisfied for amechanism ρ = TbP(n p, qnp ), they
are also satisfied for mechanisms with smaller values for qnp . Given that the mechanisms
TbP(n p, 0) and TbP(n p − 1, 1) are the same, we can conclude that obedience of a time-
based-prioritized mechanism ρ = TbP(n p, qnp ) implies the obedience of all time-based-
prioritizedmechanismswith smaller values of n p+qnp . Therefore, there is a threshold k

∗ such
that the set of all obedient time-based-prioritized mechanisms consists of the mechanisms
for which n p + qnp takes a value smaller than the threshold k∗. The fact that the principal’s
expected utility is increasing in terms of n p + qnp implies that the mechanism with n p +
qnp = k∗ is optimal. The parameters of the optimal mechanism is uniquely determined by
Algorithm 1.

Algorithm 1 works as follows: It iterates over n p = 1, . . . , T and at each iteration it
computes the maximum value of qnp such that ρ = TbP(n p, qnp ) satisfies the obedience
constraints (16) for all t ≤ n p . Achieving a maximum greater than 1 means that the mech-
anism TbP(n p, 1) = TbP(n p + 1, 0) not only satisfies all the obedience constraints, but
also has no binding constraints. This means that there is still more room for improvement.
Therefore, the algorithm goes to the next iteration to find a mechanismwith the greater utility
for the principal. If at some iteration n∗

p we obtain a maximum of less than one for qnp we
stop. The mechanism TbP(n∗

p, q
∗
n p

) satisfies all obedience constraints and there are binding
obedience constraints. Therefore, k∗ = n∗

p + q∗
n p

is the optimal threshold which cannot be
enhanced anymore, and hence ρ∗ = TbP(n∗

p, q
∗
n p

) is an optimal information disclosure
mechanism.

The proof of Theorem 1 is now complete.

Remark 2 Algorithm1determines the parameters of the optimal time-based prioritizedmech-
anism ρ∗ = TbP(n∗

p, q
∗
n p

). Using these parameters, the information disclosure mechanism
ρ∗ works as follows. At any time t , the principal recommends the detector to keep silent
if the Markov chain is in the good state (Definition 2-(i)). However, he makes his decision
conditional on time when the Markov chain is in the bad state (See (12)). In fact,

• when st = b and time t is before the threshold time n∗
p , the principal recommends the

detector to keep silent;
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• when st = b and t = n∗
p , the principal recommends silence with probability q∗

n p
; and

• when st = b and time exceeds the threshold, the principal recommends the detector to
declare the jump.

Therefore, the principal’s recommendation is first a function of the current state and then, if
the current state is bad, a function of the time.

We further discuss the mechanism’s behavior in the next section.

5 Numerical Results and Discussion

In this section, we discuss and highlight some interesting features of our designed optimal
mechanism obtained with Algorithm 1. We also run some numerical experiments to observe
its performance.
Feature 1 The optimal mechanism ρ∗ = TbP(n∗

p, q
∗
n p

) we propose is a three-phase mech-
anism. The principal employs three different strategies in different time regions [See Eq.
(12)].
Region 1 In the first region which consists of times before the threshold n∗

p , irrespective of
the Markov chain’s state st , the principal recommends the detector to keep silent. During this
time interval, the principal’s messages are independent of the Markov chain’s state. These
messages give no information to the detector and hence, without loss of optimality, can be
removed from the mechanism. Therefore, this region can be referred to as the no-information
region.
Region 2 In the second region which takes only one time slot (i.e., t = n∗

p), the principal runs
a mixed/randomized strategy to hide his information. In this time slot, the principal always
recommends the detector to keep silent if theMarkov chain is in the good state.However,when
the Markov chain is in the bad state, he reveals this undesirable news only with a probability
of q∗

n p
. By employing this strategy, the detector who receives the recommendation to keep

silent cannot distinguish whether this recommendation is caused by the truth-telling strategy
of the principal in the good state or by his randomized strategy in the bad state. Therefore,
she makes a belief about each of these two cases and takes an action that maximizes her
expected continuation utility with respect to these beliefs. The probability q∗

n p
is chosen as

themaximum probability whichmakes obedience the best action for the detector.We referred
to this region as the randomized region.
Region 3 In the third region which consists of times after the threshold n∗

p , the state of the
Markov chain can be exactly derived from the principal’s messages. In this time interval,
a recommendation to keep silent means that the Markov chain is in the good state and a
recommendation to declare the jump means that the state of the Markov chain has switched
to the bad state. This region can be referred to as the full-information region.

Based on the above arguments, we can depict the principal’s optimal strategy as in Fig. 2.
In this optimal mechanism, the principal does not give any information to the detector up
to time n∗

p − 1, but he promises that if the detector remains silent until that point, then he
starts to provide him with “almost accurate” information. The information provided by the
principal after time n∗

p −1 would contain some noise at time n∗
p , but will be precise and fully

revealing of the state after that.
Feature 2 In the optimal three-phasemechanism, the principal’s commitment to full disclosure
of information after a certain time increases the detector’s patience and gives her incentives
to remain silent longer. To see this we compute the length of time the detector remains silent
in two instances: (1) when the principal employs a no-information disclosure strategy for
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Fig. 2 The principal’s strategy in
the optimal mechanism

the whole horizon; (2) when the principal commits to full information disclosure some time
in the future. In the first instance, the detector’s expected cost if she declares the jump at
τ = 1, . . . , T is

E
No{J D(τ, θ)} = P(θ > τ) + c

τ−1∑
t=1

P(θ ≤ t)

= μ(1 − q)τ−1 + c
τ−1∑
t=1

(1 − μ(1 − q)t−1)

= μ(1 − q)τ−1 + c(τ − 1) − cμ
1 − (1 − q)τ−1

q
.

(17)

If the detector keeps silent at the whole horizon, captured by τ = T + 1, her expected cost is

E
No{J D(T + 1, θ)} = c

T∑
t=1

P(θ ≤ t) = cT − cμ
1 − (1 − q)T

q
. (18)

Therefore, tominimize her expected cost, the detectorwith no additional information declares
the jump at time

τ No = arg min
τ=1:T+1

E
No{J D(τ, θ)}.1 (19)

The case τ No = T + 1 means that the belief μ the detector has in the good state of
the Markov chain is high enough that the best action for her is to keep silent over the whole
horizon. Using the optimal stopping time τ No, we can derive the principal’s utility as follows:

E
No{U P } = τ No − 1. (20)

The arguments above show that the detector who receives no new information remains
silent for τ No − 1 numbers of time slots. In the optimal time-based-prioritized mechanism
(instance 2), the principal’s commitment to provide almost accurate information in the future
incentivizes the detector to keep silent for n∗

p − 1 periods of time without receiving any

new information. The difference η = n∗
p − τ No, which we call the patience enhancement,

measures byhowmuch the principal’s commitment increases the detector’s patience. InFig. 3,
we have plotted this measure for different values of the parameters μ ∈ [0, 1], q ∈ [0, 1]
1 For every fixed initial probability mass function, τ No is a deterministic quantity.
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Fig. 3 Color-codedmap for patience enhancement (η = n∗
p−τ No). This parametermeasures by howmuch (in

terms of the number of time slots) the principal’s commitment increases the detector’s patience. In Fig. 3a–c,
we fix the delay cost (c), the transition probability (q), and the initial belief (μ), respectively. The statistical
results obtained from these figures are summarized in Table 1. See Feature 2 of Sect. 5 for a more detailed
discussion (Color figure online)

Table 1 Probabilities of having a
patience enhancement above
certain thresholds

η ≥ 1 (%) η ≥ 4 (%) η ≥ 7 (%) η ≥ 10 (%)

c = 0.1 57.17 13.38 5.64 2.94

q = 0.1 69.57 31.12 8.13 0

μ = 0.9 56.65 12.83 5.14 2.39

and c ∈ [0, 1]. In each sub-figure, we fix one of the parameters and partition the space of
the two remaining parameters in terms of the patience enhancement η. Based on Fig. 3a, the
detector’s patience increases by at least one time slot in 57.17% of the cases, when c = 1.
For c = 1, the patience enhancement is at least 4, 7 and 10 time slots in 13.38%, 5.64%,
and 2.94% of the cases, respectively. The probabilities of having a patience enhancement
above thresholds 1, 4, 7, and 10, are depicted in Table 1 for each of Fig. 3a–c. These results
show that the principal’s commitment to provide almost accurate information in the future
can significantly enhance the detector’s patience.
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Feature 3Themechanism is almost independent of the horizon length T . The only effect of the
horizon length on the optimal mechanism is to limit the threshold n p from above. Therefore,
as long as the optimal threshold n∗

p is an interior point, increasing the time horizon T does
not change the optimal mechanism.

Up to now, we have assumed that the horizon length T is finite, fixed and deterministic.
However, Feature 3 allows us to extend our results to both infinite horizon and random finite
horizon cases. Below, we discuss the extension of our approach to the infinite horizon case.
Then, the applicability of our approach to the random finite horizon setting is derived from
a well-known fact that a random horizon can be reformulated as an infinite horizon [13].

According to Feature 3, finding the optimal information disclosure mechanism in infinite
horizon setting is equivalent to solving the problem with a sufficiently large horizon length
T̄ such that n∗

p < T̄ . To find a large enough horizon length T̄ , we can run Algorithm 1 by
considering T = ∞. Assuming that the algorithm halts and the optimal values n∗

p and q
∗
n p

are

found, we can define T̄ = n∗
p +1. According to Theorem 1, mechanism ρ∗ = TbP(n∗

p, q
∗
n p

)

is an optimal information disclosuremechanism in a finite horizon settingwith horizon length
T̄ . Since n∗

p is an interior point in this setting, we can conclude from Feature 3 that increasing
the horizon length has no effect on the optimality conditions and hence ρ∗ = TbP(n∗

p, q
∗
n p

)

is an optimal information disclosure mechanism for the infinite horizon case.
The only remaining part of the proof is to show that Algorithm 1 with T = ∞ always

halts. Suppose otherwise, which means that the obedience constraints are satisfied for a
time-based prioritized mechanism with qnp = 1 for all n p ≥ 1. In such a mechanism, the
recommendations are state-independent. Therefore, based on the discussion made in Feature
1, the mechanism is equivalent to the no-information mechanism. It can be seen from (17)
that in a no-information mechanism, the detector’s expected costENo{J D(.)} goes to infinity
when the detection time τ goes to infinity. Therefore, it is never optimal for the detector to
obey the recommendations that want to keep her silent forever. This contradicts with the
assumption that the mechanism is obedient. Therefore, Algorithm 1 always halts and outputs
n∗
p < ∞.

Feature 4 In the optimal time-based prioritizedmechanismderived byAlgorithm1,we choose
the maximum value of n p such that there exists a qnp ∈ [0, 1] such that ρ = TbP(n p, qnp )

satisfies all the obedience constraints for times before n p . To do so, at each round, the
algorithm considers a fix value of n p and computes the maximum value of qnp that together
with n p satisfies all the obedience constraints of times t ≤ n p . We can simplify Algorithm 1
by using the result of next lemma.

Lemma 5 Suppose n p ≥ τ No. Let

qtn p
= 1

P(θ ≤ n p)

⎛
⎝P(θ > t)

c
−

n p−1∑
l=t

P(θ ≤ l)

⎞
⎠ , (21)

denote the maximum value of qnp that together with n p satisfies the obedience constraint of
time t. Then, we have

qτ No

n p
= min

t≤n p
qtn p

, (22)

where τ No is the time at which the detector declares the jump, when the principal employs
a no-information strategy.

Lemma 5 intuitively says that persuading the detector to keep silent at time τ No is themost
difficult challenge faced by the principal. This lemma suggests the following simplification
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for Algorithm 1. To find the optimal mechanism, we can run Algorithm 1 up to n p = τ No−1.
Then, if the terminating condition (Lines 3-5) has not been satisfied yet, we can replace Line
2 of the algorithm with

qnp = 1

P(θ ≤ n p)

⎛
⎝P(θ > τ No)

c
−

n p−1∑
l=τ No

P(θ ≤ l)

⎞
⎠ , (23)

where τ No is derived by (19). This simplification reduces the complexity of Algorithm 1,
as the algorithm does not need to solve an optimization problem at each round, anymore.
Instead, it can solve the optimization problem (19) once anduse the result to find themaximum
feasible value of qnp at each round.
Feature 5 In Fig. 3 and Table 1, we showed the superiority of our proposed mechanism
compared to the no-information mechanism. In this part, we compare our mechanism with
three other benchmark mechanisms, in terms of the expected utility they can provide for the
principal.

• The first benchmark is the full information mechanism in which the principal reveals
perfectly theMarkov chain’s state to the detector. The full information mechanism can be
considered as a time-based prioritized mechanism with n p = 1, and qnp = 0. Therefore,
we can conclude from (15) and (1) that the expected utility the principal gets if he honestly
shares his information with the detector is

E
Full{U P } =

T∑
t=1

P(θ > t) =
T∑
t=1

μ(1 − q)t−1 = μ
1 − (1 − q)T

q
. (24)

• The second benchmark we consider here, is the best static mechanism that can be
employed by the principal. This comparison highlights the power of dynamic mecha-
nisms compared to static ones. In a static mechanism, the set of messages M that the
principal sends to the detector at each instant of time, as well as the distribution overM
given the current state is time-independent. By the direct revelation principle, without
loss of generality, we can focus on direct static mechanisms in which the detector follows
the principal’s recommendations.
In a direct static mechanism, the principal recommends the detector to keep silent with
probability ρst , where st ∈ {g, b} is the current state of theMarkov chain. By an argument
similar to that in Lemma 3, we can show that in the optimal static mechanism, we have
ρg = 1. Moreover, we can show that the principal’s expected utility is an increasing
function of ρb. Therefore, the problem of finding the best static mechanism is equivalent
to finding the maximum value of ρb such that the mechanism satisfies the obedience
constraints. By some algebra, the detector’s obedience constraint at each time t can be
derived as follows:

μ(1 − q)t−1

μ(1 − q)t−1 + (1 − μ)ρt
b + ∑t−1

τ=1 μ(1 − q)τ−1qρt−τ
b

≥ c
T∑
l=t

(1 − μ)ρl
b + ∑l−1

τ=1 μ(1 − q)τ−1qρl−τ
b

μ(1 − q)t−1 + (1 − μ)ρt
b + ∑t−1

τ=1 μ(1 − q)τ−1qρt−τ
b

(25)

where the left-hand side is the average cost of declaring a jump and the right-hand side
is the expected cost of keeping silent at time t , when the detector is recommended to
keep silent. We denote the maximum value of ρb ∈ [0, 1] that satisfies constraint (25) for
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Fig. 4 Comparison of our results
with the benchmark mechanisms,
for μ = 0.9, q = 0.3, T = 50.
We observe that while the
benchmark mechanisms
outperform each other in different
regions of delay cost (c), the
optimal mechanism proposed in
this paper always outperforms all
of them. The results of this figure
are discussed thoroughly in
Feature 5 of Sect. 5 (Color figure
online)

each t ≤ T , by ρ̂. Therefore, an efficient static mechanism for the principal is a direct
mechanism with ρg = 1 and ρb = ρ̂. This mechanism provides the principal with the
following expected utility:

E
stat {U P } =

T∑
t=1

[
P(θ > t) +

t∑
θ ′=1

P(θ = θ ′)ρ̂t−θ ′+1

]

=
T∑
t=1

[
μ (1 − q)t−1 + (1 − μ)ρ̂t +

t∑
θ ′=2

μ (1 − q)θ
′−2 q ρ̂t−θ ′+1

]
. (26)

• The third benchmark is delayed mechanisms. In these mechanisms, the principal’s strat-
egy is to reveal the time of the jump to the detector with a fixed delay. Such a mechanism
is shown to be optimal in the problem studied by Ely [21]. Ely assumes that the detector
is myopic and uses a time-invariant threshold to detect the time of the jump; based on
this assumption, he proves that the principal’s optimal strategy is to reveal the time of
the jump to the detector with a fixed delay. In the comparison of our mechanism with
fixed delay mechanisms, we assume that the detector is long-term optimizer and uses
the time-varying thresholds of the quickest detection problem corresponding to the prin-
cipal’s strategy. The goal of this comparison is to investigate how much the principal’s
performance would deteriorate if he restricts attention to the set of delayed mechanisms
when the detector is long-term optimizer.

In Fig. 4, we have illustrated the principal’s expected utility when he adopts the opti-
mal dynamic, best static, full-information, no-information, and best delayed mechanisms,
for different delay costs c, when μ = 0.9, q = 0.3 and T = 50. We observe that while
the benchmark mechanisms outperform each other in different regions, the optimal mecha-
nism proposed in this paper always outperforms all of them. In the comparison of different
benchmarks, we can see that for low values of delay cost c, the best delayed mechanism
outperforms the other benchmarks. However, when c goes up, the performance of the best
static mechanism is superior to that of the three other benchmarks. We observe from Fig. 4
that the percentage of principal’s utility enhancement in our proposed mechanism compared
to the best available benchmark is negligible when c approaches 0, goes up to 19.2% in
c = 0.29, and then approaches to 5.5% when the delay cost reaches one.
Feature 6 The three-phase optimal policy is not unique. First, it is a consequence of the fact
that we restrict attention to direct obedient information disclosure mechanisms. There may
be other indirect information disclosure mechanisms that are optimal but we don’t know
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whether such mechanisms exist. The existence of optimal indirect information disclosure
mechanisms is an open problem.

Moreover, even within the class of direct obedient information disclosure mechanisms,
there are some optimalmechanisms that are different from the three-phase optimal policy. The
main reason for this is as follows. InDefinition 2 of the paper,we define the class of time-based
prioritizedmechanisms as a special class of dynamic information disclosuremechanisms.We
prove through Lemmas 2-4 that restricting attention to this class of mechanisms is without
loss of optimality. However, this does not mean that no other optimal direct information
disclosure mechanism exists.

To illustrate this fact more clearly, we consider a numerical example with parameters
q = 0.4, μ = 0.7, c = 0.5, and T = 4, and present an optimal mechanism that is different
from the three-phase one. In this example, the optimal time-based prioritized mechanism
which is derived by running Algorithm 1 is ρ∗ = (3, 0.3476) which provides the principal
with expected utility E

ρ∗ {U P } = 2.6632. In mechanism ρ∗, the principal recommends the
detector to keep silent at times t = 1 and t = 2 irrespective of the Markov chain’s state, runs
a mixed strategy at time t = 3, and fully reveals the state at time t = 4. Now, we produce
another direct mechanism that is obedient and provides the principal with the same utility.
Let ρ = (ρ

st
t ), where

ρ
st
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if st = g,

1, if st = b, t = 1, 2,

0.15, if st = b, t = 3,

0.694, if st = b, t = 4.

(27)

It is easy to show that this mechanism satisfies the obedience constraints and maximizes
the principal’s expected utility. Comparing this mechanism with mechanism ρ∗, we can see
that in ρ, the principal builds the detector’s trust by giving her more accurate information
at time t = 3 (ρb

3 < ρ∗b
3 = 0.3476) and then hides more information from her at time

t = 4 (ρb
3 > ρ∗b

3 = 0). Both of these mechanisms result in the same expected utility
E{U P } = 2.6632.

The main reason for the existence of optimal policies like (27) is Lemma 4. In the proof
of Lemma 4, we showed that for any optimal policy ρ that splits its obfuscation power into
two consecutive time slots t and t + 1 (i.e., ρb

t < 1 and ρb
t+1 > 0), we can construct a

time-based prioritized optimal policy that first obfuscates the information at time t as much
as it can, and then puts the rest of its obfuscation power, if any, on time t + 1. It is clear
from this discussion that, apart from the time-based prioritized mechanisms, there exist other
optimal mechanisms similar to ρ (27), that split their obfuscation power into several time
slots. However, restricting attention to the set of time-based prioritized mechanisms involves
no loss of optimality and considerably simplifies the search for an optimal mechanism.

6 Extensions

We discuss extension of our results in two directions: 1- When the Markov chain has a time-
varying matrix of transition probabilities; 2- When the Markov chain has more than two
states and one of the states is absorbing [46]. We conclude the section with a conjecture.

1. So far, for simplicity, we have assumed that the Markov chain’s transition probability q
is time-independent. However, the results of the paper are readily extendable to settings
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with a time-varying transition probability, i.e., q(t). For such settings, all theorems and
lemmas presented in the paper still hold. This basically means that, for problems in which
the Markov chain’s transition matrix varies with time, the principal can still, without loss
of optimality, restrict his attention to time-based prioritized mechanisms and the optimal
time-based prioritized information disclosure mechanism can be obtained by running
Algorithm 1. This can be readily proved by following the same approach as in Sect. 4.

2. Consider a Markov chain {st , t ∈ T } with state space {e1, e2, . . . , en}, and a one-step
transition probability matrix

P =
(

1 0
Pn−1×1 P̄n−1×n−1

)
.

In this Markov chain, state e1 is an absorbing state and denotes the state after the jump
occurs. This state is equivalent to the bad state in our main model. We denote the initial
distribution of the Markov chain, which is common knowledge to both the principal and
the detector, by μ = (μ1, μ2, . . . , μn), where μi ≥ 0 and

∑n
i=1 μi = 1. In this setting,

the detector’s goal is to detect the jump to the absorbing state as accurately as possible,
while the principal’s goal is to delay detection of the jump.
This problem is more complicated than the two-state case for two reasons:

(a) The probability of jumping to the absorbing state depends on the current state of
the Markov chain which is unknown to the detector. Therefore, the information
superiority of the principal in this case is higher than in the two-state case.

(b) When |S| = 2, the state evolution of the Markov chain is of the form s1:t = ((g)θt−1,

(b)t−θt+1), where θt denotes whether the jump has occurred (i.e., θt ≤ t) or not (i.e.,
θt = t+1), and if so, when. In this case, as described in detail in Sect. 3.1, the history
of states at any time t can be expressed by a one-dimensional parameter θt . However,
when the Markov chain has more than two states, this type of simplification is not
possible.

In spite of these additional difficulties, the method proposed in Sect. 4 can be modified
as described below to address the general case. First, according to the direct revelation
principle, we can restrict attention to direct dynamic information disclosure mechanisms
that are obedient. In such a mechanism, at any time t , the principal directly recom-
mends the detector to either keep silent (mt = k) or declare the jump (mt = d), and
the detector must be incentivized to follow all the principal’s recommendations. We
describe the principal’s strategy by a recommendation policy ρ = (ρ

s1:t ,m1:t−1
t , t ∈ T ),

where ρ
s1:t ,m1:t−1
t is the probability according to which the principal recommends

the detector to keep silent, when the state and message histories are s1:t and m1:t ,
respectively.
Considering direct dynamic information disclosure mechanisms and following an
approach similar to that of Sect. 4, we can prove that it is always optimal for the prin-
cipal to recommend to the detector to keep silent when the jump has not yet occurred,
i.e. ρ

s1:t ,m1:t
t = 1, when st �= e1. We present the details of the proof of this result in

[24]. Therefore, designing an optimal information disclosure mechanism is equivalent to
determining the optimal values of the parameters ρ

s1:t ,m1:t
t , when st = e1. These proba-

bilities could potentially depend on the evolution path of the states (i.e. s1:t ). However,
since the principal uses the same strategy in all non-absorbing state, the detector’s belief
about the Markov chain’s state is only a function of the jump time, and not exclusively
related to the non-absorbing states the Markov chain has visited. Moreover, the vis-
ited non-absorbing states do not affect the future transition probabilities, as the Markov
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chain has already jumped to state e1 and remains there forever. Therefore, when the
Markov chain is in the absorbing state, the history of the states, apart from the jump
time, do not affect either the detector’s belief about the past or the expectation (of the
principal and the detector) about the future. Therefore, without loss of optimality, the
principal can restrict attention to recommendation policies that depend only on the time
of the jump (and not on the state evolution s1:t ). This feature suffices for Lemmas 1-
4 in Sect. 4 to be applicable to the general case of the problem. These lemmas allow
the principal to further restrict attention to the class of time-based prioritized mecha-
nisms.
Using this result, we can derive an algorithm, similar to Algorithm 1 of Sect. 4, to deter-
mine the optimal time-based prioritizedmechanism that maximizes the principal’s utility.
The steps of both algorithms are the same; the only difference is in the probabilities that
appear in line 2 of Algorithm 1. For the multi-state case, these probabilities are different
from those of the two-state case (they are still common knowledge between the principal
and the detector).

We conclude our discussion with the following conjecture.

Conjecture 1 The method presented in this paper can be used to derive close-to-optimal
information disclosuremechanisms for problemswith general jump processes (i.e., processes
that cannot be modeled as a Markov chain).

The reason we believe this conjecture to be true is the following. For Markov
chains with an arbitrary number of states one of which is absorbing the distribu-
tion of the jump time into the absorbing state is a phase type (PH) distribution [46].
The family of all PH-distributions forms a dense subset of the set of all distributions
[46], and hence it can be used to approximate jump times into the absorbing state
with an arbitrary distribution. Using this approximation and the method presented in
this paper, we can design information disclosure mechanisms for general jump pro-
cesses.

7 Conclusion

We studied a dynamic Bayesian persuasion problem whereby a strategic principal observes
the evolution of a Markov chain and designs a recommendation policy that generates a
recommendation to a strategic detector at each time. The goals of the principal and the
detector are different, therefore, the long-term-optimizing detector does not have to obey the
principal’s recommendations unless she is convinced to do so. We presented a sequential
recommendation policy that maximizes the principal’s utility, and ensures the detector’s
obedience. We proved that the optimal policy is a threshold type, with two thresholds that
can be explicitly computed. As time goes by, the optimal recommendation strategy first shifts
from a no-information type to a randomized type and then switches to a full-information
type.
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Appendices

Appendix 1: Proof of Lemma 1

We want to show that at each time t , part of the recommendation policy ρ
θ,m1:t−1
t with

Nd(m1:t−1) > 1 does not appear on either the obedience constraints or the principal’s utility
function. We first look at the obedience constraints (7)–(8). Substituting (10) and (11) in
(7)–(8) shows that inequalities

c + E
ρ
t+1:T {J D(τ, θ)|m1:t = (k)t , at = k, at+1:T = mρ

t+1:T }
≤ (1 + c)P(st = g|m1:t = (k)t ),∀t ∈ T , (28)

and

(1 + c)P(st = g|m1:t = ((k)t−1, d))

≤ c + E
ρ
t+1:T {J D(τ, θ)|m1:t = ((k)t−1, d), at = k, at+1:T = mρ

t+1:T },∀t ∈ T , (29)

are equivalent to the obedience constraints (7)–(8). The conditional probabilities of the
Markov chain being in the good state given the histories of messages m1:t = (k)t and
m1:t = ((k)t−1, d) can be derived as

P(st = g|m1:t = (k)t ) = P(θ > t)
∏t

t ′=1 ρ
t ′+1,(k)t

′−1

t ′∑T+1
θ ′=1 P(θ = θ ′)

∏t
t ′=1 ρ

min (θ ′,t ′+1),(k)t ′−1

t ′
, (30)

and

P(st = g|m1:t = ((k)t−1, d))

= P(θ > t)
∏t−1

t ′=1 ρ
t ′+1,(k)t

′−1

t ′ (1 − ρ
t+1,(k)t−1

t )∑T+1
θ ′=1 P(θ = θ ′)

∏t−1
t ′=1 ρ

min (θ ′,t ′+1),(k)t ′−1

t ′ (1 − ρ
min (θ ′,t+1),(k)t−1

t ′ )

, (31)

respectively. We can also derive the expected value of the detector’s future costs from time
t + 1 onward when she obeys the recommendations as

E
ρ
t+1:T {J D(τ, θ)|m1:t , at = k, at+1:T = mρ

t+1:T }

=
T∑

l=t+1

P(sl = g,mρ
t+1:l−1 = (k)l−t−1,mρ

l = d|m1:t )

+
T∑

l=t+1

c P(sl = b,mρ
t+1:l = (k)l−t |m1:t ), (32)

http://creativecommons.org/licenses/by/4.0/
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where the first term is the probability of occurring a false alarm and the second term is
the expected cost of delay in the detection of the jump. Using Bayes’ rule to calculate the
probabilities appearing in (32) for m1:t = (k)t and m1:t = ((k)t−1, d), we obtain

E
ρ
t+1:T {J D(τ, θ)|m1:t = (k)t , at = k, at+1:T = mρ

t+1:T }

=
T∑

l=t+1

P(θ > l)
∏l−1

t ′=1 ρ
t ′+1,(k)t

′−1

t ′ (1 − ρ
l+1,(k)l−1

l )∑T+1
θ ′=1 P(θ = θ ′)

∏t
t ′=1 ρ

min (θ ′,t ′+1),(k)t ′−1

t ′

+
T∑

l=t+1

c

∑l
θ ′=1 P(θ = θ ′)

∏l
t ′=1 ρ

min (θ ′,t ′+1),(k)t
′−1

t ′∑T+1
θ ′=1 P(θ = θ ′)

∏t
t ′=1 ρ

min (θ ′,t ′+1),(k)t ′−1

t ′
, (33)

and

E
ρ
t+1:T {J D(τ, θ)|m1:t = ((k)t−1, d), at = k, at+1:T = mρ

t+1:T } = A

B
, (34)

where

A =
T∑

l=t+1

P(θ > l)
t−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′ (1 − ρ
t+1,(k)t−1

t )

l−1∏
t ′=t+1

ρ
t ′+1,(k)t

′−1−t
t ′ (1 − ρ

l+1,(k)l−1−t
l )

+
T∑

l=t+1

l∑
θ ′=1

cP(θ = θ ′)
t−1∏
t ′=1

ρ
min (θ ′,t ′+1),(k)t

′−1

t ′ (1 − ρ
min (θ ′,t+1),(k)t−1

t )

l∏
t ′=t+1

ρ
min (θ ′,t ′+1),(k)t

′−1−t
t ′ ,

B =
T+1∑
θ ′=1

P(θ = θ ′)
t−1∏
t ′=1

ρ
min (θ ′,t ′+1),(k)t

′−1

t ′ (1 − ρ
min (θ ′,t+1),(k)t−1

t ′ ),

(35)

and (k)t
′

−t is a vector of length t ′ where all the components expect the t-th one equal k, and
the t-th component is d . Substituting (30)–(34) in (28)–(29), we can see that the terms of the
recommendation policy that appear in the obedience constraints have at most one d in their
message history. Furthermore, (9) shows that the principal’s utility function depends only on
the recommendation probabilities ρ

θt ,m1:t−1
t where the message history is m1:t−1 = (k)t−1.

Hence the proof of Lemma 1 is complete.

Appendix 2: Proof of Lemma 2

For each time t , θ = 1, . . . , t means that the jump has occurred and the state of the Markov
chain becomes bad, i.e. st = b; furthermore, θ = t + 1 captures the fact that the jump
has not occurred yet and the state is still good, i.e., st = g. Therefore, to prove Lemma 2,
we need to show that it is without loss of optimality if the principal restricts attention to
recommendation policies with the same ρ

θ,m1:t−1
t for all θ = 1, . . . , t . We claim that in this

class of mechanisms, the recommendations do not depend on the exact time of the jump,
but only on whether it has occurred. To prove the claim, we show that for each t ∈ T and
each m1:t−1 withNd(m1:t−1) ≤ 1, the parameters ρ

θ,m1:t−1
t with θ = 1, . . . , t always appear

in the obedience constraints and the principal’s utility function as parts of a constant linear
combination. Therefore, as long as the value of this linear combination is fixed, the values of
the individual parameters can be customized. As a result, for each optimal mechanism, we
can construct another optimal mechanism in which for each t and each m1:t−1, the values of
all parameters ρ

θ,m1:t−1
t , with θ = 1, . . . , t , are the same.
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We proceed by backward induction on time t .
Basis of induction Let t = T . The recommendation policy of the final time T appears in the
obedience constraints of time T and of times t ′ < T . We start our investigation by studying
the obedience constraints of time T . According to (7)–(11) and due to the fact that there is
no future after time T , the obedience constraints of time T are as follows:

c (1 − P(sT = g|m1:T = (k)T )) ≤ P(sT = g|m1:T = (k)T ), (36)

and

P(sT = g|m1:T = ((k)T−1, d)) ≤ c (1 − P(sT = g|m1:T = ((k)T−1, d))). (37)

By substituting (30) and (31) in (36) and (37), respectively, and canceling out the denomi-
nators, we can rewrite the obedience constraints of time T as follows:

c

⎡
⎣ T∑

θ ′=1

P(θ = θ ′)
θ ′−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′

T∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′

⎤
⎦ ≤ P(sT = g)

T∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′ , (38)

and

P(sT = g)
T−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′ (1 − ρ
T+1,(k)T−1

T )

≤ c

⎡
⎣ T∑

θ ′=1

P(θ = θ ′)
θ ′−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′

T−1∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′ (1 − ρ
θ ′,(k)T−1

T )

⎤
⎦ . (39)

It can be seen that in both constraints, the parametersρθ,(k)T−1

T for θ = 1, . . . , T only appeared
in the following linear combination

T∑
θ ′=1

ρ
θ ′,(k)T−1

T P(θ = θ ′)
θ ′−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′

T−1∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′ , (40)

which we denote by L(ρ
1,(k)T−1

T , . . . , ρ
T ,(k)T−1

T ).

Nowwe investigate how the parametersρ
θ,(k)T−1

T for θ = 1, . . . , T appear in the obedience
constraints of time t < T . According to (7)–(8), the obedience constraints of time t < T are
as follows:

c P(st = b|m1:t = (k)t )

+
T∑

l=t+1

P(sl = g,mt+1:l−1 = (k)l−t−1,ml = d|m1:t = (k)t )

+
T∑

l=t+1

c P(sl = b,mt+1:l = (k)l−t |m1:t = (k)t ) ≤ P(st = g|m1:t = (k)t ), (41)



Dynamic Games and Applications (2022) 12:443–484 471

and

P(st = g|m1:t = ((k)t−1, d)) ≤ c P(st = b|m1:t = ((k)t−1, d))

+
T∑

l=t+1

P(sl = g,mt+1:l−1 = (k)l−t−1,ml = d|m1:t = ((k)t−1, d))

+
T∑

l=t+1

c P(sl = b,mt+1:l = (k)l−t |m1:t = ((k)t−1, d)). (42)

We note that the distribution of st given themessages received up to time t does not depend on
the future policiesρt+1:T . For each l < T , the joint distribution of the state sl and themessages
received between t + 1 and l, does not either depend on the recommendation policy of time
T . Therefore, the only terms in (41) and (42) that depend on the recommendation policy of
time T are the terms appear in the summations with index l = T . The joint probability that
the state sT is good and a certain message sequence mt+1:T happens between t + 1 and T
depends on the recommendation policy the principal adopts at time T when the jump has not
occurred, that is θ = T + 1. Therefore, the only terms in the obedience constraints (41) and
(42) that depend on parameters ρ

θ,m1:T−1
T , θ = 1, . . . , T , are

P(sT = b,mt+1:T = (k)T−t |m1:t = (k)t )

= 1

P(m1:t = (k)t )

⎛
⎝ T∑

θ ′=1

P(θ = θ ′)
θ ′−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′

T∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′

⎞
⎠ (43)

and

P(sT = b,mt+1:T = (k)T−t |m1:t = ((k)t−1, d)) = 1

P(m1:t = ((k)t−1, d))⎛
⎝ t−1∑

θ ′=1

P(θ = θ ′)
θ ′−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′

t−1∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′ (1 − ρ
θ ′,(k)t−1

t )

T∏
t ′=t+1

ρ
θ ′,(k)t ′−1−t
t ′

+ P(θ = t)
t−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′ (1 − ρ
t,(k)t−1

t )

T∏
t ′=t+1

ρ
t,(k)t

′−1−t
t ′

+
T∑

θ ′=t+1

P(θ = θ ′)
t−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′ (1 − ρ
t+1,(k)t−1

t )

θ ′−1∏
t ′=t+1

ρ
t ′+1,(k)t

′−1−t
t ′

T∏
t ′=θ ′

ρ
θ ′,(k)t ′−1−t
t ′

⎞
⎠ ,

(44)

respectively. Equation (43) is a multiple of L(ρ
1,(k)T−1

T , . . . , ρ
T ,(k)T−1

T ). Therefore, we can

change the individual values of ρ
θ,(k)T−1

T , θ = 1, . . . , T , without violating the obedience
constraint (41), as long as the value of the function L remains constant. Equation (44) includes
parts of recommendation policy of time T which correspond tomessage history (k)T−1−t . These
parameters do not appear in any other constraint or in principal’s utility function. Therefore,
as long as the probability P(sT = b,mt+1:T = (k)T−t |m1:t = ((k)t−1, d)), given by (44),

remains constant, changing the values of parameters ρ
θ,(k)T−1−t
T , θ = 1, . . . , T does not violate

the obedience property of the mechanism.
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The last point we should check is the effect of parameters ρ
θ,m1:T−1
T , θ = 1, . . . , T , on the

principal’s utility. According to (9), the principal’s utility is

E
1:T {U P (τ )|ρ}

=
T+1∑
θ ′=1

P(θ = θ ′)

⎡
⎣θ ′−1∑

t=1

t∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′ +
T∑

t=θ ′

⎛
⎝θ ′−1∏

t ′=1

ρ
t ′+1,(k)t

′−1

t ′

t∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′

⎞
⎠

⎤
⎦

=
T+1∑
θ ′=1

P(θ = θ ′)

⎡
⎣θ ′−1∑

t=1

t∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′ +
T−1∑
t=θ ′

⎛
⎝θ ′−1∏

t ′=1

ρ
t ′+1,(k)t

′−1

t ′

t∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′

⎞
⎠

⎤
⎦

+
T∑

θ ′=1

ρ
θ ′,(k)T−1

T P(θ = θ ′)
θ ′−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′

T−1∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′ (45)

It can be seen that the parameters ρ
θ,(k)T−1

T for θ = 1, . . . , T do not appear in the first additive
term of (45). These parameters only appeared in the second component of (45) as parts of

the linear function L(ρ
1,(k)T−1

T , . . . , ρ
T ,(k)T−1

T ). Therefore, for each optimal mechanism we
can construct another optimal mechanism where for each message sequence m1:T−1, the
values of parameters ρ

θ,m1:t−1
T , θ = 1, . . . , T , are the same. For each m1:T−1, we denote this

common value by ρ
b,m1:T−1
T , θ = 1, . . . , T .

Induction step Suppose that the statement of the lemma is true for times after t . Now, we
want to prove that it is also true for time t . To prove this fact, we employ an approach similar
to the one used in proving the basis of induction. We show that for each m1:t−1, parameters
ρ

θ,m1:t−1
t with θ = 1, . . . , t appear in all the obedience constraints and the principal’s utility

function as parts of a constant linear combination. To do so, we first study the obedience
constraints of time t . The obedience constraints of time t are as in (41)–(42). By some basic
algebra, one can show that the parameters ρ

θ,m1:t−1
t with θ = 1, . . . , t , appear in (41) as the

following linear combination

t∑
θ ′=1

ρ
θ ′,(k)t−1

t P(θ = θ ′)
θ ′−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′

t−1∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′

⎛
⎝ T∑

l=t

l∏
t ′=t+1

ρ
θ ′,(k)t ′−1

t ′

⎞
⎠. (46)

By the induction hypothesis, the probabilities of recommending silence at times greater
than t do not depend on the exact time of the jump. Therefore, for each t ′ ≥ t + 1 we

can replace ρ
θ ′,(k)t ′−1

t ′ by ρ
b,(k)t

′−1

t ′ . This replacement makes the last multiplicative term of
(46) independent of θ ′; hence we can neglect it. Therefore, the simplified form of the linear

combination in which parameters ρ
θ,(k)t−1

t with θ = 1, . . . , t appear is

t∑
θ ′=1

ρ
θ ′,(k)t−1

t P(θ = θ ′)
θ ′−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′

t−1∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′ . (47)

We denote this linear combination by L(ρ
1,(k)t−1

t , . . . , ρ
t,(k)t−1

t ). Now we investigate the
second obedience constraint (42) of time t . We can show that the parameters ρ

θ,m1:t−1
t with
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θ = 1, . . . , t , appear in (42) as the following linear combination

t∑
θ ′=1

ρ
θ ′,(k)t−1

t P(θ = θ ′)
θ ′−1∏
t ′=1

ρ
t ′+1,(k)t

′−1

t ′

t−1∏
t ′=θ ′

ρ
θ ′,(k)t ′−1

t ′

⎛
⎝ T∑

l=t

l∏
t ′=t+1

ρ
θ ′,(k)t ′−1−t
t ′

⎞
⎠. (48)

By the induction hypothesis,we haveρ
θ ′,(k)t ′−1−t
t ′ = ρ

b,(k)t
′−1−t

t ′ , for t ′ ≥ t+1.Using this equality,
the last multiplicative term of (48) becomes independent of θ ′; hence can be neglected.

This makes the linear combination of (48) exactly the same as L(ρ
1,(k)t−1

t , . . . , ρ
t,(k)t−1

t ).

Therefore, the parameters ρ
θ,(k)t−1

t with θ = 1, . . . , t appear in the obedience constraints of
time t as parts of one single linear combination.

There are two other sets of obedience constraints that we should study: obedience con-
straints at times before t and obedience constraints at times after t . Following the same steps

as above, we can show that the parameters ρ
θ,(k)t−1

t , with θ = 1, . . . , t , appear in all obe-
dience constraints as well as the principal’s utility function as parts of the linear function

L(ρ
1,(k)t−1

t , . . . , ρ
t,(k)t−1

t ). Therefore, as long as the value of this linear combination remains

constant, changing the values of the individual parameters ρ
θ,(k)t−1

t , θ = 1, . . . , T does not
violate the obedience constraints or change the principal’s benefit. Other parameters of the

recommendation policy of time t that appear in the obedience constraints are ρ
θ,(k)t−1

−t
′

t , where

θ = 1, . . . , t and t ′ = 1, . . . , t − 1. For each t ′ = 1, . . . , t − 1, the parameters ρ
θ,(k)t−1

−t ′
t ,

with θ = 1, . . . , t , appear as a linear combination only in the obedience constraint of time t ′
when mt ′ = d . Therefore, as long as the value of this linear combination remains constant,

changing the values of parameters ρ
θ,(k)t−1

−t ′
T , θ = 1, . . . , t does not make any difference.

Combining all the arguments above we conclude that, for each optimal mechanism we can
construct another optimal mechanism such that for eachmessage sequencem1:t−1, the values
of parameters ρ

θ,m1:t−1
t , θ = 1, . . . , t , are the same. For eachm1:t−1, we denote this common

value by ρ
b,m1:t−1
t , θ = 1, . . . , t .

Conclusion By the principle of induction, the statement is true for all t = 1, . . . , T . This
completes the proof of Lemma 2.

Appendix 3: Proof of Lemma 3

We prove this Lemma by showing that we can increase the utility of principal in an obedient
mechanism by setting ρ

g,m1:t
t+1 = 1, for any t ∈ T , and this change does not violate any of the

obedience constraints. Having ρ
g,m1:t
t+1 = 1 guarantees that the recommendations to declare

the jump always will be obeyed by the detector. Therefore, in the following we focus on
the recommendations to keep silent and show that by this change, the detector will be more
willing to obey this kind of recommendations.

We proved in Lemma 2 that, without loss of optimality, at any time t ∈ T the principal
can restrict attention to recommendation policies that depend only on the message profile
m1:t−1 and the current state st of the Markov chain (not on the state evolution). For any fixed
recommendation policy ρ of the form suggested by Lemma 2, the detector is faced with a
quickest detection problem [70]. However, there is a subtle difference between the standard
quickest detection problem [70] and the one arising in our setup. In the standard quickest
detection problem the detector’s decision at any time t depends only on her posterior belief
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π̂t = P(st = g|m1:t ) about the state of the Markov chain at t . In the quickest detection
problem arising in our setup, the detector’s decision at any time t depends on the received
messages m1:t , the principal’s recommendation policy ρ, and her belief

πt = P(st = g|m1:t , ρ). (49)

This difference is due to the fact that at any time t the principal’s fixed recommendation
policy ρt+1 depends on m1:t , therefore, the detector needs keep m1:t in order to determine
the statistics of mt+1 so as to update her information at time t + 1. Consequently, in our
setup, the detector’s information state at any time t is (πt ,m1:t , ρ). The detector’s optimal
strategy γ ∗ = (γ ∗

1 , . . . , γ ∗
T ) is determined by the dynamic program

WT (πT ,m1:T , ρ) = min [πT , c (1 − πT )], (50)

Wt (πt ,m1:t , ρ) = min [πt , c (1 − πt )

+ E{Wt+1(πt+1,m1:t ,mt+1, ρ)|πt ,m1:t , ρ}], t = 1, . . . , T − 1, (51)

where

πt+1 = Tt (πt ,m1:t ,mt+1, ρ), (52)

Tt (.) is determined by Bayes’ rule, and mt+1 is a random variable that takes values in the set
{d, k}; the statistics ofmt+1 are determined bym1:t , the state st+1 of theMarkov chain at time
t + 1, and the recommendation policy ρ. The first term on the right-hand side (RHS) of (50)
and (51) represents the detector’s expected cost due to her decision to stop at t and declare
that jump has occurred (at = 1); the second term on the RHS of (50) and (51) represents
the detector’s expected cost due to her decision to wait/remain silent at time t (at = 0). The
second term on the RHS of (51) is equal to

c (1 − πt ) + P(mt+1 = k|πt ,m1:t , ρ)Wt+1(Tt (πt ,m1:t , k, ρ),m1:t , k, ρ)

+ P(mt+1 = d|πt ,m1:t , ρ)Wt+1(Tt (πt ,m1:t , d, ρ),m1:t , d, ρ). (53)

Furthermore,

P(mt+1 = k|πt ,m1:t , ρ) = πt (1 − q)ρ
g,m1:t
t+1 + (1 − πt (1 − q))ρ

b,m1:t
t+1 . (54)

Using (51) and (54) andBayes’ rule towrite explicitlyTt (πt ,m1:t , k, ρ) andTt (πt ,m1:t , d, ρ),
we obtain

Wt (πt ,m1:t , ρ) = min
[
πt , c (1 − πt ) + (πt (1 − q)ρ

g,m1:t
t+1 + (1 − πt (1 − q))ρ

b,m1:t
t+1 )

Wt+1

(
πt (1 − q)ρ

g,m1:t
t+1

πt (1 − q)ρ
g,m1:t
t+1 + (1 − πt (1 − q))ρ

b,m1:t
t+1

,m1:t , k, ρ
)

+(πt (1 − q)(1 − ρ
g,m1:t
t+1 ) + (1 − πt (1 − q))(1 − ρ

b,m1:t
t+1 ))

Wt+1

(
πt (1 − q)(1 − ρ

g,m1:t
t+1 )

πt (1 − q)(1 − ρ
g,m1:t
t+1 ) + (1 − πt (1 − q))(1 − ρ

b,m1:t
t+1 )

,m1:t , d, ρ

)]
.

(55)

We use (50) and (55) to prove Lemma 3. To do this we first establish the following auxiliary
results (Lemmas 6-9). The proof of these lemmas is presented at the end of Appendix 32.

2 Lemma 6 is needed so as to prove Lemma 8. Lemmas 7 and 8 are needed so as to prove Lemma 9. Lemma 9
is essential in establishing Lemma 3.
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Lemma 6 For any fixed time t and any fixedmessage profilem1:t , Wt (πt ,m1:t , ρ) is a concave
function of πt .

Lemma 7 For any fixed time t, any fixed message profile m1:t , and any belief πt ,
Wt (πt ,m1:t , ρ) is a concave function of ρg,m1:t

t+1 .

Lemma 8 In an obedient mechanism, we must have ρ
g,m1:t
t+1 ∈ [ρb,m1:t

t+1 , 1], for any time t and
any message profile m1:t .

Lemma 9 For any fixed time t, any fixed message profile m1:t , and any belief πt , we have

arg min
ρ
g,m1:t
t+1

Wt (πt ,m1:t , ρ) = 1. (56)

Lemma 9 shows that setting ρ
g,m1:t
t+1 = 1 decreases the value function Wt (πt ,m1:t , ρ).

Using this result, we complete the proof of Lemma 3, that is, we show that when the Markov
chain is in the good state, irrespective of the message history, it is always optimal for the
principal to recommend the detector to keep silent. That is

ρ
∗ g,m1:t
t+1 = 1,∀t,m1:t . (57)

We prove this by contradiction. Consider an optimal recommendation policy ρ∗ and
assume that there exists at least one time t and onemessage profilem1:t such thatρ∗ g,m1:t

t+1 < 1.

We construct another recommendation policy ρ such that ρ
b,m1:t
t+1 = ρ

∗ b,m1:t
t+1 , ρ

g,m1:t
t+1 = 1,

and for all other times the policies ρ and ρ∗ are the same. We show that the policy ρ

leads to a higher expected utility for the principal and satisfies the obedience constraints
corresponding to situations where the detector is recommended to keep silent. Repeating
the above argument for all times s such that ρ

∗ g,m1:s
s+1 < 1 we construct a policy ρ̂ that

satisfies ρ̂
∗ g,m1:t
t+1 = 1,∀t ∈ T , it improves the principal’s expected utility as compared to

ρ∗ and incentivizes the detector to keep silent when she is recommended to do so. In the
new mechanism ρ̂, when the detector is recommended to declare the jump, she is sure that
the Markov chain is in the bad state; hence, she will obey the recommendations for sure.
Therefore, the mechanism ρ̂ is a policy with higher expected utility than ρ∗ that satisfies all
the obedience constraints. This contradicts the optimality of ρ∗.

To prove the claim stated above, we investigate the effect of setting ρ
g,m1:t
t+1 to one on the

detector’s incentives to keep silent at times t ′ ≤ t and t ′ > t .
Times t ′ where t ′ ≤ t : In this case, we show that setting ρ

g,m1:t
t+1 = 1 reduces the value function

at time t ′. Therefore, if in the original mechanism we hadWt ′(πt ′ ,m1:t ′ , ρ∗) < πt ′ (meaning
that the detector had incentives to keep silent), in the new mechanism with ρ

g,m1:t
t+1 = 1 this

situation still holds. Therefore, the recommendation to keep silent at time t ′ will be obeyed.
We prove this claim by backward induction on time t ′ as follows.
Basis of induction t ′ = t . The result follows from Lemma 9.
Induction step Suppose that setting ρ

g,m1:t
t+1 = 1 decreases the value functionWk+1(.), k+1 <

t . We prove that this is also true for time k. Consider the RHS of (55) for time k as follows:

Wk(πk,m1:k, ρ) = min
[
πk, c (1 − πk) +

(
πk(1 − q)ρ

g,m1:k
k+1 + (1 − πk(1 − q))ρ

b,m1:k
k+1

)

Wk+1

(
πk(1 − q)ρ

g,m1:k
k+1

πk(1 − q)ρ
g,m1:k
k+1 + (1 − πk(1 − q))ρ

b,m1:k
k+1

,m1:k, k, ρ
)
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+(πk(1 − q)(1 − ρ
g,m1:k
k+1 ) + (1 − πk(1 − q))(1 − ρ

b,m1:k
k+1 ))

Wk+1

(
πk(1 − q)(1 − ρ

g,m1:k
k+1 )

πk(1 − q)(1 − ρ
g,m1:k
k+1 ) + (1 − πk(1 − q))(1 − ρ

b,m1:k
k+1 )

,m1:k, d, ρ

)]
.

(58)

The first term of the minimum does not depend on ρ
g,m1:t
t+1 . The only component of the second

term of the minimum that depends on ρ
g,m1:t
t+1 is the value functionWk+1(.). By the induction

hypothesis, setting ρ
g,m1:t
t+1 to one decreases Wk+1(.) for any input, therefore, it decreases

Wk(.) (by Eq. (55)).
Conclusion By the principle of induction, the statement is true for all t ′ ≤ t .
Times t ′ where t ′ > t : Changing the value of ρ

g,m1:t
t+1 with m1:t �= (k)t has no effect on

the obedience constraints (7)–(8) at time t ′ > t . However, setting ρ
g,(k)t

t+1 = 1 increases the
detector’s belief in the good state of the Markov chain at time t ′ when she is recommended
to keep silent. This is because we have

πt ′ = P(st ′ = g|m1:t ′ , ρ) =
P(st ′ = g)

∏t ′
t ′′=1

ρ
g,(k)t

′′−1

t ′′

P(st ′ = g)
∏t ′

t ′′=1
ρ
g,(k)t ′′−1

t ′′ + P(st ′ = b,m1:t ′ = (k)t ′)
. (59)

It is easy to show that the dependence of the RHS of (59) on the parameter ρ
g,(k)t

t+1 is of the
form

aρ
g,(k)t

t+1

bρg,(k)t

t+1 + d
, (60)

where a, b, d are positive real numbers. This function is increasing in terms of ρg,(k)t

t+1 . There-

fore, setting ρ
g,(k)t

t+1 = 1 increases the belief of the detector in the good state of the Markov
chain when she is recommended to keep silent.

We proved that for any (fixed) recommendation policy ρ, at each time t , there is a threshold

l(k)
t ,ρ

t such that the detector keeps silent when she is recommended to do so if and only if

P(st = g|m1:t = (k)t , ρ) > l(k)
t ,ρ

t . In the optimal mechanism ρ∗, the detector obeys the

recommendation to keep silent at t ′, i.e. P(st ′ = g|(k)t ′ , ρ∗) > l(k)
t ′ ,ρ∗

t ′ . In the modified

mechanism ρ, where ρ
g,(k)t

t+1 = 1, we have l(k)
t ′ ,ρ

t ′ = l(k)
t ′ ,ρ∗

t ′ for all t ′ > t because for t ′ > t
the value functionWt ′(πt ′ ,m1:t ′ , ρ) depends only on ρt ′+1:T and ρt ′+1:T = ρ∗

t ′+1:T . Since, by

the arguments above, P(st ′ = g|(k)t ′ , ρ) > P(st ′ = g|(k)t ′ , ρ∗) > l(k)
t ′ ,ρ∗

t ′ = l(k)
t ′ ,ρ

t ′ , under
ρ the detector obeys the recommendation to remain silent at time t ′. From the arguments
above it follows that under ρ the detector always obeys the recommendation to keep silent.

Based on Eq. (9), we conclude that the principal’s utility is an increasing function of the
recommendation probabilities ρ

g,m1:t
t+1 . Therefore, the new constructed mechanism ρ results

in a higher utility for the principal and the detector always obeys the recommendation to keep
silent. Repeating the above argument for all times s such that ρ

∗ g,m1:s
s+1 < 1 we construct a

policy ρ̂ that satisfies ρ̂
∗ g,m1:t
t+1 = 1,∀t ∈ T , it improves the principal’s expected utility as

compared to ρ∗ and incentivizes the detector to keep silent when she is recommended to do
so. In the new mechanism ρ̂, when the detector is recommended to declare the jump, she is
sure that the Markov chain is in the bad state; hence, she will obey the recommendations for
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sure. Therefore, the mechanism ρ̂ is a policy with higher expected utility than ρ∗ that satisfies
all the obedience constraints. This contradicts the optimality of ρ∗ and proves Lemma 3.

Appendix 4: Proof of Lemma 6

We prove this by backward induction on time t .
Basis of induction Let t = T . According to (55), for each message profile m1:T ,
WT (πT ,m1:T , ρ) is the minimum of two affine, hence concave, functions of πT . Minimum
conserves concavity. Therefore, WT (πT ,m1:T , ρ) is a concave function of πT .
Induction step Suppose that Wt+1(πt+1,m1:t+1, ρ) is a concave function of πt+1. Now, we
want to show this is also true for t . Concave functions can be written as the infimum of affine
functions; so we have

Wt+1(πt+1,m1:t+1, ρ) = inf
i

[
α
m1:t+1
i πt+1 + β

m1:t+1
i

]
. (61)

Substituting (61) in (55), we have

Wt (πt ,m1:t , ρ) = min

[
πt , c (1 − πt ) + inf

i

{
α
m1:t ,k
i πt (1 − q)ρ

g,m1:t
t+1

+ β
m1:t ,k
i (πt (1 − q)ρ

g,m1:t
t+1 + (1 − πt (1 − q))ρ

b,m1:t
t+1 )

}
+ inf

i

{
α
m1:t ,d
i πt (1 − q)

(1 − ρ
g,m1:t
t+1 ) + β

m1:t ,d
i (πt (1 − q)(1 − ρ

g,m1:t
t+1 ) + (1 − πt (1 − q))(1 − ρ

b,m1:t
t+1 ))

}]
.

(62)

It can be seen that the terms inside of both infima are affine in πt , hence concave. Therefore,
since the infimum preserve concavity, each term inside the minimum is concave in πt . Using
the concavity preserving of the minimum function proves the concavity of the value function
Wt (πt ,m1:t , ρ) in terms of πt .
Conclusion By the principle of induction, the statement is true for all t = 1, . . . , T . This
completes the proof of Lemma 6.

Appendix 5: Proof of Lemma 7

The assertion of this lemma easily follows from (62).

Appendix 6: Proof of Lemma 8

In Lemma 6we proved that: at any time t , the expected cost of the detector due to her decision
to stop and declare the jump (at = 1) is given by the first term of the RHS of (62) and is
a linear increasing function of πt ; the expected cost due to her decision to remain silent is
given by the second term of the RHS of (62) and is a concave function of πt . Denote the
above expected costs by Vt (πt ,m1:t , ρ, at = 1) and Vt (πt ,m1:t , ρ, at = 0), respectively.

Now, we claim that if

Vt (π,m1:t , ρ, at = 0) < Vt (π,m1:t , ρ, at = 1) (63)

for some π , then (63) is also true for all π ′ > π .
We prove the claim by contradiction. Suppose that

Vt (π,m1:t , ρ, at = 0) < Vt (π,m1:t , ρ, at = 1), (∗)
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and there exists a belief π ′ > π where

Vt (π
′,m1:t , ρ, at = 0) > Vt (π

′,m1:t , ρ, at = 1). (∗∗)

We know that

Vt (0,m1:t , ρ, at = 0) = c > 0 = Vt (0,m1:t , ρ, at = 1). (∗∗∗)

Therefore, (∗)–(∗∗∗) show that the graphs of functions Vt (πt ,m1:t , ρ, at = 0) and
Vt (πt ,m1:t , ρ, at = 1) have two intersections l1 ∈ (0, π) and l2 ∈ (π, π ′), where the
graph of Vt (πt ,m1:t , ρ, at = 0) is below the line Vt (πt ,m1:t , ρ, at = 1) in the interval
(l1, l2). This contradicts the concavity of the function Vt (πt ,m1:t , ρ, at = 0), and hence the
claim is true. The truth of this claim shows that at any time t and for any fixedm1:t and ρ, the
detector’s optimal policy is of threshold type with respect to πt ; that is there is a threshold
lm1:t ,ρ
t such that the detector declares the jump if and only if her belief πt about the good
state of the Markov chain is below the threshold lm1:t ,ρ

t . Therefore, for a mechanism to be
obedient we need to have the following property:

P(st+1 = g|m1:t , ρ,mt+1 = d) ≤ P(st+1 = g|m1:t , ρ,mt+1 = k),∀t,m1:t . (64)

Writing the probabilities appearing in (64) in terms of the belief of time t , we can simplify
the necessary condition (64) as follows:

πt (1 − q)(1 − ρ
g,m1:t
t+1 )

πt (1 − q)(1 − ρ
g,m1:t
t+1 ) + (1 − πt (1 − q))(1 − ρ

b,m1:t
t+1 )

≤ πt (1 − q)ρ
g,m1:t
t+1

πt (1 − q)ρ
g,m1:t
t+1 + (1 − πt (1 − q))ρ

b,m1:t
t+1

, ∀t,m1:t . (65)

Simplifying the above expression gives us ρ
g,m1:t
t+1 ≥ ρ

b,m1:t
t+1 as a necessary condition for an

obedient mechanism and hence completes the proof of Lemma 8.

Appendix 7: Proof of Lemma 9

According to Lemma 7, Wt (πt ,m1:t , ρ) is a concave function of ρ
g,m1:t
t+1 . Therefore, the

minimum of the function is attained either at the beginning or at the end of the feasible
interval of the parameter ρ

g,m1:t
t+1 which is derived in Lemma 8 as [ρb,m1:t

t+1 , 1]. Therefore, to
prove Lemma 9, we only need to show that

Wt (πt ,m1:t , ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = 1) ≤ Wt (πt ,m1:t , ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = ρ
b,m1:t
t+1 ),

(66)

for every time t , belief πt , and message profile m1:t , where ρ\{ρg,m1:t
t+1 } denotes the recom-

mendation policy ρ excluding the element ρg,m1:t
t+1 . Using (55), we have

Wt (πt ,m1:t , ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = 1)

= min
[
πt , c (1 − πt ) + (πt (1 − q) + (1 − πt (1 − q))ρ

b,m1:t
t+1 )

Wt+1

(
πt (1 − q)

πt (1 − q) + (1 − πt (1 − q))ρ
b,m1:t
t+1

,m1:t , k, ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = 1

)

+(1 − πt (1 − q))(1 − ρ
b,m1:t
t+1 )Wt+1(0,m1:t , d, ρ\{ρg,m1:t

t+1 }, ρg,m1:t
t+1 = 1)

]
.

(67)
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When the detector is sure that the state is bad, she will declare the jump irrespective of the
message she has received, and incurs no cost. Therefore, we have

Wt+1(0,m1:t , d, ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = 1)

= Wt+1(0,m1:t , k, ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = 1) = 0. (68)

This equality allows us to replace Wt+1(0,m1:t , d, ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = 1) in (67) by
Wt+1(0,m1:t , k, ρ\{ρg,m1:t

t+1 }, ρg,m1:t
t+1 = 1) and get

Wt (πt ,m1:t , ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = 1)

= min
[
πt , c (1 − πt ) + (πt (1 − q) + (1 − πt (1 − q))ρ

b,m1:t
t+1 )

Wt+1

(
πt (1 − q)

πt (1 − q) + (1 − πt (1 − q))ρ
b,m1:t
t+1

,m1:t , k, ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = 1

)

+(1 − πt (1 − q))(1 − ρ
b,m1:t
t+1 )Wt+1

(
0,m1:t , k, ρ\{ρg,m1:t

t+1 }, ρg,m1:t
t+1 = 1

)]
.

(69)

It can be concluded from (50) and (55) that for any t and any fixed πt and m1:t , the value
functionWt (πt ,m1:t , ρ) is independent of the recommendation policies ρt ′ , t ′ ≤ t (the effect
of ρt ′ , t ′ ≤ t , onWt (πt ,m1:t , ρ) is captured/summarized by πt andm1:t .). Therefore, we can
write (69) as

Wt (πt ,m1:t , ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = 1)

= min
[
πt , c (1 − πt ) + (πt (1 − q) + (1 − πt (1 − q))ρ

b,m1:t
t+1 )

Wt+1

(
πt (1 − q)

πt (1 − q) + (1 − πt (1 − q))ρ
b,m1:t
t+1

,m1:t , k, ρ
)

+(1 − πt (1 − q))(1 − ρ
b,m1:t
t+1 )Wt+1(0,m1:t , k, ρ)

]
.

(70)

When ρ
g,m1:t
t+1 = ρ

b,m1:t
t+1 , we have from (55) that

Wt (πt ,m1:t , ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = ρ
b,m1:t
t+1 ) = min [πt , c (1 − πt )

+ ρ
b,m1:t
t+1 Wt+1(πt (1 − q),m1:t , k, ρ) + (1 − ρ

b,m1:t
t+1 )Wt+1(πt (1 − q),m1:t , d, ρ)

]
.

(71)

In this case, the message sent by the principal at time t is independent of the observed state.
Therefore, the detector neglects this data in her future decisions. Thus, we have

Wt+1(πt (1 − q),m1:t , k, ρ) = Wt+1(πt (1 − q),m1:t , d, ρ). (72)

Substituting (72) into (71) gives

Wt (πt ,m1:t , ρ\{ρg,m1:t
t+1 }, ρg,m1:t

t+1 = ρ
b,m1:t
t+1 )

= min
[
πt , c (1 − πt ) + Wt+1(πt (1 − q),m1:t , k, ρ)

]
. (73)
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According to Lemma 6,Wt+1(πt (1−q),m1:t , k, ρ) is a concave function of its first element.
Thus, we have

(πt (1 − q) + (1 − πt (1 − q))ρ
b,m1:t
t+1 )Wt+1(

πt (1 − q)

πt (1 − q) + (1 − πt (1 − q))ρ
b,m1:t
t+1

,m1:t , k, ρ)

+ (1 − πt (1 − q))(1 − ρ
b,m1:t
t+1 )Wt+1(0,m1:t , k, ρ) ≤ Wt+1(πt (1 − q),m1:t , k, ρ). (74)

Comparing (70) and (73) based on the result derived in (74) proves that the inequality (66)
holds; hence the statement of Lemma 9 is true.

Appendix 8: Proof of Lemma 4

We show that for each optimal sequential information disclosure mechanism ρ there is a
time-based prioritized mechanism which obtains the same expected utility for the principal
and satisfies all the obedience constraints.

Based on Lemma 3, we set ρ
g,(k)t−1

t = 1, for all t , t = 1, 2, . . . , T . Furthermore, we let
ρ
st ,m1:t−1
t be arbitrary 0 ≤ ρ

st ,m1:t−1
t ≤ 1, whenever m1:t−1 �= (k)t−1. Thus, we concentrate

on ρ
b,(k)t−1

t , t = 1, 2, . . . , T . For ease of notation, throughout the remainder of the proof we

denote ρ
b,(k)t−1

t by ρt .
Consider an optimal mechanism ρ and let time t be the last time period where ρt < 1 and

ρt+1 > 0. Using the result of Lemma 3 and the new notation, we find that the principal’s
expected utility according to ρ is

E
ρ{U P } =

T∑
l=1

l∑
θ ′=1

P(θ = θ ′)
l∏

t ′=θ ′
ρt ′ +

T∑
l=1

T+1∑
θ ′=l+1

P(θ = θ ′). (75)

It is clear from (75) that the principal’s utility is a continuous and increasing function of each
ρt ′ , t ′ = 1, 2, . . . , T . Since ρt+1 > 0 there exists a γ > 0 such that ρ̂t+1 = ρt+1 − γ ≥
0. Replacing ρt+1 by ρ̂t+1 reduces the expected utility of the principal. However, since
E{U P (τ )} is a continuously increasing function of ρt , there exists some ε(γ ) > 0 such
that increasing ρt by the amount of ε(γ ) can compensate this decrease. This compensation
is feasible if ρ̂t = ρt + ε(γ ) does not exceed its upper limit 1. To ensure this, we take
γ = min (ε−1(1 − ρt ), ρt+1), where ε−1(.) is the inverse of function ε(.). The function ε(.)

is one to one and increasing in γ ; hence it has an inverse. 3 Choosing this γ results in either
ρ̂t = 1 or ρ̂t+1 = 0.

The arguments above show that the principal’s expected utility when he discloses his
information based on the mechanism ρ̂, where ρ̂t ′ = ρt ′ , for all t ′ �= t, t + 1, and

ρ̂t = ρt + ε(γ ), ρ̂t+1 = ρt+1 − γ, (76)

is the same as the average utility he gets when he uses the optimal mechanism ρ; i.e.

T∑
l=1

l∑
θ ′=1

P(θ = θ ′)
l∏

t ′=θ ′
ρ̂t ′ =

T∑
l=1

l∑
θ ′=1

P(θ = θ ′)
l∏

t ′=θ ′
ρt ′ . (77)

Therefore, showing the new mechanism ρ̂ satisfies the obedience constraints will prove its
optimality.

3 The explicit declaration of function ε(.) can be derived from equation (80) that will be derived later.
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Since the recommendation to declare that the jump has occurred is always obeyed, we
only need to investigate the obedience constraints (7) when the detector is recommended to
keep silent. Using the results derived in (28) and (33), we can show that the mechanism ρ̂

satisfies the obedience constraints if and only if

c
T∑

l=t ′′

l∑
θ ′=1

P(θ = θ ′)
l∏

t ′=θ ′
ρ̂t ′ ≤ 1 −

t ′′∑
θ ′=1

P(θ = θ ′),∀t ′′ ∈ T . (78)

Using (77) we can show that for t ′′ ≤ t , we have

c
T∑

l=t ′′

l∑
θ ′=1

P(θ = θ ′)
l∏

t ′=θ ′
ρ̂t ′ = c

T∑
l=t ′′

l∑
θ ′=1

P(θ = θ ′)
l∏

t ′=θ ′
ρt ′ ≤ 1 −

t ′′∑
θ ′=1

P(θ = θ ′), (79)

where the last inequality follows from the obedience property of the original mechanism ρ.
Therefore, the obedience constraint for all times before t is satisfied. To show this is also true
for times after t we need to take a closer look at (77). Canceling out the equal terms from
both sides of the equality derived in (77), we get

ε(γ )

t∑
θ ′=1

P(θ = θ ′)
t−1∏
t ′=θ ′

ρt ′ +
(

− γP(θ = t + 1)

+ (ε(γ )ρt+1 − γρt − γ ε(γ ))

t∑
θ ′=1

P(θ = θ ′)
t−1∏
t ′=θ ′

ρt ′
) T∑
l=t+1

l∏
t ′=t+2

ρt ′ = 0. (80)

The first term in (80) and
∑T

l=t+1
∏l

t ′=t+2 ρt ′ are both non-negative. Therefore, we have

−γP(θ = t + 1) + (ε(γ )ρt+1 − γρt − γ ε(γ ))

t∑
θ ′=1

P(θ = θ ′)
t−1∏
t ′=θ ′

ρt ′ ≤ 0. (81)

By substituting (76) in the left-hand side of the obedience constraint (78) for time t ′′ ≥ t +1,
we obtain

c
T∑

l=t ′′

l∑
θ ′=1

P(θ = θ ′)
l∏

t ′=θ ′
ρ̂t ′ = c

T∑
l=t ′′

l∑
θ ′=1

P(θ = θ ′)
l∏

t ′=θ ′
ρt ′

+
(

− γP(θ = t + 1) + (ε(γ )ρt+1 − γρt − γ ε(γ ))

t∑
θ ′=1

P(θ = θ ′)
t−1∏
t ′=θ ′

ρt ′
) T∑

l=t ′′

l∏
t ′=t+2

ρt ′

≤ c
T∑

l=t ′′

l∑
θ ′=1

P(θ = θ ′)
l∏

t ′=θ ′
ρt ′ ≤ 1 −

t ′′∑
θ ′=1

P(θ = θ ′), (82)

where the first inequality is based on (81), and the second one follows from the fact that
the original mechanism ρ is obedient, and hence it satisfies the obedience constraints (78).
The results derived in (79) and (82) show that the new mechanism ρ̂ satisfies the obedience
constraints, andhence it is optimal. In this newmechanism,wehave either ρ̂t = 1or ρ̂t+1 = 0.
Therefore, irrespective of the original mechanism ρ, the new (modified) mechanism satisfies
the condition of having a time-based priority for recommending the detector to keep silent
at time t and at the next time period t + 1.
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It is clear from the above arguments that by repeating this procedure for any time t
that violates the priority condition in a backward direction we can construct a time-based
prioritized mechanism which is optimal. This completes the proof of Lemma 4.

Appendix 9: Proof of Theorem 5

After removing the terms in (21) that do not depend on t and doing some simple algebra, we
have

arg min
t≤n p

qtn p
= arg min

t≤n p

⎡
⎣P(θ > t) − c

np−1∑
l=t

P(θ ≤ l)

⎤
⎦

= arg min
t≤n p

⎡
⎣P(θ > t) + c

np−1∑
l=1

P(θ ≤ l) − c

np−1∑
l=t

P(θ ≤ l)

⎤
⎦

= arg min
t≤n p

[
P(θ > t) + c

t−1∑
l=1

P(θ ≤ l)

]

= arg min
t≤n p

E
No{J D(t, θ)}.

(83)

In Feature 2, we showed that J D(t, θ) attains its minimum at t = τ No. Therefore, since
n p ≥ τ No, we have

arg min
t≤n p

qtn p
= τ No. (84)

This completes the proof of Theorem 5.
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