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Abstract
This paper shows that continuous-time stochastic games of fixed duration need not possess
equilibria in Markov strategies. The example requires payoffs and transitions to depend on
time in a continuous but irregular (almost nowhere almost differentiable) way. This example
offers a correction to the erroneous construction presented previously in Levy (Dyn Games
Appl 3(2):279–312, 2013. https://doi.org/10.1007/s13235-012-0067-2).
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1 Introduction

Following [5], a framework of continuous-time stochastic games of fixed duration is studied.
In such games, the game is played on a fixed time interval, there are finitely many possible
states and actions, and the players control the rate of the payoffs and the rate of transition
between states. The staple model, due to [9], assumes that payoffs and transitions rates
are stationary—that is, time-independent—functions of the actions and state. However, as
discussed in Levy [5, Sec. 9], many results concerning the model—including all the results
in that paper—extend fairly automatically if the payoffs and transition rates depend in any
(bounded and Borel) way on time.

The purpose of this corrigendum is to show that such games need not possess equilibria
in Markov strategies—a natural class of strategies for these games which depend only on
time and state, not on histories. Indeed, Levy [5] establishes a number of results concerning
these strategies and their variations, in particular, the existence of extensive-form public-
signal correlated Markov equilibria, various optimality equations for Markov equilibria, and
a study of how approximate-Markov equilibria can be constructed. Levy [9] had previously
established the existence of optimal Markov strategies in zero-sum games.

Levy [5] also claims to show that Markov equilibria—equilibria which depends only on
the current state and on time—need not exist, even when the payoffs and transitions are sta-
tionary. That example is based on a construction carried out in Levy [4], in the frame-work
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of discounted (discrete-time) stochastic games, which is used to give an example of a dis-
counted stochastic games which does not possess stationary equilibria, despite the transitions
satisfying commonly assumed absolute continuity conditions.1 In Levy and McLennan [6],
it is pointed out that the construction in Levy [4] is flawed, and an alternative—similar, but in
some respects simpler—construction is presented to show the falsity of the same conjecture.
The relevance of the error for [5] is that the crucial Proposition 4 on [4, p. 293] is incorrect;
the reader is referred to [6] for the details of the error. Hence, the purpose of this note is
to remark that the correction offered in Levy and McLennan [6] can be adapted back to
continuous-time stochastic games.

Hence, to summarize: If one allows (continuous) dependence of the payoffs and transi-
tions on the time coordinate, Markov equilibria may fail to exist (Theorem 2.1). However,
the question of whether Markov equilibria need exist when the payoffs and transitions are
stationary has been re-opened.

When carrying out the construction (correctly), a necessity seems to arise to condition
the payoffs and transitions on the time coordinate in a continuous but (for the payoffs at
least) rather irregular manner. This irregularity is known as almost nowhere approximately
differentiable, whichwewill call erratic,2 which in particular implies that it is almost nowhere
equal to any other given absolutely continuous function. This type of behavior is typical of,
say, a Brownian motion path.

The intuition (and construction) of the revised example, in many ways, is similar to that
of Levy [5]; as written there (p. 282), ‘There is an “active state” in which the game begins
and an absorbing state with payoff 0. We will focus on a particular pair of players, C,D, out
of a large set of players. If either of these two players expects a positive average payoff in
the future, he will choose an action such that when the other players choose an equilibrium
reply, he receives a negative payoff. And, conversely, a negative average payoff in the future
will lead to a positive payoff. Hence, for both C,D, the payoff must always be 0; this is a
result of the continuous time parameter.’ However, the continuation given there, ‘However,
we take advantage of a nonsimply connected structure of the equilibria of the other players
- in particular, of players A,B—to have that, at each point in time, at least one of the players
C,D receives a nonzero payoff’ proves to be insufficient.3 To this make the construction work,
like in Levy and McLennan [6], we add to the payoff a time-dependent4 pertubation with the
sufficient irregularity discussed above. This irregularity guarantees that the players cannot
‘catch’ the future average payoffs and ‘cancel it out’ with the present running payoffs.

We conclude by remarking that, structurally, the construction presented here is quite
similar to the construction conducted in Levy and McLennan [6]. Conceptually, in fact, one
could say that the main required transition from one to the other is that the unit interval is
used as a state space in Levy andMcLennan [6], while in the current paper, the unit interval is
used to represent the time variable. However, there are a very large number of fine details that
change along the way, as the optimality conditions for continuous-time games (recalled in
Sect. 3.2, essentially ‘relatives’ of Hamilton–Jacobi–Bellman equations) are quite different
from the optimality criteria in discrete-time discounted processes (multi-player versions of
Bellman’s equation). Both frameworks include the possibility of transition to an absorbing

1 That paper presents two examples; in the first, transitions are deterministic, and to the best of our knowledge,
it suffers from no errors.
2 I am grateful to an anonymous referee for suggesting the terminology.
3 We do remark that one does not need, it turns out, a non-simply connected equilibria component, although
one does require a component which is a continuum with additional properties; see [6] for discussion.
4 In Levy and McLennan [6], this is a state-dependent pertubation.



420 Dynamic Games and Applications (2021) 11:418–432

state with payoff 0, but while continuation payoffs enter the optimality conditions in discrete
timewith a positive sign, reflecting the fact that an agent is guaranteed the payoff of the current
indivisible time period even if facing absorption immediately thereafter, the continuation
payoffs enter our framework with a negative sign, reflecting the fact that a quick absorption
will result in loss of ’the payoff that could have been’. In addition to required sign changes at
various points in the analysis, one combats the intricacies resulting from needing to account
for both present payoff and future payoff by forcing the payoffs to shrink as a function of
time, hence guaranteeing future payoff concerns are small (but, crucially, not negligible).

2 RecallingModel and Result

Following [5], the general framework for a continuous-time stochastic games—also called
Markov Games; see [9]—with finite duration, and allowing for time-dependent payoffs and
transitions—consists of the following framework:5

• A finite set of states Z .
• A finite set of players P .
• A finite set of actions I p for each p ∈ P . Denote IP := ∏

p∈P I p and �P (I ) =∏
p∈P �(I p), the mixed action profiles.

• A duration T ∈ R, T > 0.
• A Borel bounded payoff function (a.k.a. running payoff) r : [0, T ] × Z × IP → R

P .
• A Borel bounded transition rate μ : [0, T ] × Z × Z × IP → R, where for all a ∈ IP ,

t ∈ [0, T ], and z ∈ Z ,
∑

z′∈Z μ(z′|t, z, a) = 0 and for all z′ �= z, μ(z′|t, z, a) ≥ 0.
• The payoff functions and transition rates both extend multi-linearly to mixed-action

profiles.

Given an initial state z0 ∈ Z , the game is played in continuous-time on the interval [0, T ].
The states are governed by a stochastic process, in which the probability of a transition from
state z to a state z′ �= z in time [t, t + h], during which the players play action profile
a ∈ �P (I ), is given by μ(z′|t, z, a) · h + o(h); all this is formalized in Levy [5, Sec. 2].

A Markov strategy for player p ∈ P is a Lebesgue-measurable mapping u p : Z ×
[0, T ] → �(I p). Given a Markov strategy profile u = (u p)p∈P , for each t ∈ T , let
ut : Z × [0, T − t] → �P (I ) be defined by ut (z, s) = u(z, s + t). Also denote, for each
t ∈ [0, T ], z ∈ Z , and p ∈ P ,6

γ
p

u (z, t) = Ez
ut

[
∫ T −t

0
r p(s, z(s), ut (z(s), s))ds

]
(2.1)

where the expectation is taken w.r.t. the measure induced by the initial state z and the profile
ut , and z(s) denotes the state at time s. Denote further γ

p
u (t) = (γ

p
u (z, t))z , γu = (γ

p
u )p .

γ
p

u (z, t) can be viewed as the payoff to a player p who evaluates his future payoffs starting
at time t , assuming he is in state z at that time, under the profile u. A profile u of Markov
strategies is a Markov equilibrium if for every z ∈ Z , every p ∈ P and every Markov τ p , we

5 In Levy [5, Sec. 2], we first present a model in which the payoffs and transitions do not depend on time,
but in Sec. 9 there, it is remarked that the model and all results generalize immediately. Zachrisson [9] similar
works with only stationary payoffs and transitions.
6 We note an addition typo in the middle term Equation (3.1) of Levy [5, Sec. 3]; Ez

u there should be Ez
ut , as

it is written here. The evaluation is written correctly on the right side of that equation in terms of the transition
matrix.
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have

γ
p

u (z, 0) ≥ γ
p
(τ p,u−p)

(z, 0).

The purpose of this paper is to show:

Theorem 2.1 There exists a continuous-time stochastic game of fixed duration, with contin-
uous payoffs and transition rates, possessing no Markov equilibrium.

We note that the time-dependence of at least the payoffs is crucial for the example pre-
sented here; in fact, we impose very irregular time dependence, typical of, e.g., the path of a
Brownian motion.7 As such, it is still an open question as to whether stationarity of payoffs
and transitions guarantees existence of Markov equilibria. If the answer to this question is
affirmative, it still remains an open question as to whether one can allow time-dependence
with sufficient regularly properties and still obtain equilibrium existence.

We remark that we strongly conjecture that one could suffice with time dependence of
only the payoffs (i.e., use stationary transition rates) to construct the counter-example, but in
the name of simplification have not attempted to do so, inasmuch as it does not seem to add
value.

3 Preliminaries

3.1 Notations

Recall that 〈·, ·〉 denotes the inner product of vectors. In addition, the following notational
conventions will be used:

• Throughout ‖ · ‖ denotes the L∞ norm. That is, for a vector or bounded real-valued
function f , ‖ f ‖ = sup | f |, where the supremum is taken over the set of indices or the
domain of f .

• If p is a mixed action over an action space I and i ∈ I , then p[i] denotes the probability
that p chooses i .

• In connection with a tuple c indexed by the elements of some set T ⊂ P of players, if
�1, . . . , �k ∈ T , then c�1,...,�k will denote (c�1 , . . . , c�k ).

3.2 Optimality Criteria and Payoff Evolution

Fix a continuous-time stochastic games as per Sect. 2, and a Markov strategy profile u =
(u p)p∈P . In Levy [5], Theorem 1 (p. 285) describes the evolution of γu over time, and
Theorem 2 (p. 286) gives a criterion for a profile u to be a Markov equilibrium:8

Theorem 3.1 For each p ∈ P , γ
p

u (·) : [0, T ] → R
Z is the unique absolutely continuous

function satisfying the following differential equation for a.e. t ∈ [0, T ]:
dγ p

u,z

dt
(t) = −[

r p(t, z, u(z, t)) + 〈μ(t, z, u(z, t)), γ p
u,z(t)〉

]
(3.1)

7 The incorrect example of Levy [5, Sec. 6] had payoffs and transitions independent of time.
8 Like for most of that paper, these results are stated for payoffs and transitions which do not depend on time,
but as remarked in Sec. 9 there, these results generalize immediately when this stationarity is dropped; the
proofs remain precisely the same.
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with boundary condition γ
p

u (T ) = 0, where 〈, 〉 denotes the inner product in R
Z .

This in particular follows that γu is absolutely continuous, and in fact Lipschitz, and hence
in particular a.e. differentiable.

Theorem 3.2 u = (u p)p∈P is a Markov equilibrium iff for all z ∈ Z and a.e. t ∈ [0, T ],
u(z, t) ∈ N E

((
r p(t, z, ·) + 〈μ(t, z, ·), γ p

u (t)
)

p∈P
)

or, equivalently,

dγu

dt
(z, t) ∈ −N E P

((
r p(t, z, ·) + 〈μ(t, z, ·), γ p

u (t)
)

p∈P
)

where N E (resp. N E P) denotes the Nash equilibria (resp. Nash equilibria payoff) corre-
spondence, which assigns to each normal-form game its set of Nash equilibria (resp. Nash
equilibria payoffs).

In this paper, we will discuss games with a particular structure: There are only two
states, one denoted z0 and the other denoted 0, the latter of which is an absorbing state
with payoff 0, i.e., r(·, 0, ·) ≡ μ(z0 | ·, 0, ·) ≡ 0. Clearly, as only the non-absorbing state
z0 is of interest, we may drop reference to it and write γu(t), u(t), r(t, ·), etc, instead of
γu(z0, t), u(z0, t), r(z0, t, ·), etc, and we let μ(t, ·) ≥ 0 denote the transition rate out of z0,
that is we write μ(t, ·) instead of μ(0 | t, z0, ·). Theorems 3.1 and 3.2 imply in this case that
if u = (u p)p∈P is a Markovian equilibrium, then for a.e. t ∈ [0, 1],

dγ p
u

dt
(t) = −(

r p(t, u(t)) − μ(t, u(t))γ p
u (t)

)
(3.2)

and for a.e. t ∈ [0, 1],
u(t) is a Nash Equilibrium of r(t, ·) − μ(t, ·)γu(t) (3.3)

In (3.2) and (3.3), we see how for both payoff and strategic purposes, we can
clearly separate, in classic dynamic programming fashion, components resulting from
present/running payoff r(t, ·), and components resulting from expected continuation/future
payoffs, μ(t, ·)γu(t). This separation will prove most useful along the way for intuitions
driving the constructions, in particular as we will force the continuation payoff vectors to be
small (in norm) when compared to the running payoff vectors.

3.3 Erratic Functions

Spurred by the error in the previous work, as we have discussed in the introduction, the
construction at hand requires a pertubation by a sufficiently ‘erratic’ function, in a sense we
make precise here. Let λ denote the Lebesgue measure on R. The following definition can
be found, e.g., in Saks [8, Sec VII.3]:

Definition 3.1 If E ⊆ R is Lesbesgue measurable, f : E → R is Lebesgue measurable,
x ∈ E , and L ∈ R, then f is approximately differentiable at x with approximate derivative
L if, for all ε > 0,

1

2δ
λ
(
(x − δ, x + δ) ∩ {

y ∈ E :
∣
∣
∣

f (y) − f (x)

y − x
− L

∣
∣
∣ < ε

}) → 1

as δ → 0.
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Table 1 The Payoffs to A and B (G A,B )

A\B L M R

U (1, 1) (1, 1) (0, 0)

D (0, 0) (1, 1) (1, 1)

Table 2 The Payoffs to C and D (GC,D)

A\B L M R

U (− 1, 1) (1, 1) (0, 0)

D (0, 0) (1, − 1) (− 1, − 1)

Clearly, if f is differentiable at x with f ′(x) = L , then f is approximately differentiable
at x with approximate derivative L .

Definition 3.2 For E ⊆ R Lesbesgue measurable, we will call a Lebesgue-measurable f :
E → R erratic if it is almost nowhere approximately differentiable.

The following is included in Theorem 3.3 of Saks [8, Sec VII.3]9:

Lemma 3.3 If f , g : [0, 1] → R are Lesbesgue measurable, f is approximately differen-
tiable a.e., g is erratic, and E = { x : f (x) = g(x) }, then λ(E) = 0.

Berman [1] shows that, with probability one, the path of a Brownian motion is nowhere
approximately differentiable, and in particular erratic; the path of a Brownian motion is well-
known to be continuous with probability one. The existence of erratic continuous functions
is also shown more directly in Jarník [3]; see also [7] and the references within.

4 The Example’s Stage Game

Our construction has three phases: (a) Selecting four perturbations of a “base” game
(Sect. 4.1); (b) Specification of a rescaled version of the stage game (Sect. 4.2); (c) The
stochastic game itself (Sect. 5.1).10

4.1 The Base Game

The base game G has four players, A, B, C and D. The pure strategies of player A are U
and D, the pure strategies of B are L , M , and R, and players C and D are dummy players,
because their sets of pure strategies are singletons. The payoffs of players A and B are shown
in Table 1.

The Nash equilibria are the pure strategy profiles (U , L), (U , M), (D, M), and (D, R),
as well as all “convex combinations” of successive pairs of elements of this list. The payoffs
to C and D, as a function of A, B’s actions, are shown in Table 2.

We state the properties of G that figure in the subsequent analysis. For a mixed strategy
profile x , let G(x) be the vector of expected payoffs.

9 A proof is sketched in Footnote 6 on Levy and McLennan [6, p. 1245]
10 Sections 4.1 and 4.2 closely follow Sections 3.2 and 3.3 of Levy and McLennan [6].
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Lemma 4.1 (a) For each ( j, k) ∈ {−1, 1}2, any neighborhood of G contains a game G j,k

whose unique Nash equilibrium x satisfies GC,D(x) = ( j, k).
(b) For any equilibrium x of G, ‖GC,D(x)‖ = 1.

Proof Obvious. ��
In view of (b) and the bounds on payoffs for C and D, the upper semicontinuity of the

Nash equilibrium correspondence implies that there is an η0 > 0 such that

7
8 ≤ ‖GC,D(x)‖ ≤ 1 (4.1)

whenever x is an equilibrium of a game G ′ such that ‖G ′ − G‖ ≤ η0. (Note that the game in
(4.1) is the original game G, but the profile x is the equilibrium of a perturbed game.) We
fix such η0 > 0, and for each ( j, k) ∈ {−1, 1}2 we fix such a perturbation G j,k of G such
that the unique Nash equilibrium x of G j,k satisfies GC,D(x) = ( j, k). (The payoffs of A
and B in G j,k play no role in our analysis after Lemma 4.1 has been established.)

4.2 The Stage Game

Next we describe a second strategic form game; in our stochastic game there will be two
states, one of which is absorbing with 0 payoff to all, and the other of which has running
payoff that is a rescaling of this strategic form game.

The set of players is P = {A, B, C, C ′, D, D′, E, F}. As above, player A has the pure
strategiesU and D, and player B has the pure strategies L , M and R, but in this game players
C and D have pure strategies 0 and 1. Players C ′ and D′ also have pure strategies 0 and 1,
and players E and F have pure strategies −1 and 1. Pure and mixed strategy profiles will be
denoted by

a = (a A, aB , aC , aC ′
, aD, aD′

, aE , aF ) and x = (x A, x B , xC , xC ′
, x D, x D′

, x E , x F ).

The payoffs of this strategic form game depend on a parameter 
 ∈ (− 1
2 ,

1
2 ). Let

ψ(a) = (ψC (aC ), ψ D(aD)) = (2aC − 1, 2aD − 1)

and
ψ(x) = (ψC (xC ), ψ D(x D)) = (2xC [1] − 1, 2x D[1] − 1) ∈ [−1, 1]2 (4.2)

where xC , x D denote the probability that these players play 1. The payoffs in the game
g1(
, ·) are:

g A
1 (
, a) = G A

aE ,aF (a A, aB),

gB
1 (
, a) = G B

aE ,aF (a A, aB),

gC
1 (
, a) =

{
−GC (a A, aB) − 1

16 , aC = aC ′
,

−GC (a A, aB) + 1
16 , aC �= aC ′

,

gC ′
1 (
, a) = −gC

1 (
, a),

gD
1 (
, a) =

{
−G D(a A, aB) − 1

16 , aD = aD′
,

−G D(a A, aB) + 1
16 , aD �= aD′

,

gD′
1 (
, a) = −gD

1 (
, a),

gE
1 (
, a) = aE · 〈(1, 
), ψ(a)〉,

gF
1 (
, a) = aF · 〈(−
, 1), ψ(a)〉.
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Fig. 1 The domains D

j,k

where 〈, 〉 denotes the standard inner product, and the games G±1,±1 were chosen at the end
of Sect. 4.1. Observe that (1, 
)⊥(−
, 1).

In the stochastic game given in Sect. 5, 
(·) will depend on time, and the transition rates
are controlled by C , C ′, D, and D′, so in each time period the other players will only be
concerned with maximizing their running payoffs, which is a rescaling of g1(
(t), ·). Players
A and B are playing a perturbation of the game G, as described above.

The running payoff to C ′ is the negation of the running payoff to C , so C and C ′ will have
opposite views concerning the desirability of the game continuing (as opposed to transitioning
to the absorbing state with zero payoffs). Leaving aside the components of the stage game
payoffs forC andC ′ that depend only on the behavior of A and B, the conflict betweenC and
C ′ at time t is a zero sum game that consists of matching pennies perturbed by these concerns
about absorption to the state with payoff 0. These perturbations, i.e., these concerns, will be
small enough that there is always a unique equilibrium which is mixed. The conflict between
D and D′ is similar to the conflict between C and C ′, albeit with different payoffs, as they
are effected by A, B in a different way.

The best responses of players E and F depend on the signs of the expectations of the inner
products 〈(1, 
), ψ(a)〉 and 〈(−
, 1), ψ(a)〉, respectively. For 
 ∈ (− 1

2 ,
1
2 ) and j, k = ±1

let
D


j,k := {ψ ∈ R
2 | j · 〈(1, 
), ψ〉 > 0 and k · 〈(−
, 1), ψ〉 > 0 }. (4.3)

Observe that (1, 
), (−
, 1) are orthogonal, so the D


j,k are just the open quadrants of the
plane under a certain rotation (see Fig. 1).

Set
D
 =

⋃

j,k=±1

D


j,k (4.4)

As mentioned, in the stochastic game defined in Sect. 4.1, 
(·) will be a function of the
time t ∈ [0, 1], and we will see that in anyMarkov equilibrium, for a.e. t , behavior at time t is
characterized by amixed strategy profile x such thatψ(x) defined in (4.2) lies inD
(t), so that
E and F play pure strategies, and consequently A and B are playing one of the perturbations
G j,k of G. In this sense, the behavior of A and B is well controlled.
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The following lemma summarizes the properties of g1 needed going forward concerning
A, B, E, F ; thereafter, we will only reference the payoffs of C, D, C ′, D′.

Lemma 4.2 Let x be a mixed action profile in which A, B, E, F are best-replying in g1, i.e.,
x A,B,E,F is an equilibrium of g A,B,E,F

1 (·, xC,D,C ′,D′
). Then:

(a) 7
8 ≤ ‖GC,D(x)‖ ≤ 1.

(b) If ψ(x) ∈ D


j,k for j, k ∈ {±1}, then GC,D(x) = ( j, k).

Proof x A,B is an equilibrium of some game G ′ which is a convex combination G ′ of
(G j,k) j=±1,k=±1. Since ‖G±1,±1 − G‖ < η0, also ‖G ′ − G‖ < η0, we have 7

8 ≤
‖GC,D(x)‖ ≤ 1 (see end of Sect. 4.1), which yields Part (a).

For Part (b), observe that if ψ(x) ∈ D


j,k , then j · 〈(1, 
), ψ(x)〉 > 0 and k ·
〈(−
, 1), ψ(x)〉 > 0; from the payoffs of g1, we see that players E, F play pure with
(aE , aF ) = ( j, k), so x A,B is an equilibrium of G j,k , which in turn implies GC,D(x) =
( j, k). ��

4.3 Equilibrium in a Stage

To complement the function g1 already defined, define a payoff function g2, which depends
on a parameter ω = (ωC , ωD) ∈ R

2, in the following way:

g p
2 (ω, a) = 1

64
(aC + aC ′ + aD + aD′

) ×

⎧
⎪⎪⎨

⎪⎪⎩

ωp if p = C, D
−ωC if p = C ′
−ωD if p = D′
0 if p = A, B, E, F

(4.5)

(In particular, gC
2 ≡ −gC ′

2 , gD
2 ≡ −gD′

2 .) We also denote a payoff function g(
, ω, ·) which
will be the sum of two payoffs:

g(
, ω, ·) := g1(
, ·) + g2(ω, ·) (4.6)

In the analysis conducted in Sect. 5.2 of the stochastic game we will present, the stage
payoffs at time t will be a rescaling of g1(
, ·), where 
 will be time-dependent as well, and
g2(ω, ·)will be a rescalingof the continuationpayoffs,whereωC,D = γ

C,D
u (t) for a candidate

Markov equilibrium u; hence g(
, ω, ·)will encompass all the strategic considerations of the
agents at each time.11

Recall the notation D


j,k given in (4.3). Equilibrium analysis for g(
, ω, ·) will yield
Proposition 4.4, which will summarize the properties of the equilibria of g(
, ω, ·) needed
later. En route to that proposition, we need the following lemma, which will play no role
after Proposition 4.4 is established:

Lemma 4.3 Suppose that 
 ∈ R, ω = (ωC , ωD) ∈ R
2, with |
| < 1

2 , ‖ω‖ < 2, and that x is
an equilibrium of g(
, ω, ·).
(a) 7

8 ≤ ‖GC,D(x)‖ ≤ 1.
(b) If ωC,D ∈ D


j,k , then GC,D(x) = ( j, k).

11 This section from this point follows Section 4.1 of Levy and McLennan [6].
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Proof Since g A,B,E,F = g A,B,E,F
1 , Lemma 4.2 applies to x , so (a) follows from Lemma

4.2(a). For part (b), we claim that

xC [1] = 1
2 + 1

16ω
C and x D[1] = 1

2 + 1
16ω

D

Observe that gC,C ′
(ω, 
, x) is the sum of

(−GC (x A, x B), GC (x A, x B)) + 1
64 (x D[1] + x D′ [0])ωC · (1,−1),

which is unaffected by xC,C ′
, and 1

16 times the payoffs resulting from applying xC,C ′
to the

bimatrix game below.

C\C ′ 1 0

1
( − 1 + 1

2ωC , 1 − 1
2ωC ) (

1 + 1
4ωC ,−1 − 1

4ωC )

0
(
1 + 1

4ωC , −1 − 1
4ωC ) ( − 1, 1

)

(For example, the part of C’s payoff affected by C and C ′’s behavior that accrues in the
future is (aC + aC ′

) 1
64ω

C .) Since |ωC | < 2 this bimatrix game has a unique equilibrium,

which must be xC,C ′
. To see that xC [1] = 1

2 + 1
16ω

C , one can simply compare the payoff
differences for C ′. The result for x D[1] follows by symmetry.

Recalling the definition of ψ given in (4.2), it follows that ψ(x) = 1
8ω = 1

8 (ω
C , ωD), so

(b) follows from Lemma 4.2(b). ��
Proposition 4.4 Suppose that 
 ∈ R, ω = (ωC , ωD) ∈ R

2 with |
| < 1
2 , ‖ω‖ < 2, and that

x is an equilibrium of g(
, ω, ·).
1.

13
16 ≤ ‖gC,D

1 (
, x)‖ ≤ 17
16 (4.7)

2. If, furthermore, ω ∈ D
, then

(a) 15
16 ≤ |gC

1 (
, x)| ≤ 17
16 and 15

16 ≤ |gD
1 (
, x)| ≤ 17

16 ;
(b) if |ωC | ≥ 1

2 |ωD|, then gC
1 (
, x) · ωC < 0;

(c) if |ωD| ≥ 1
2 |ωC |, then gD

1 (
, x) · ωD < 0.

Proof From the definition of g1,
∥
∥
∥gC,D

1 (
, x) − (−GC,D(x))

∥
∥
∥ ≤ 1

16 (4.8)

so the first part follows from Lemma 4.3(a). If ωC,D ∈ D
, then Lemma 4.3(b) together with
(4.8) yields (a) of Part 2. If say ω ∈ D
 and ωC ≥ 1

2 |ωD|, since |
| < 1
2 ,

〈(1, 
), ω〉 = ωC + 
 · ωD ≥ ωC − 1

2
|ωD| ≥ 0

we haveω ∈ D


1,±1. Therefore, GC (x) = 1 fromLemma 4.3(b). From (4.8), gC,D
1 (
, x) < 0,

hence (b) follows for the case ωC ≥ 1
2 |ωD|; the case ωC ≤ − 1

2 |ωD|, as well as (c), follow
symmetrically. ��
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5 The Stochastic Game and Analysis

This section presents the example (or class of examples, insofar as there is a given function
that is a parameter) of a continuous-time stochastic game of fixed duration not possessing a
Markov equilibrium.

5.1 The Stochastic Game

We now specify the stochastic game. Let 
 : [0, 1] → (− 1
2 ,

1
2 ) be a Borel function. The

stochastic game 
̃ = 
̃
 is as follows:

• The players are P = {A, B, E, F, C, C ′, D, D′} as in Sect. 4.2, along with the actions
sets as given there.

• The game is played on the unit time interval, [0, 1].
• The set of states is Z = {z0, 0}, where 0 is an absorbing state of payoff 0, i.e., r(·, 0, ·) ≡

μ(z0 | ·, 0, ·) ≡ 0. As discussed in Sect. 3.2, we will often drop reference to z0 as it is
the only non-trivial state.

• The payoff function in z0 is

r(t, ·)(:= r(t, z0, ·)) := (1 − t)g1(
(t), ·)
where g1 is as in Sect. 4.2.

• The transition rate μ(t, ·) := μ(0 | t, z0, ·) ≥ 0 (the intensity of the flow out of z0) is
determined by the actions of players C, D, C ′, D′, and is given by:

μ(t, ·) = 1

64
(1 − t)((1 − aC ) + (1 − aC ′

) + (1 − aD) + (1 − aD′
)) (5.1)

where recall that the actions aC , aC ′
, aD, aD′

are in the action space {0, 1}.
Recall the notion of an erratic function introduced in Definition 3.2. We now state the

main step in the argument:

Proposition 5.1 Suppose that 
 : [0, 1] → (− 1
2 ,

1
2 ) is an erratic function. Then the game 
̃


does not possess a Markov equilibrium.

To see the key intuition underlying the construction, suppose that u = (u p)p∈P is a
Markov equilibrium of 
̃
. The optimality criteria recalled in Sect. 3.2, together with the
fairly low transition rates, will show that at a.e. time t agents are playing an equilibrium of
a game which is close to the game g1(
(t), ·). Since G is by the far the largest component
of this payoff for A, B, C, D, at a.e. time t these agents are getting a payoff close to an
equilibrium payoff of G. Hence, γ C,D

u is absolutely continuous and with derivative not far
from equilibrium payoff GC,D , which is non-zero.12

Because 
 is erratic, for a.e. t such that γ
C,D
u (t) �= (0, 0), the best responses of E and

F are a.s. pure, leading the perturbation of the base game to be one of the G j,k whose
equilibrium pushes the vector of future payoffs of C and D away from the origin in �2 as
we go forward in time, which is to say that the derivative of s �→ ‖γ C,D

u (s)‖2 is positive at
12 Indeed, an essential feature of the construction is that G does not have any equilibria that give expected
utility zero to both C and D, but nonetheless the origin is in the convex hull of the set of pairs of expected
payoffs for C and D induced by the equilibria of G. The reader is referred to the discussion on this point on
[6, p. 1244].
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t , for almost all t , where ‖ · ‖2 is Euclidean norm. Since ‖γ C,D
u ‖2 is absolutely continuous

and γ
C,D
u (1) = (0, 0), this is impossible, which is the desired contradiction.

The technicalmachinerywhich drives the precise derivations of these results is, in addition
to the optimality criteria recalled in Sect. 3.2, the equilibrium analysis of the pertubations of
the stage payoff, as summarized in Proposition 4.4.

In particular, following the discussion of Sect. 3.3 on the existence of erratic functions
yields, refining Theorem 2.1:

Theorem 5.1 There exists a stochastic game of the form 
̃
, for continuous 
, which does
not possess a Markov equilibrium.

5.2 Proof: Preliminaries

We set about proving Proposition 5.1, beginning with preliminaries in this section, and
completing the proof in the next section. Let 
 : [0, 1] → (− 1

2 ,
1
2 ) be erratic. By way of

contradiction, we suppose that u = (u p)p∈P is a Markov equilibrium of 
̃
. For brevity,
denote γ instead of γu .

Recall the definitions of g2 and g given in (4.5) and (4.6). Note that using (5.1) and (4.5),
and the fact that γ C ′ = −γ C , γ D′ = −γ D ,

(1 − t)g p
2 (γ C,D(t), ·) = [ 1

16
(1 − t) − μ(t, ·)]γ p(t), p = C, C ′, D, D′ (5.2)

By (5.2), and since r(t, ·) = (1 − t)g1(
(t), ·), it holds for each p ∈ P ,

r p(t, ·) − μ(t, ·)γ p(t) = (1 − t)
[
g p
1 (
(t), ·) + g p

2 (γ C,D(t), ·)]

+
{− 1

16 (1 − t)γ p(t) if p = C, C ′, D, D′
−μ(t, ·)γ p(t) if p = A, B, E, F

(5.3)

(recall g p
2 ≡ 0 for p = A, B, E, F). Hence, the optimality criteria (3.2) and (3.3) present

in Sect. 3.2 give, along with the facts that g = g1 + g2 and that players A, B, E, F do not
effect μ(t, ·):
Proposition 5.2 For a.e. t ∈ (0, 1), we have:

• For each player p = C, C ′, D, D′,
dγ p

dt
(t) = −(1 − t)

[
g p
1 (
(t), u(t)) + g p

2 (γ C,D(t), u(t)) − 1

16
γ p(t)

]
(5.4)

• u(t) is an equilibrium of g(
(t), γ C,D(t), ·).

5.3 Proof: EquilibriumOver Time

Lemma 5.3 There is t0 ∈ (0, 1) such that for a.e. t ∈ (t0, 1):

•
∥
∥
∥
∥
dγ C,D

dt
(t) + (1 − t)gC,D

1 (
(t), u(t))

∥
∥
∥
∥ ≤ 1

8
(1 − t) (5.5)

•
(1 − t)

11

16
≤

∥
∥
∥
∥
dγ C,D

dt
(t)

∥
∥
∥
∥ ≤ (1 − t)

19

16
(5.6)
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Proof Observe
‖r(t, ·)‖ ≤ (1 − t) · max

|
|≤ 1
2

‖g1(
, ·)‖ (5.7)

Hence, for all t ∈ [0, 1],
‖g2(γ

C,D(t), ·)‖
≤ 1

16
‖γ C,D(t)‖ ≤ 1

16

∫ 1

t
max

s∈[t,1] ‖r(t, ·)‖dt ≤ 1

32
(1 − t)2 · max

|
|≤ 1
2

‖g1(
, ·)‖

Therefore, (5.5) follows, for t0 close enough to 1, from (5.4) of Proposition 5.2. Now, by the
above calculation, for t0 close enough to 1, ‖γ C,D(t)‖ < 2 for all t ∈ (t0, 1). Hence, (5.6)
follows from (5.5) and by (4.7) of Proposition 4.4. ��

Henceforth, fix some such t0 as in Lemma 5.3.

Lemma 5.4 For a.e. t ∈ (t0, 1):

(a) γ C,D(t) �= 0.
(b) γ C,D(t) ∈ D
(t), where D
 was defined in (4.4).

(c) If |γ C (t)| ≥ 1
2 |γ D(t)|, then dγ C

dt (t) · γ C (t) ≥ 13
16 (1 − t)|γ C (t)|.

(d) If |γ D(t)| ≥ 1
2 |γ C (t)|, then dγ D

dt (t) · γ D(t) ≥ 13
16 (1 − t)|γ D(t)|.

The proof13 follows from Proposition 4.4, Lemma 5.3 and our irregularity assumptions
on the function 
:

Proof (a) This follows from (5.6).

(b) Define η : [0, 1] → R
2 by η(t) = γ C,D(t)

‖γ C,D(t)‖ . This is a.e. defined and a.e. differentiable,

since γ
C,D
u is Lipschitz and therefore both the denominator and numerator are Lipschitz,

hence a.e. differentiable by Rademacher’s theorem (e.g., Federer [2, Thm. 3.1.6]), and
the latter is a.e. non-zero by (a). Clearly, η(t) ∈ D
(t) if and only if γ C,D(t) ∈ D
(t).
For a.e. t , the requirement η(t) /∈ D
(t) is equivalent (because ‖η(·)‖ ≡ 1 and ‖
‖ < 1

2 )
to η(t) ∈ {±(−
(t), 1),±(1, 
(t))}. Due to the assumed irregularity of 
(·), ηC (t) �=
±
(t) and ηD(t) �= ±
(t) for almost all t .

(c) In view of (b), we may assume that γ C,D(t) ∈ D
(t), so

|(1 − t)gC
1 (
(t), u(t)) + dγ C

dt
(t)| ≤ 1

8 (1 − t)

gC
1 (
(t), u(t)) · γ C (t) < 0

|gC
1 (
(t), u(t))| ≥ 15

16

(These inequalities follow from (5.5), Proposition 4.4(b) and Proposition 4.4(a), respec-
tively.). Applying these in the order that they are given,

dγ C

dt
(t) · γ C (t) ≥ −(1 − t)gC

1 (
(t), u(t)) · γ C (t) − 1

8
(1 − t)|γ C (t)|

= |(1 − t)gC
1 (
(t), u(t)) · γ C (t)| − 1

8
(1 − t)|γ C (t)|

≥ 15

16
(1 − t)|γ C (t)| − 1

8
(1 − t)|γ C (t)|

13 The proof is very similar to the proof of Lemma 4.9 of Levy and McLennan [6], with γ C,D replacing both

W and ω there, and dγ p

dt replacing V .



Dynamic Games and Applications (2021) 11:418–432 431

(d) By symmetry, the proof of (c) also establishes (d). ��
Define

J (t) = 1

2
(γ C (t))2 + 1

2
(γ D(t))2

Then J ≥ 0, J (1) = 0, and J is a.c.. We claim

Proposition 5.5 J ′ > 0 a.e. in (t0, 1).

Given the proposition,14 we have 0 = J (1) > J (t0) ≥ 0, a contradiction to the existence
of a Markov equilibrium u(·).
Proof Let t ∈ (t0, 1) be such that all the properties of Lemma 5.4 hold. To simplify notation,

we drop the argument t . Denote δ = dγ C,D

dt . We have J ′ = γ C · δC + γ D · δD . Either

|γ C | ≥ 1
2 |γ D| and hence δC · γ C ≥ 13

16 (1 − t)|γ C |
or

|γ D| ≥ 1
2 |γ C | and hence δD · γ D ≥ 13

16 (1 − t)|γ D|.
If both hold, then

δC · γ C + δD · γ D ≥ 13
16 (1 − t) · (|γ C | + |γ D|) > 0.

(The strict inequality is from Lemma 5.4(a).) Therefore, we may suppose that one of these
holds, say the first without loss of generality, and the other does not, so 2|γ D| < |γ C |. By
(5.6), |δD| ≤ 19

16 (1 − t), so

δC · γ C + γ D · δD ≥ 13
16 (1 − t)|γ C | − |γ D| · |δD| ≥ (1 − t) · ( 1316 |γ C | − 19

16 |γ D|)
> (1 − t) · ( 2616 |γ D| − 19

16 |γ D|) = 7
16 (1 − t)|γ D| ≥ 0

��
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