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Abstract
COVID-19 comes out as a sudden pandemic disease within human population. The pan-
demic dynamics of COVID-19 needs to be studied in detail. A pandemic model with hier-
archical quarantine and time delay is proposed in this paper. In the COVID-19 case, the 
virus incubation period and the antibody failure will cause the time delay and reinfection, 
respectively, and the hierarchical quarantine strategy includes home isolation and quaran-
tine in hospital. These factors that affect the spread of COVID-19 are well considered and 
analyzed in the model. The stability of the equilibrium and the nonlinear dynamics is stud-
ied as well. The threshold value �

k
 of the bifurcation is deduced and quantitatively ana-

lyzed. Numerical simulations are performed to establish the analytical results with suitable 
examples. The research reveals that the COVID-19 outbreak may recur over a period of 
time, which can be helpful to increase the number of tested people with or without symp-
toms in order to be able to early identify the clusters of infection. And before the effective 
vaccine is successfully developed, the hierarchical quarantine strategy is currently the best 
way to prevent the spread of this pandemic.

Keywords  COVID-19 · Pandemic model · Hierarchical quarantine · Time delay · 
Bifurcation

1  Introduction

According to the report of the World Health Organization (WHO), as of June 14, 2020, 
there have been a total of 7.855 million confirmed cases of coronavirus disease 2019 
(COVID-19) across the globe. The outbreak of COVID-19 which is ravaging globally has 
severely affected the safety and the development around the world. The history of human 
coronavirus began in 1965 when a virus named B814 was found by Tyrrell [1]. Since 2003, 
at least five new human coronaviruses have been identified (such as the SARS pandemic 
and H1N1 influenza in 2009), which caused significant morbidity and mortality. On Feb-
ruary 11, 2020, the WHO announced that the disease caused by this new coronavirus was 
a COVID-19 [2]. It concluded that the virus can be transmitted from human-to-human. 

 *	 Wei Yang 
	 yangwei@mail.neu.edu.cn

1	 Software College, Northeastern University, Shenyang 110169, China

http://orcid.org/0000-0002-4471-0026
http://crossmark.crossref.org/dialog/?doi=10.1007/s13235-021-00382-3&domain=pdf


893Dynamic Games and Applications (2021) 11:892–914	

Symptomatic people are the most common source of COVID-19 spreading, however, the 
possibility of transmission before the onset of symptoms cannot be excluded.

The propagation rules and predictions of various infectious diseases require theoretical 
analysis, quantitative analysis and simulations. The analysis is inseparable from the math-
ematical model established for various infectious diseases. Therefore, understanding dis-
eases and modeling the spread of pandemic mathematically attract a lot of attention. As 
early as 1906, Hamer used a discrete mathematical model to study the pandemic pattern 
of measles [3]. In 1911, Ross established a differential equation model to study the spread 
of malaria [4]. In 1927, Kermack and Mckendrick established a compartment model with 
a bilinear incidence rate in order to analyze the spread of the Black Death in London [5]. 
Based on this work, many researches have studied the spread of infectious diseases in a 
population by compartmental models such as SIS, SIR, SIRS or SEIR [6–9]. The use of 
disease transmission models to generate short-term and long-term pandemic forecasts has 
increased as the number of infectious disease outbreaks has increased over the last decades 
[10]. To investigate the pandemic of COVID-19, some models have been made modifica-
tions based on the conventional “SEIR” model [11] and concluded that strictly controlled 
interventions are critically important to impede COVID-19 outbreak [12–17]. A few mod-
els established a stochastic transition model to evaluate the spread of COVID-19 and also 
emphasized the necessity for isolation and quarantine [18, 19]. Some other models have 
been developed to evaluate the role of coronavirus transmission based on asymptomatic 
cases [20, 21]. However, a crucial factor caused by asymptomatic cases or virus incuba-
tion period is not considered, that is the time delay. Because it is hard to find and con-
firm the infected cases in good time, there will be a time delay before the infected cases 
are quarantined. Then, bifurcation, chaos or fractal may occur in the pandemic dynamic 
system, which means the COVID-19 pandemic may outbreak over and over again. It will 
cause great difficulties to the prevention and control of the COVID-19 outbreak. Kissler 
et al. have given a similar projection by using estimates of seasonality, immunity and cross-
immunity, that is, the recurrent wintertime outbreaks of COVID-19 will probably occur 
after the initial, most severe pandemic wave [46].

The study of complex dynamic evolutionary behavior of nonlinear dynamical systems 
may cover ecology, economics, computer science and many other fields. Li et al. discuss 
bifurcation and chaos of the discrete model about a physiological control system with delay 
[22]. The qualitative analysis of the discrete model including the boundedness of solutions 
and bifurcation is investigated in [23]. In order to reveal the effect of time delay on the 
stability and Hopf bifurcation, the fractional neural networks with delay were investigated 
in [24]. Dong et  al. proposed a computer virus model with time delay, and they regard 
the time delay as bifurcating parameter to study the dynamical behaviors including Hopf 
bifurcation and local asymptotical stability [25]. Other studies in computer science show 
that the spread dynamic system of malware would be unstable and appear bifurcation and 
chaos [26–28]. These studies illustrate that time delay will cause unpredictable and com-
plex influence on the dynamic system. This paper aims to analyze the impact caused by 
time delay on the dynamic of COVID-19 spreading and the effect of home isolation, hos-
pital isolation, antibody failure and other factors on the pandemic prevention and control. 
We try to provide some suggestions to more effectively prevent the spread of COVID-19 
through feasible measures.

This paper is organized as follows. In Sect. 2, I propose the SIDQR pandemic model 
with hierarchical quarantine and time delay. Section 3 analyzes the stability of equilibrium 
and deduces the threshold of Hopf bifurcation. In Sect. 4, based on the model, I carry out 
the numerical simulations for the dynamics and bifurcation phenomenon of the COVID-19 
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outbreak. Section 5 gives the discussion about the prevention of COVID-19 and the con-
clusion for this paper.

2 � Pandemic Model with Hierarchical Quarantine and Time Delay

To effectively suppress the spread of the pandemic, many governments around the world 
have taken measures to extend vacations and quarantine. Practice has proved that quar-
antine is an effective measure in large-scale pandemic situation. In order to illustrate the 
importance of quarantine measures to restrain the propagation of the COVID-19, I propose 
a nonlinear pandemic model by considering hierarchical quarantine measures and time 
delay.

In order to show clearly, the transition diagram and frequently used notations of the 
model is given in Fig. 1 as follows.

In the model, the population is partitioned into six compartments depending on the 
states. Susceptible state ( S , it denotes the population who are at risk of being infected by 
the COVID-19). Infected state ( I , it denotes the population who are infected by COVID-
19). Delayed state ( D , it denotes the number of delayed population. In this case, if some-
one is infected by COVID-19, it will take some days to get a definite diagnosis and be quar-
antined in a hospital setting, and this state can be regarded as a transitional state). Home 
isolation state ( Q1 , it denotes the restriction of movement or isolation from the people who 
are susceptible to a contagious disease). Quarantine state ( Q2 , it denotes that the confirmed 
patients who are quarantined in a hospital setting) and Recovered state ( R , it denotes the 
population who are recovered from COVID-19). The notations and their explanations are 
listed as follows.

2.1 � Some Hypotheses

In this paper, the pandemic models are based on the following hypothesis:

(1)	  At every time step, the susceptible population will be infected by the infected popula-
tion at a rate �1 , and the susceptible population will be subjected to home isolation at a 
rate �1 . The value of �1 depends on the management of the government and the degree 
of public compliance.

(2)	  In reality, the population who is isolated at home still may be infected at a small risk, 
because it is unavoidable for the isolated people to contact the others. Some infected 

Fig. 1   State transition diagram of 
the pandemic model
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cases have been confirmed to be caused by family gatherings. Thus, the population at 
home isolation state will be infected at a rate �2 in the model.

(3)	  For the infected population, a small number of confirmed patients will be self-healing 
at a rate � , others will be quarantined in a hospital at a rate �2 . However, the infected 
population will take some days to be confirmed and quarantined in the hospital. Then, 
there is a delayed state between infected state and quarantine state in this case.

(4)	  The quarantined population in the hospital will get recovered at a rate �.
(5)	  Currently, there is no evidence that people can get permanent immunity, even the 

vaccine may be invalid after a period of time. In the model, the recovered population 
may be susceptible again at a rate � , it is inversely related to the duration of the vaccine 
effect.

(6)	  The total number of population is assumed as N . To study the nonlinear dynamics of 
the pandemic model, the total number N in the system is fixed.

2.2 � Model Formulation

Based on the hypothesis and the transition diagram of COVID-19 in human population as 
depicted in Fig. 1, the model can be expressed with the following equations (the source and 
explanations of the equations can be found in [45]):

and the total population is:

In the model, the infection rates �1 and �2 are determined by three parameters: the suc-
cessfully infecting rate of the virus (parameter b), the number of people that a virus carrier 
contacts each day (parameter k) and the average number of days that the infected popula-
tion can spread the virus (parameter D). In order to calculate the value of this parameter, I 
use a simplified model (SIR model) to fit the real data. Assuming a person is infected at the 
beginning of the outbreak, according to the basic epidemic SIR model,

The solution of the above formula can be solved as the following equation:

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= �R(t) −

�1I(t)S(t)

N
− �1S(t),

dI(t)

dt
=

�1I(t)S(t)

N
+

�2I(t)Q1(t)

N
−
�
� + �2

�
I(t),

dD(t)

dt
= �2I(t) − �2I(t − �),

dQ1(t)

dt
= �1S(t) −

�2I(t)Q1(t)

N
,

dQ2(t)

dt
= �2I(t − �) − �Q2(t),

dR(t)

dt
= �I(t) + �Q2(t) − �R(t),

(2)N = S(t) + I(t) + D(t) + Q1(t) + Q2(t) + R(t)

(3)
dI(t)

dt
=

�1I(t)S(t)

N
− �I(t) ≈

(
�1 − �

)
I(t),
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According to the existing confirmed data of COVID-19 released by WHO, it can be fit-
ted that b = 0.04133. Assuming that a virus carrier closely contacts ten people every day, 
the infection rate is �1 = kb = 0.4133 in this case (Tables 1 and 2).

During the transmission of infected diseases, the basic regeneration number R0 is 
also a crucial factor. In pandemic dynamics, if no isolation measures are taken, Lipsitch 
et al. have given the simple expression of the basic regeneration number R0 = kbD [29]. 
According to the epidemiological survey results of [30], it is assumed that D = 8, and 
by using the case report before January 21, 2020, they estimated the basic regeneration 
number (R0) of 2019-nCoV to be 3.6–4.0 (95% confidence interval). Cao et al. incorpo-
rate human movement data to improve epidemiological estimates for 2019-nCoV, and 

(4)I(t) = e(kb−�)t

Table 1   Notations and their explanations in this paper

Notations Explanations

S(t) The number of susceptible population at time t
I(t) The number of infected population at time t
Q

1
(t) The number of home isolation population at time t

Q
2
(t) The number of quarantine population at time t

D(t) The number of delayed population at time t
R(t) The number of recovered population at time t
N The total number of population in the model
�
1

The infection rate for susceptible population
�
2

The infection rate for home isolation population
�
1

The rate of the susceptible population compliance home isolation
�
2

The rate of the infected population that are quarantined in a hospital
� The self-healing rate of infected population
� The recovered rate of quarantine population
� The rate that the recovered population lose immunity
� Time delay before the infected population are quarantined in a hospital

Table 2   Existing confirmed 
data of COVID-19 released by 
WHO [2] 

Date Existing 
confirmed 
data

January 19 198
January 20 291
January 21 431
January 22 554
January 23 771
January 24 1208
January 25 1870
January 26 2613
January 27 4349
January 28 5739
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they estimate the basic reproduction number to be 3.24 [31]. Basic reproduction num-
ber of some highly infectious disease is given in Table 3. Approximately, in this paper, 
according to the Lipsitch’s method [29], the basic regeneration number R0 can be calcu-
lated as R0 = kbD=3.3064.

3 � Stability of Equilibrium and Bifurcation Analysis

The dynamical behaviors of model (1) proposed in Sect. 2 are studied in this section. An 
equilibrium of model (1) under which the virus remains pandemics is determined, that 
is, the equilibrium point. Then, the threshold value of Hopf bifurcation and the stability 
of the model are studied.

Theorem 1  System (1) has a unique positive equilibrium point E∗ = (S∗, I∗,D∗,Q∗
1
,Q∗

2
,R∗) , 

where

Proof  When system (1) is stable, all the derivatives on the left of equal sign of the system 
are set to zero, which implies that the system becomes stable, it can be obtained:

Since the total number of hosts in system (1) is N , I can get the following equation 
of I,

S∗ =

(
� + �2

)
NI∗

�1I
∗ + �1N

,D∗ = �2�I
∗,Q∗

1
=

N
(
� + �2

)
− �1S

∗

�2

,Q∗

2
=

�2I
∗

�

,R∗ =

(
� + �2

)
I∗

�

.

(5)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�R(t) −
�1I(t)S(t)

N
− �1S(t) = 0,

�1I(t)S(t)

N
+

�2I(t)Q1(t)

N
−
�
� + �2

�
I(t) = 0,

�2I(t) − �2I(t − �) = 0,

�1S(t) −
�2I(t)Q1(t)

N
= 0,

�2I(t − �) − �Q2(t) = 0,

�I(t) + �Q2(t) − �R(t) = 0,

Table 3   Values of R0 of well-
known pandemic diseases

Disease R0

Chickenpox 10–12 [32]
Pertussis 5.5 [33]
Smallpox 3.5–6 [34]
AIDS 3.65–4.14 [35]
SARS 2–5 [36]
COVID-19 1.4–3.9 [37–40]
Ebola 1.5–2.5 [41]
Seasonal Influenza 0.9–2.1 [42]
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Obviously, Eq. (5) has one unique positive root I , there is one unique positive equi-
librium point E∗ = (S∗, I∗,D∗,Q∗

1
,Q∗

2
,R∗) . The proof is completed.

According to (2), Q2(t) = N − S(t) − I(t) − D(t) − Q1(t) − R(t) , thus system (1) can be 
simplified to

The Jacobi matrix of system (5) about E∗ = (S∗, I∗,D∗,Q∗
1
,Q∗

2
,R∗) is given by

To find the characteristic equation, I have

wherea1 =
I∗

N
, a2 =

S∗

N
, a3 =

Q∗
1

N
.The characteristic equation of that matrix (8) can be 

obtained by

The expressions of P(�) and Q(�) are

where

(6)S∗+I∗ + �2�I
∗ +

N
(
� + �2

)
− �1S

∗

�2

+
�2

�

I∗ +

(
� + �2

)
�

I∗ = N

(7)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dS(t)

dt
= �R(t) −

�1I(t)S(t)

N
− �1S(t),

dI(t)

dt
=

�1I(t)S(t)

N
+

�2I(t)Q1(t)

N
−
�
� + �2

�
I(t),

dD(t)

dt
= �2I(t) − �2I(t − �),

dQ1(t)

dt
= �1S(t) −

�2I(t)Q1(t)

N
,

dR(t)

dt
= �I(t) + �

�
N − S(t) − I(t) − D(t) − Q1(t) − R(t)

�
− �R(t),

(8)J(E∗) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−
�1I

∗

N
− �1 −

�1S
∗

N
0 0 �

�1I
∗

N

�1S
∗

N
+

�2Q
∗
1

N
−
�
� + �2

�
0

�2I
∗

N
0

0 �2 − �2e
−�� 0 0 0

�1 −
�2Q

∗
1

N
0 −

�2I
∗

N
0

−� � − � −� −� −� − �

⎞⎟⎟⎟⎟⎟⎟⎠

�� − J(E∗) =

⎛⎜⎜⎜⎜⎝

� + �1a1 + �1 �1a2 0 0 −�

−�1a1 � − �1a2 − �2a3 + � + �2 0 −�2a1 0

0 −�2 + �2e
−��

� 0 0

−�1 �2a3 0 � + �2a1 0

� −� + � � � � + �+�

⎞⎟⎟⎟⎟⎠

(9)P(�) + Q(�)e−�� = 0

(10)P(�) = �
5 + p4�

4 + p3�
3 + p2�

2 + p1� + p0, Q(�) = q1� + q0
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Theorem  2  If the following conditions (H) hold, then the positive equilibrium 
E∗ = (S∗, I∗,D∗,Q∗

1
,Q∗

2
,R∗) is locally asymptotically stable without time delay.

(H):p4 > 0, p3p4 − p2 > 0, p1 + q1 > 0, p2
(
p3p4 − p2

)
− p2

4

(
p1 + q1

)
> 0 (11).

Proof  When � = 0 , Eq. (9) simplifies to

According to Routh-Hurwitz criterion, all the roots of Eq. (12) have negative real parts. 
Hence, I can deduce that the positive equilibrium point E∗ = (S∗, I∗,D∗,Q∗

1
,Q∗

2
,R∗) is 

locally asymptotically stable without time delay. The proof is completed.
For Eq. (9), the root is 𝜆 = i𝛼(𝛼 > 0) , which was substituted into Eq. (9). After separat-

ing the real and imaginary parts, two equations were obtained:

Uniting Eq. (13) and (14), Eq. (15) is obtained:

which implies

p4 =
�
�1 + �+� + �1a1 + �2 + �2a1 + � − �1a2 − �2a3

�
,

p3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1�2 + ��2+��2 + �1� + ��+��

+�1�2a1 + ��1a1+��1a1 + �1�+�1� + �1�2a1

+��2a1+��2a1 + �1a1� + �2a1� + �2a1�2 + �1a1�2a1

−�2�1a1a2 − 2�2�2a1a3 − �1�2a1a3

−�1�1a2 − ��1a2 − �1�a2

−�1�2a3 − ��2a3 − ��2a3 − ��

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

p2 =

⎡⎢⎢⎢⎢⎢⎢⎣

�
(�+�)�1 + �2

�
�1a1 + �1

��
�1a1a2

+(�+�)
�
�1a1 + �1

��
�2 + � + �2a1 − �1a2 − �2a3

�

+
�
�1 + �+� + �1a1

��
�2 − �1a2 − 2�2a3 + �

�
�2a1

+

�
�1� + �1a1� + ��1a2 + ��2a3

−��1a1 − �2a1� − �� − ��2

�
�

⎤⎥⎥⎥⎥⎥⎥⎦

,

p1 =

⎡⎢⎢⎢⎣

�2a1
�
�2 − 2�2a3 + �

�
(�+�)

�
�1a1 + �1

�

+��2a1
�
��1a2 + ��1 − �1a3� − �1� − �� − ��2

�

+
�
�1a1�2 + ��1 + �1�2 − �1a2�1 − �2a3�1

�
��

⎤⎥⎥⎥⎦
,

p0 =
�
�1a1� + �1a1��2 + �2�1� − �1a1�

�
�2a1�,

q1 = −�1a1�2��,

q0 = −
�
�1�2a1 + �2�1

�
a1�2��.

(12)�
5 + p4�

4 + p3�
3 + p2�

2 + (p1 + q1)� + (p0 + q0) = 0

(13)p4�
4 − p2�

2 + p0 + q1� sin(��) + q0 cos(��) = 0

(14)�
5 − p3�

3 + p1� + q1� cos(��) − q0 sin(��) = 0

(15)q2
1
�
2 + q2

0
= (p4�

4 − p2�
2 + p0)

2 + (�5 − p3�
3 + p1�)

2
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that is

where

Let x = �
2 , then Eq. (16) can be turned into:

Let us assume that the following conditions ( H1 ) hold: 
p4 > 0, d1 > 0, p1 > 0, p2d1 − p2

4
p1 > 0 is satisfied. From previous derivation, Eq.  (18) 

has at least a positive root �0 which also means Eq. (9) has a pair of purely imaginary 
roots ±i�0 . By uniting Eq. (13) and Eq. (14), the corresponding threshold value 𝜏k > 0 
can be gotten:

Let �(�) = v(�) + i�(�) be the root of Eq. (9). It is satisfied that v(�k) = 0 , �(�k) = �0 
when � = �k.

Theorem 3  Supposing f �(x0) ≠ 0 . If � = �k , and ±i�0 is a pair of purely imaginary roots of 
Eq. (9), then dRe𝜆(𝜏k)

d𝜏
> 0.

Proof  This means that there exists at least one eigenvalue with positive real part when 
𝜏 > 𝜏k . Differentiating on both sides of Eq. (9) with respect to � , I can obtain:

Then,

�
10 +

(
p2
4
− 2p3

)
�
8 +

(
p2
3
+ 2p1 − 2p2p4

)
�
6

+
(
2p0p4 + p2

2
− 2p1p3

)
�
4

+
(
p2
1
− 2p0p2 − q2

1

)
�
2 + p2

0
− q2

0
= 0,

(16)�
10 + D4�

8 + D3�
6 + D2�

4 + D1�
2 + D0 = 0

(17)

D4 = p2
4
− 2p3,

D3 = p2
3
+ 2p1 − 2p2p4,

D2 = 2p0p4 + p2
2
− 2p1p3,

D1 = p2
1
− 2p0p2 − q2

1
,

D0 = p2
0
− q2

0
.

(18)f (x) = x5 + D4x
4 + D3x

3 + D2x
2 + D1x + D0 = 0

(19)�k =
1

�0

arccos

[
q0(p2�

2
0
− p4�

4
0
− p0) + q1�0(p3�

3
0
− �

5
0
− p1�0)

q2
0
+ q2

1
�
2
0

]
+

2k�

�0

(20)

(
d�

d�

)−1

=
(5�4 + 4p4�

3 + 3p3�
2 + 2p2� + p1) + q1e

−�� − (q1� + q0)�e
−��

(q1� + q0)�e
−��

=
(5�4 + 4p4�

3 + 3p3�
2 + 2p2� + p1)e

��

(q1� + q0)�
+

q1

(q1� + q0)�
−

�

�
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It follows that f �(x0) ≠ 0 , therefore,

According to Routh’s theorem [43], as � continuously varies from a value less than �k to 
one greater than �k , the root of characteristic Eq. (9) crosses from left to right on the imagi-
nary axis. Thus, the transverse condition holds and the conditions for Hopf bifurcation are 
satisfied at � = �k according to Hopf bifurcation theorem. Therefore, the following conclu-
sions can be obtained.

Theorem 4  Supposing that the conditions ( H1 )  are satisfied. 

(1)	  When 0 ≤ 𝜏 < 𝜏0 , the positive equilibrium E∗ = (S∗, I∗,D∗,Q∗
1
,Q∗

2
,R∗) of system (2) 

is locally asymptotically stable, and unstable when � ≥ �0.
(2)	  If Eq. (9) has a pair of purely imaginary roots ±i�0 , the system undergoes a Hopf 

bifurcation at the positive equilibrium E∗ = (S∗, I∗,D∗,Q∗
1
,Q∗

2
,R∗) when time delay 

� = �0.

This implies that when time delay 𝜏 < 𝜏0 , the system will stabilize at the equilibrium 
point, which is beneficial for us to implement a containment strategy; when the delay 
� ≥ �0 , the system will be unstable and the virus cannot be effectively controlled.

4 � Numerical Simulations

In this section, numerical simulations are conducted to reveal the pandemic dynamics of 
COVID-19, and some nonlinear properties of the system are verified. In the following 
experiments, it is assumed that the total number of population is 10000000, at the begin-
ning, the number of infected population is 10. And I will conduct experiments in two cases, 
with 𝜏 < 𝜏0 and � ≥ �0.

4.1 � The Case of � < �
0

The value of parameters is listed as follows.
Because the population at home isolation state contact fewer people, the infection 

rate for home isolation population ( �2 ) is lower than the infection rate for susceptible 
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population ( �1 ). Assuming that they contact eight people every day, the infection rate 
for home isolation population is �2 = kb = 0.33064 in this case. Currently, the duration 
of medical observation before hospital quarantine is generally 14 days, it means that the 
delay time can be 14 days in this case. When 𝜏 = 14 < 𝜏0 , we can see the changes of the 
numbers of six states of population in Fig. 2. It can be found that the equilibrium point 
E∗ = (S∗, I∗,D∗,Q∗

1
,Q∗

2
,R∗) is locally asymptotically stable.

The parameter �2 indicates the intensity of isolation policy. In other words, larger 
parameters �2 mean that the hospital can treat more patients. It has a direct impact on the 
number of infected population. Figure 3 shows the change of the infected population with 
different �2 when 𝜏 = 14 < 𝜏0 . Obviously, increasing the intensity of hospital quarantine 
can significantly improve the effect of pandemic control. In other words, the government 
should increase the number of tested people with or without symptoms in order to identify 
early on clusters of infection which can be targeted with an isolation strategy.

4.2 � The Case of � ≥ �
0

The delay will increase as the incubation period increases. Once the delay exceeds the 
threshold value, the pandemic dynamic system is at risk of instability. The stability of equi-
librium point is simulated when �=40 ≥ �0 in Fig. 4. The values of parameters are the same 
as in Table 1 except � . The equilibrium is unstable within 1000 days. To show the stabil-
ity of equilibrium point when �=40 more clearly, the number of infected population I(t) 

Fig. 2   Equilibrium for the pandemic mode when 𝜏 = 14 < 𝜏
0
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with different �2 is shown in Fig. 5 on a larger time scale. For the same virus (COVID-19), 
the change in infectious ability is very small. For �2 = kb , the number of people that the 
population at home isolation state contact each day (k) is the key factor. In Fig. 5, three 
cases ( k = 6, 8, 10 , correspondingly, �2 = 0.24798, 0.33064, 0.4133 ) are shown. When 
�2 = �1=0.4133 , it can clearly find that the number of infected population will outburst 
after a short period of peace and repeat again and again. In this situation, the effect of 
home isolation fails. When the population at home isolation state contact two people less 
every day ( �2 = 0.24798, 0.33064 ), the effect of home isolation is very significant. This 
illustrates the importance of home isolation for pandemic control, it is crucial that residents 
restrain their daily behavior, and it is a feasible solution for pandemic prevention (Table 4).

The annual, biennial or sporadic COVID-19 outbreak is similar to the projection of the 
researchers in Harvard University which was published in Science. They project that if 
the immunity of the antibody maintains for 40 weeks or 104 weeks, it will favor annual 
COVID-19 outbreaks or biennial outbreaks [44]. Obviously, the term of immunity affects 
the parameters � in the model, then the simulation with different � is shown in Fig. 6.

In Figs. 6 and 7, the influence of the rate � and the self-healing rate � on the spread of the 
virus is simulated, respectively. From the two figures, we can find that lower � and larger 
� are more beneficial for the prevention of COVID-19. It means that we should improve 
the self-healing ability of infected population and maintain the immunity of the recovered 
population (vaccine may be the best method). In other words, the longer the vaccine effect 
lasts, the easier it is to limit the spread of the virus.

Fig. 3   The number of infected population I(t) with different �
2
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4.3 � Hopf Bifurcation of the Equilibrium

To show the bifurcation phenomenon of the equilibrium clearly in the model, the results 
of numerical experiment are shown in Figs. 8, 9, 10, 11 and 12. Figure 8 shows the projec-
tion of the phase portrait in (I,Q,R)-space when � = 40 , the value of parameters is listed 
in Table 5. The curve radiates to a limit cycle which implies the system is unstable, and it 
corresponds to the curve ( �2 = 0.4133 ) in Fig. 5. Then, let us observe the effect of �2 and 
� on the bifurcation phenomenon in Figs. 9 and 10, respectively. In Fig. 9, only the infec-
tion rate for home isolation population ( �2 ) is decreased, then it is found that the curve 
converges to a fixed point which implies the system is stable. In Fig. 10, only the rate � is 
decreased, and the curve converges to a fixed point which implies the system is stable as 
well. It means that the parameters �2 and � affect the threshold �0 of bifurcation.

Figure  11 gives the bifurcation diagram of the equilibrium with the parameters 
�2=0.4133, � = 0.04 . It can be easily obtained that the Hopf bifurcation occurs at about 
� = �0 = 33 which is similar to the results of theoretical derivation. Figure  12 gives the 
bifurcation diagram of the equilibrium with the parameters �2=0.33064, � = 0.02 . The 
Hopf bifurcation occurs at about � = �0 = 43 . Comparing the two Figs, it shows that the 
parameters �2 and � have effect on the time that Hopf bifurcation occurs. As the parameters 
�2 and � decrease, the threshold value of the bifurcation increases, and the control of the 
pandemic is more effective. This confirms the importance of home isolation and the immu-
nity of the population (or the vaccine effect) once again.

Fig. 4   Equilibrium for the pandemic mode when � = 40 ≥ �
0



905Dynamic Games and Applications (2021) 11:892–914	

5 � Discussion and Conclusion

In the proposed model, hierarchical quarantine strategy is deployed to prevent the COVID-
19 outbreak, and home isolation is a feasible and crucial measure. To illuminate the role 
of home isolation in the pandemic prevention, a simplified model without the home isola-
tion state is proposed to compare with the hierarchical quarantine strategy. The transition 
diagram is given in Fig. 13. And the value of the parameters is the same as that in Table 4. 
The case of 𝜏 = 14 < 𝜏0 is conducted to show the comparison. The number of infected 

Fig. 5   The number of infected population I(t) with different �
2
 when � = 40

Table 4   Parameters in the 
simulations

Notations Value

�
1

0.4133
�
2

0.33064
�
1

0.4
�
2

0.2
� 0.001
� 0.03
� 0.04
� 14
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population is shown in Fig. 14. The effect of home isolation is clearly shown in Fig. 14. 
When the dynamic system reaches the equilibrium point, the number of infected popu-
lation without home isolation is larger than that with hierarchical quarantine strategy. In 
addition, the peak in the model with hierarchical quarantine strategy is much lower than 
that without home isolation. The result indicates that the hierarchical quarantine strategy 
can inhibit the spread of COVID-19 effectively. The surveillance of COVID-19 should be 
maintained as normal and people should restrain their actions at this urgent time and try to 
avoid close contact with people as much as possible.

In summary, a pandemic model with hierarchical quarantine and time delay is devel-
oped for the COVID-19 outbreak. Time delay caused by virus incubation period and 
the possibility of reinfection due to antibody failure are well considered in the model. 
The model gives a better description of the spread of COVID-19 and some suggestions 
worth considering for the COVID-19 prevention. For example, the government should 
increase the number of tested people with or without symptoms in order to identify early 
on clusters of infection which can be targeted with an isolation strategy. The stability of 
the equilibrium and the bifurcation phenomenon is analyzed in detail. The threshold 
value �k of the bifurcation is deduced and quantitatively analyzed. When the time delay 

Fig. 6   The number of infected population I(t) with different � when � = 40, �
2
= �

1
= 0.4133
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is low, i.e., 𝜏 < 𝜏0 , the system will stabilize at the equilibrium point, which is beneficial 
for us to implement a containment strategy of COVID-19; when the time delay is long, 
i.e., � ≥ �0 , the system will be unstable and the virus cannot be effectively controlled. 
Fortunately, the simulations show that the COVID-19 pandemic dynamic system is sta-
ble with �=14 (at present, the latent observation period is usually two weeks), however, 
the trend of the COVID-19 pandemic may have some ups and downs in a period of 
time. In addition, the results of the numerical simulations show that lower � (larger self-
healing rate) and larger � (vaccine with better immunogenicity) are more beneficial for 
pandemic prevention of COVID-19, � means the rate that the recovered population lose 
immunity, and � means the self-healing rate of infected population. If the immunity of 
recovered population lasts for a short time, the prevention of COVID-19 will be beset 
with difficulties. Evidently, home isolation is a more feasible and effective measure. 
The simulations show that a lower �2 can expand the threshold �0 of bifurcation, which 
leads a better effect of the COVID-19 prevention. For the public, just staying home and 
avoiding close contact with people will provide great support to prevent the COVID-19 
outbreak.

Fig. 7   The number of infected population I(t) with different � when � = 40, �
2
= �

1
= 0.4133
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Fig. 8   The projection of the phase portrait in (I,Q
1
,R)-space when �

2
=0.4133, � = 0.04

Fig. 9   The projection of the phase portrait in (I,Q
1
,R)-space when �

2
= 0.33064, � = 0.04
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Fig. 10   The phase portrait of Q
1
(t) and I(t) when �

2
=0.4133, � = 0.02
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Fig. 11   Bifurcation diagram of the equilibrium with �
2
=0.4133, � = 0.04
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Fig. 12   Bifurcation diagram of the equilibrium with �
2
=0.33064, � = 0.02

Table 5   Parameters in Fig. 9 Notations Value

�
1

0.4133
�
2

0.4133
�
1

0.4
�
2

0.2
� 0.001
� 0.03
� 0.04
� 40

Fig. 13   State transition diagram 
of the pandemic model without 
home isolation
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