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Abstract
In this paper, we study the number of equilibria of the replicator–mutator dynamics for
both deterministic and random multi-player two-strategy evolutionary games. For determin-
istic games, using Descartes’ rule of signs, we provide a formula to compute the number
of equilibria in multi-player games via the number of change of signs in the coefficients
of a polynomial. For two-player social dilemmas (namely the Prisoner’s Dilemma, Snow
Drift, Stag Hunt and Harmony), we characterize (stable) equilibrium points and analytically
calculate the probability of having a certain number of equilibria when the payoff entries
are uniformly distributed. For multi-player random games whose pay-offs are independently
distributed according to a normal distribution, by employing techniques from random poly-
nomial theory, we compute the expected or average number of internal equilibria. In addition,
we perform extensive simulations by sampling and averaging over a large number of possible
payoff matrices to compare with and illustrate analytical results. Numerical simulations also
suggest several interesting behaviours of the average number of equilibria when the number
of players is sufficiently large or when the mutation is sufficiently small. In general, we
observe that introducing mutation results in a larger average number of internal equilibria
than when mutation is absent, implying that mutation leads to larger behavioural diversity
in dynamical systems. Interestingly, this number is largest when mutation is rare rather than
when it is frequent.
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1 Introduction

The replicator–mutator dynamics has become a powerful mathematical framework for the
modelling and analysis of complex biological, economical and social systems. It has been
employed in the study of, among other applications, population genetics [14], autocatalytic
reaction networks [33], language evolution [23], the evolution of cooperation [18] and dynam-
ics of behaviour in social networks [24]. Suppose that in an infinite population there are
n types/strategies S1, . . . , Sn whose frequencies are, respectively, x1, . . . , xn . These types
undergo selection; that is, the reproduction rate of each type, Si , is determined by its fitness
or average pay-off, fi , which is obtained from interacting with other individuals in the pop-
ulation. The interaction of the individuals in the population is carried out within randomly
selected groups of d participants (for some integer d). That is, they play and obtain their
pay-offs from a d-player game, defined by a payoff matrix. We consider here symmetric
games where the pay-offs do not depend on the ordering of the players in a group. Mutation
is included by adding the possibility that individuals spontaneously change from one strategy
to another, which is modelled via a mutation matrix, Q = (q ji ), j, i ∈ {1, . . . , n}. The entry
q ji denotes the probability that a player of type S j changes its type or strategy to Si . The
mutation matrix Q is a row-stochastic matrix, i.e.

n∑

j=1

q ji = 1, 1 ≤ i ≤ n.

The replicator–mutator is then given by, see, e.g. [19–21,25],

ẋi =
n∑

j=1

x j f j (x)q ji − xi f̄ (x) =: gi (x), i = 1, . . . , n, (1)

where x = (x1, x2, . . . , xn) and f̄ (x) = ∑n
i=1 xi fi (x) denotes the average fitness of the

whole population. The replicator dynamics is a special instance of (1) when the mutation
matrix is the identity matrix.

In this paper, we are interested in properties of the equilibrium points of the replicator–
mutator dynamics (1).Note thatwe are concernedwith dynamic equilibria almost exclusively.
There might be a dynamic equilibrium which is not a Nash equilibrium of the game. These
dynamic equilibrium points are solutions of the following system of polynomial equations:

{
gi (x) = 0, i = 1, . . . , n − 1,
∑n

i=1 xi = 1.
(2)

The second condition in (2), that is the preservation of the sum of the frequencies, is due to
the term xi f̄ (x) in (1). The first condition imposes relations on the fitnesses. We consider
both deterministic and random games where the entries of the payoff matrix are, respec-
tively, deterministic and random variables. Typical examples of deterministic games include
pairwise social dilemmas and public goods games that have been studied intensively in the lit-
erature, see, e.g. [15,16,27,32,35]. On the other hand, random evolutionary games are suitable
for modelling social and biological systems in which very limited information is available,
or where the environment changes so rapidly and frequently that one cannot describe the
pay-offs of their inhabitants’ interactions [9–11]. Simulations and analysis of random games
are also helpful for the prediction of the bifurcation of the replicator–mutator dynamics
[20,21,25]. Here, we are mainly interested in the number of equilibria in deterministic games
and the expected number of equilibria in random games, which allow predicting the levels
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of social and biological diversity as well as the overall complexity in a dynamical system.
As in [20,21,25], we consider an independent mutation model that corresponds to a uniform
random probability of mutating to alternative strategies as follows:

qi j = q

n − 1
, i �= j, qii = 1 − q, 1 ≤ i, j ≤ n. (3)

In particular, for two-strategy games (i.e. when n = 2), the above relations read

q12 = q21 = q, q11 = q22 = 1 − q.

The parameter q represents the strength of mutation and ranges from 0 to 1 − 1
n . The two

boundaries have interesting interpretation in the context of dynamics of learning [21]: for
q = 0 (which corresponds to the replicator dynamics), learning is perfect and learners always
end up speaking the grammar of their teachers. In this case, vertices of the unit hypercube
in R

n are always equilibria. On the other hand, for q = n−1
n , the chance for the learner to

pick any grammar is the same for all grammars and is independent of the teacher’s grammar.
In this case, there always exists a uniform equilibrium x = (1/n, . . . , 1/n) (cf. Remark 1).
Equilibrium properties of the replicator dynamics, particularly the probability of observing
the maximal number of equilibrium points, the attainability and stability of the patterns of
evolutionarily stable strategies have been studied intensively in the literature [2,3,12,13,17].
More recently,wehaveprovided explicit formulas for the computationof the expectednumber
and the distribution of internal equilibria for the replicator dynamics with multi-player games
by employing techniques from both classical and random polynomial theory [4–7]. For the
replicator dynamics, that is when there is no mutation, the first condition in (2) means that all
the strategies have the same fitness which is also the average fitness of the whole population.
This benign property is no longer valid in the presence of mutation making the mathematical
analysis harder. In a general d-player n-strategy game, each gi is a multivariate polynomial
of degree d + 1; thus, (2) is a system of multivariate polynomial equations. In particular, for
a two-player two-strategy game, which is the simplest case, (2) reduces to a cubic equation
whose coefficients depend on the payoff entries and the mutation strength. For larger d and
n, solving (2) analytically is generally impossible according to Abel’s impossibility theorem.
Nevertheless, there has been a considerable effort to study equilibrium properties of the
replicator–mutator dynamics in deterministic two-player games, see for instance [19–21,25].
In particular, with the mutation strength q as the bifurcation parameter, bifurcations and limit
cycles have been shown for various classes of fitness matrices [19,25]. However, equilibrium
properties for multi-player games and for random games are much less understood although
in the previously mentioned papers, random games were employed to detect and predict
certain behaviour of (1).

In this paper, we explore further connections between classical/random polynomial theory
and evolutionary game theory developed in [4–7] to study equilibrium properties of the
replicator–mutator dynamics. For deterministic games, by using Descartes’ rule of signs
and its recent developments, we are able to fully characterize the equilibrium properties for
social dilemmas. In addition, we provide a method to compute the number of equilibria in
multi-player games via the sign changes of the coefficients of a polynomial. For two-player
social dilemma games, we calculate the probability of having a certain number of equilibria
when the payoff entries are uniformly distributed. For multi-player two-strategy random
games whose pay-offs are independently distributed according to a normal distribution, we
obtain explicit formulas to compute the expected number of equilibria by relating it to the
expected number of positive roots of a random polynomial. Interestingly, due to mutation,
the coefficients of the random polynomial become correlated as opposed to the replicator
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dynamics where they are independent. The case q = 0.5 turns out to be special and needs
different treatment. We also perform extensive simulations by sampling and averaging over
a large number of possible payoff matrices, to compare with and illustrate analytical results.
Moreover, numerical simulations also show interesting behaviour of the expected number of
equilibria when the number of players tends to infinity or when the mutation goes to zero. It
would be challenging to analyse these asymptotic behaviours rigorously, and we leave it for
future work.

The rest of the paper is organized as follows. In Sect. 2, we study deterministic games. In
Sect. 3, we consider random games. Finally, we provide further discussions and outlook in
Sect. 4.

2 Properties of Equilibrium Points: Deterministic Games

In this section, we study properties of equilibrium points of deterministic games. We start
with some preliminary results on the roots of a general polynomial that will be used in the
subsequent sections. We then focus on two-player games, particularly the social dilemmas.
Finally, by employing Descartes’ rule of signs and its recent improvement [1] we derive a
formula to compute the number of equilibria of multi-player games.

2.1 Preliminaries

This section presents some preliminary results on the roots of a polynomial that will be used
in the subsequent sections. The following lemma is an elementary characterization of stability
of equilibrium points of a dynamical system where the right-hand side is a polynomial.

Lemma 1 Consider a dynamical system ẋ = P(x) = anxn+· · ·+a1x+a0 where a0, . . . , an
are real coefficients. Suppose that P has n real roots x1 < x2 < · · · < xn. Then, the
stability of these equilibrium points is alternatively switched, that is for all i = 1, . . . n − 1,
if xi is stable then xi+1 is unstable and vice versa. In particular, consider the dynamics
ẋ = P(x) = Ax3 + Bx2 + Cx + D. Suppose that P(x) has three real roots x1 < x2 < x3.
Then,

(i) If A > 0, then x2 is stable; x1 and x3 are unstable.
(ii) If A < 0, then x2 is unstable; x1 and x3 are stable.

Proof We prove the general case since the cubic case is a direct consequence. Since P has n
real roots x1, . . . , xn , we have P(x) = an

∏n
i=1(x − xi ). Thus,

P ′(x) = an

n∑

i=1

∏

j �=i

(x − x j ).

Therefore, for any i = 1, . . . , n, we obtain

P ′(xi ) = an
∏

j �=i

(xi − x j ).

Since x1 < · · · < xn , we have, for any i = 1, . . . , n − 1,

sign(P ′(xi )) = sign
(
an(−1)n−i

)
and sign(P ′(xi+1)) = sign

(
an(−1)n−i−1

)
= −sign(P ′(xi )),
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which implies that P ′(xi ) and P ′(xi+1) have alternative signs. Thus, their stability is alter-
natively switched. ��
The following lemma specifies the location of roots of a quadratic equation whose proof is
omitted.

Lemma 2 Consider a quadratic equation f (x) = ax2+bx+c. Define� = b2−4ac. Then,

(i) Exactly one of the roots lies in a given interval (m1,m2) if f (m1) f (m2) < 0.
(ii) Both roots are greater than a given number m if

� ≥ 0, − b

2a
> m and a f (m) > 0.

(iii) Both roots are less than a given number m if

� ≥ 0, − b

2a
< m and a f (m) > 0.

(iv) Both roots lie in a given interval (m1,m2) if

� ≥ 0, m1 < − b

2a
< m2, a f (m1) > 0 and a f (m2) > 0.

2.2 Two-Player Games

We first consider the case of two-player games. Let {a jk}nj,k=1 be the payoff matrix where j
is the strategy of the focal player and k is that of the opponent. Then, the average pay-offs of
strategy j and of the whole population are given respectively by:

f j (x) =
n∑

k=1

xka jk and f̄ (x) =
n∑

j=1

x j f j (x) =
n∑

j,k=1

a jk x j xk . (4)

Substituting (4) into (1), we obtain

ẋi =
n∑

j,k=1

q ji x j xka jk − xi

n∑

j,k=1

a jk x j xk . (5)

In particular, for two-player two-strategy games the replicator–mutator equation is

ẋ = q11a11x
2 + q11x(1 − x)a12 + q21x(1 − x)a21 + q21a22(1 − x)2

−x
(
a11x

2 + (a12 + a21)x(1 − x) + a22(1 − x)2
)
, (6)

where x is the frequency of the first strategy and 1 − x is the frequency of the second one.
Using the identities q11 = q22 = 1 − q, q12 = q21 = q , Eq. (6) becomes

ẋ =
(
a12 + a21 − a11 − a22

)
x3 +

(
a11 − a21 − 2(a12 − a22) + q(a22 + a12 − a11 − a21)

)
x2

+
(
a12 − a22 + q(a21 − a12 − 2a22)

)
x + qa22. (7)

The properties of equilibrium points for the case q = 0 are well understood, see, e.g. [13].
Thus, we consider 0 < q ≤ 1/2. In addition, equilibria of (7) and their stability for the case
a11 = a22 = 1, a12 ≤ a21 ≤ 1, have been studied in [19].
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Two-Player Social Dilemma GamesWe first consider two-player social dilemma games. We
adopt the following parameterized payoff matrix to study the full space of two-player social
dilemma games where the first strategy is cooperator and the second is defector [32,35],
a11 = 1; a22 = 0; 0 ≤ a21 = T ≤ 2 and −1 ≤ a12 = S ≤ 1, that covers the following
games:

(i) the Prisoner’s Dilemma (PD) game: 2 ≥ T > 1 > 0 > S ≥ −1,
(ii) the Snow Drift (SD) game: 2 ≥ T > 1 > S > 0,
(iii) the Stag Hunt (SH) game: 1 > T > 0 > S ≥ −1,
(iv) the Harmony (H) game: 1 > T ≥ 0, 1 ≥ S > 0.

Note that in the SD-game: S + T > 1 and in the SH-game: S + T < 1. By simplifying the
right-hand side of (7), equilibria of a social dilemma game are roots in the interval [0, 1] of
the following cubic equation:

(
T + S − 1

)
x3 +

(
1 − T − 2S + q(S − 1 − T )

)
x2 +

(
S + q(T − S)

)
x = 0. (8)

It follows that x = 0 is always an equilibrium. If q = 1
2 , then the above equation has two

solutions x1 = 1
2 and x2 = T+S

T+S−1 . In PD, SD and H games, x2 /∈ (0, 1), thus they have

two equilibria x0 = 0 and x1 = 1
2 . In the SH-game: if T + S < 0, then the game has three

equilibria x0 = 0, x1 = 1
2 and 0 < x2 < 1; if T + S ≥ 0, then the game has only two

equilibria x0 = 0andx1 = 1
2 .

We consider q �= 1
2 . For nonzero equilibrium points, we solve the following quadratic

equation:

h(x) := (T+S−1)x2+(1−T−2S+q(S−1−T ))x+S+q(T−S) =: ax2+bx+c = 0.
(9)

Note that we have h(1) = −q < 0 for all the above games. In the SD-game, since T +S−1 >

0 and h(0) = S+q(T − S) = qT + S(1−q) > 0, h is a quadratic and has two positive roots
0 < x1 < 1 < x2. Thus, the SD-game always has two equilibria: an unstable one x0 = 0
and a stable one 0 < x1 < 1. For the H-game,

(i) If S + T = 1, then h becomes h(x) = −(2Tq + 1− T )x + (2qT + 1− T )− q and has
a root x = 1 − q

2Tq+1−T . If q(1 − 2T ) < 1 − T , then x ∈ (0, 1) and the game has two
equilibria: an unstable one x0 = 0 and a stable one 0 < x1 < 1. If q(1− 2T ) ≤ 1− T ,
then x < 0 and the game has only one equilibrium x = 0.

(ii) if S + T > 1, then since h(0) = S + q(T − S) = qT + S(1 − q) > 0, h has two roots
0 < x1 < 1 < x2; thus, the game has two equilibria: an unstable one x0 = 0 and a
stable one 0 < x1 < 1.

(iii) if S + T < 1, then since h(0) = S + q(T − S) = qT + S(1 − q) > 0, h has two roots
x2 < 0 < x1 < 1; thus, the game has two equilibria: an unstable one x0 = 0 and a
stable one 0 < x1 < 1.

Thus, the H-game has either one equilibrium or two equilibria. The analysis for the SH-game
and the PD-game is more involved since we do not know the sign of h(0).

SH-Game Since T + S < 1, h is always a quadratic polynomial. Define

� = (1 − T − 2S + q(S − 1 − T ))2 − 4(T + S − 1)(S + q(T − S)), (10)

m := − b

2a
= T + 2S − 1 − q(S − T − 1)

2(T + S − 1)
= 1 + 1 − T + q(T + 1 − S)

2(T + S − 1)
. (11)
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Since T + S − 1 < 0 and 1− T + q(T + 1− S) > 0, we have m < 1. Applying Lemma 2,
it results in the following cases:

(i) If� < 0, then the gamehas only one equilibrium x0 = 0which is stable if S+q(T−S) <

0 and is unstable if S + q(T − S) > 0.
(ii) If � ≥ 0 and h(0) > 0, then the game has two equilibria: an unstable one x0 = 0 and a

stable one 0 < x1 < 1.
(iii) If � ≥ 0 and h(0) < 0 and − b

2a > 0, then the game has three equilibria x0 = 0 < x1 <

x2 < 1 where x0 and x2 are stable while x1 is unstable.
(iv) If � ≥ 0 and h(0) < 0 and − b

2a < 0, then the game has only one stable equilibrium
x0 = 0.

PD-Game It remains to consider the PD-game. If S + T = 1, then h becomes h(x) =
−(2Tq + 1 − T )x + (2qT + 1 − T ) − q and has a root x̄ = 1 − q

2Tq+1−T . Thus, the
game has only one equilibrium x0 = 0 if x̄ /∈ (0, 1) and has two equilibria if x̄ ∈ (0, 1).
If S + T �= 1, then h is a quadratic polynomial. Let � and m be defined as in (10)–(11).
According to Lemma 2, we have the following cases:

(i) If � < 0, then h has no real roots. Thus, the game only has one equilibrium x0 = 0.
(ii) If � ≥ 0 and h(0) = qT + S(1 − q) > 0, then h has exactly one root in (0, 1). Thus,

the game has two equilibria.
(iii) If � ≥ 0, 0 <

T+2S−1−q(S−T−1)
2(T+S−1) < 1, ah(0) = (T + S − 1)(qT + S(1 − q)) >

0, and ah(1) = −q(T + S − 1) > 0, then h has two roots in (0, 1). Thus, the game
has three equilibria.

(iv) In other cases, h has two roots but do not belong to (0, 1). Thus, the game has only one
equilibrium at x0 = 0.

For comparison, we consider the case q = 0. Equation (8) becomes

(T + S − 1)x3 + (1 − T − 2S)x2 + Sx = x(1 − x)(S − (T + S − 1)x) = 0,

which implies

x0 = 0, x1 = 1, x2 = S

T + S − 1
.

The condition 0 < x2 < 1 is equivalent to

S(S + T − 1) > 0 and (1 − T )(S + T − 1) < 0,

which is satisfied in the SD-game and the SH-game but is violated in the PD-game and the
H-game. In the SD-game S+T > 1 and 0 = x1 < x2 < 1 = x1, thus x2 is stable and x0 and
x1 are unstable. In the SH-game, S + T < 1 and 0 = x1 < x2 < 1 = x1, thus x2 is unstable
and x1 and x3 are stable. The PD-game and the H-game have only two equilibria: for the
PD-game, x0 = 0 (stable) and x1 = 1 (unstable) and for the H-game: x0 = 0 (unstable) and
x1 = 1 (stable).

General Games Now, we consider a general two-player two-strategy game where there is
no ranking on the coefficients. An equilibrium point is a root x ∈ (0, 1) of the cubic on the
right-hand side of (6)
(
a12 + a21 − a11 − a22

)
x3 +

(
a11 − a21 − 2(a12 − a22) + q(a22 + a12 − a11 − a21)

)
x2

+
(
a12 − a22 + q(a21 − a12 − 2a22)

)
x + qa22 = 0.
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We define t := x
1−x . Dividing the above equation by (1 − x)3 and using the relation 1

1−x =
1 + t , the above equation can be written in t-variable as:

P3(t) = −a11qt
3 + (a12 − a21 + q(a21q − a11 − a12))t

2

+ (a12 − a22 + q(a21 + a22 − a12))t + a22q

:= at3 + bt2 + ct + d.

The number of equilibria of the 2 × 2-game is equal to the number of positive roots of the
cubic P3. Applying Sturm’s theorem, see for instance [34, Theorem 1.4], to the polynomial
P3 for the interval (0,+∞), where the sign at +∞ of a polynomial is the same as the sign
of its leading coefficient, we obtain the following result.

Lemma 3 Let s1 and s2 be, respectively, the number of changes of signs in the following
sequences:

{
d, c,

bc − 9ad

a
,�

}
,

{
a,

b2 − 3ac

a
,�

}
,

where � := a
(
18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2

)
denotes the radicand. Then, P3

has exactly s1 − s2 number of positive roots. As consequences,

(i) P3 has three distinct real positive roots (thus the game has three equilibria) if and only
if

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� > 0,

ab < 0,

ac > 0,

ad < 0.

(ii) If there is no change of sign in the sequence of polynomial’s coefficients, then there is
no positive root. That is, if

⎧
⎪⎨

⎪⎩

ab > 0

bc > 0

cd > 0

then P3 has no positive root. (Thus the game has no equilibria.)

Remark 1 In this remark, we show that in the case q = n−1
n the point x = (1/n, . . . , 1/n) is

always an equilibrium of the general replicator–mutator dynamics regardless of the type of
games and of the payoff functions. In fact, since q = n−1

n , we have

q ji = q

n − 1
= 1

n
, qii = 1 − q = 1

n
.

Substituting this into the formula of gi in (1), we obtain

gi (x) = 1

n

n∑

j=1

x j f j (x) − xi f̄ (x) = (1/n − xi ) f̄ (x).

Thus, the replicator–mutator dynamics alwayshas anuniformequilibrium x = (1/n, . . . , 1/n),
see [25] for the bifurcation analysis of this equilibrium point for the case d = 2 and n ≥ 3.
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2.3 Muti-Player Games

In this section, we focus on the replicator–mutator equation for d-player two-strategy games
with a symmetric mutation matrix Q = (q ji ) (with j, i ∈ {1, 2}) so that

q11 = q22 = 1 − q and q12 = q21 = q,

for some constant 0 ≤ q ≤ 1/2. Note that this is a direct consequence of Eq. (3) and is not
an additional restriction/assumption. Let x be the frequency of S1. Thus, the frequency of S2
is 1 − x . The interaction of the individuals in the population is in randomly selected groups
of d participants, that is they play and obtain their fitness from d-player games. Let ak (resp.,
bk) be the pay-off of an S1-strategist (resp., S2) in a group containing other k S1 strategists
(i.e. d − 1 − k S2 strategists). Here, we consider symmetric games where the pay-offs do
not depend on the ordering of the players. In this case, the average pay-offs of S1 and S2 are,
respectively,

f1(x) =
d−1∑

k=0

ak

(
d − 1
k

)
xk(1 − x)d−1−k and f2(x) =

d−1∑

k=0

bk

(
d − 1
k

)
xk(1 − x)d−1−k .

(12)
The replicator–mutator equation (1) then becomes

ẋ = x f1(x)(1 − q) + (1 − x) f2(x)q − x(x f1(x) + (1 − x) f2(x))

= q
[
(1 − x) f2(x) − x f1(x)

]
+ x(1 − x)( f1(x) − f2(x)). (13)

Note that when q = 0, we recover the usual replicator equation (i.e. without mutation). In
contrast to the replicator equation, x = 0 and x = 1 are no longer equilibrium points of the
system for q �= 0. In addition, according to Remark 1 if q = 1

2 then x = 1
2 is always an

equilibrium point.
Equilibrium points are those points 0 ≤ x ≤ 1 that make the right-hand side of (13)

vanish, that is

q
[
(1 − x) f2(x) − x f1(x)

]
+ x(1 − x)( f1(x) − f2(x)) = 0. (14)

Using (12), Eq. (14) becomes

q

[ d−1∑

k=0

bk

(
d − 1
k

)
xk(1 − x)d−k −

d−1∑

k=0

ak

(
d − 1
k

)
xk+1(1 − x)d−1−k

]

+
d−1∑

k=0

βk

(
d − 1
k

)
xk+1(1 − x)d−k = 0, (15)

where βk := ak − bk . Now, setting t := x
1−x then dividing (15) by (1− x)d+1 and using the

relation that (1 + t) = 1
1−x , we obtain

q(1+ t)
[ d−1∑

k=0

bk

(
d − 1
k

)
tk −

d−1∑

k=0

ak

(
d − 1
k

)
tk+1

]
+

d−1∑

k=0

βk

(
d − 1
k

)
tk+1 = 0. (16)

By regrouping terms and changing the sign, we obtain the following polynomial equation in
t-variable:

P(t) :=
d+1∑

k=0

ckt
k = 0, (17)
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where the coefficient ck for k = 0, . . . , d + 1 is given by:

ck :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−qb0 for k = 0,

(q − 1)(a0 − b0) − q(d − 1)b1 for k = 1,

qak−2

(
d − 1

k − 2

)
+ (q − 1)(ak−1 − bk−1)

(
d − 1

k − 1

)
− qbk

(
d − 1

k

)
for k = 2, . . . , d − 1,

(q − 1)(ad−1 − bd−1) + qad−2(d − 1) for k = d,

qad−1 for k = d + 1.
(18)

Thus, the number of equilibria of d-player two-strategy games is the same as the number of
positive roots of the polynomial P .We now useDescartes’ rule of signs to count the latter. Let
c := {c0, c1, . . . , cd+1} be the sequence of coefficients given in (18). Applying Descartes’
rule of signs, we obtain the following result.

Lemma 4 The number of positive roots of P, which is also the number of equilibria of the
d-player two-strategy replicator–mutator dynamics, is either equal to the number of sign
changes of c or is less than it by an even amount.

In [28], the author has employed a similar approach to study the number of equilibria for
the standard replicator dynamics, in which P turns out to be a Bernstein polynomial and
many useful properties of Bernstein polynomials were exploited. In the following remark,
we show that the polynomial P can also be written in the form of a Bernstein polynomial.

Remark 2 Using the identities B.4 and B.5 in [29], we canwrite q[(1−x) f2(x)−x f1(x)] as a
polynomial inBernstein formof degreed (call it P1(x)), and similarly x(1−x)( f1(x)− f2(x))
as a polynomial in Bernstein form of degree d + 1 (call it P2(x)), as follows:

P1(x) = q[(1 − x) f2(x) − x f1(x)] = q

(
d∑

k=0

bk(d − k) − kak−1

d

(
d
k

)
xk(1 − x)d−k

)
,

P2(x) = x(1 − x)( f1(x) − f2(x)) =
d+1∑

k=0

k(d + 1 − k)(ak−1 − bk−1)

d(d + 1)

(
d + 1
k

)
xk(1 − x)d+1−k .

Using the following identity, obtained by multiplying the polynomial by ((1 − x) + x),

d∑

k=0

ck

(
d
k

)
xk(1 − x)d−k =

d+1∑

k=0

(d + 1 − k)ck + kck−1

d + 1

(
d + 1
k

)
xk(1 − x)d+1−k,

we have

P1(x) = q
( d+1∑

k=0

(d + 1 − k)[(d − k)bk − kak−1] + k[bk−1(d + 1 − k) − (k − 1)ak−2]
d(d + 1)

×
(
d + 1
k

)
xk(1 − x)d+1−k

)
.

Combining the above computations, we have converted P1(x) + P2(x) into a polynomial in
Bernstein form:

P1(x) + P2(x) = 1

d(d + 1)

d+1∑

k=0

ρk

(
d + 1
k

)
xk(1 − x)d+1−k,
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where

ρk = k(d + 1 − k)(ak−1 − bk−1) + q
(
(d + 1 − k)[(d − k)bk − kak−1]

+ k[bk−1(d + 1 − k) − (k − 1)ak−2]
)

= q(d + 1 − k)(d − k)bk + (1 − q)(d + 1 − k)k(ak−1 − bk−1) − qk(k − 1)ak−2.

Direct computations show that (note that we have changed the sign of ck for notation conve-
nience in the subsequent sections)

ρk = −ckd(d + 1)(
d + 1
k

)
.

Having written P in the form of a Bernstein polynomial, similar general results on the
equilibrium points of the replicator–mutator dynamics as in [28] could be, in principle,
obtained using the link between the sign pattern of the sequence ρ = {ρ0, . . . , ρd+1} and the
sign pattern and number of roots of the polynomial P . We do not go into further details here
and leave this interesting topic for future research.

For a (real) polynomial P , we denote by S(P) the number of changes of signs in the
sequence of coefficients of P disregarding zeros and by R(P) the number of positive roots
of P counted with multiplicities. Descartes’ rule of signs only provides an upper bound for
R(P) in terms of S(P). Recently, it has been shown that R(P) can be computed exactly as
S(PQ) for some polynomial Q or as a limit of S((t + 1)n P(t)) as n tends to infinity.

Theorem 1 [1] Let P be a nonzero real polynomial.

(i) There exists a real polynomial Q with all non-negative coefficients such that S(PQ) =
R(P).

(ii) The sequence S((t + 1)n P(t)) is monotone decreasing with limit equal to R(P).

The polynomial Q in part (i) involves all the roots of P (even the imaginary ones), which are
not known in general; hence, part (i) is practically inefficient. The sequence {S((t+1)n P(t))}n
can be easily computed, but it only can be used for approximating R(P). Note that for
P(t) = cd+1td+1 + · · · + c1t + c0, we have

(t + 1)n P(t) =
n∑

j=0

d+1∑

i=0

ci

(
n
j

)
t i+ j =

n+d+1∑

k=0

d+1∑

i=0

ci

(
n

k − i

)
tk .

Thus, k-th coefficient of (t + 1)n P(t) is

akn =
d+1∑

i=0

ci

(
n

k − i

)
. (19)

Corollary 1 Let sn be the number of changes of signs in the sequence {akn}n+d+1
k=0 defined in

(19). Then, the number N of equilibria of a d-player two-strategy game is

N = R(P) = lim
n→∞ sn . (20)



652 Dynamic Games and Applications (2020) 10:641–663

Fig. 1 Plot of sn for some randomly chosen payoff matrices. (We adopted q = 0.1 in all cases.) We indicate
the number players d in the game, the payoff matrix used for small d (for the sake of representation given
large sizes of the payoff matrices for large d), and the number of internal equilibria, N . For sufficiently large
n, sn decreasingly converges to the corresponding value of N

Corollary 1 provides us with a simple method to calculate the number of equilibria, N , for
a given d-player two-strategy game. In Fig. 1, we show a number of examples. The value of
n such that sn reaches N varies significantly for different games and is usually (very) large. It
would be an interesting problem to find the smallest value of n satisfying sn = N . An upper
bound for such n is also helpful. This is still an open problem [1]. However, in the particular
case when P has no positive root, we have the following theorem.

Theorem 2 [30] Let P(t) = cd+1xd+1+· · ·+c1t+c0. If R(P) = 0, then S((t+1)n0 P(t)) =
0 where

n0 =

⎡

⎢⎢⎢⎢⎢

(
d + 1
2

) max0≤i≤d+1
{
ci/

(
d + 1
i

)}

minλ∈[0,1]
{
(1 − λ)d+1 f ( λ

1−λ
)
} − d − 1

⎤

⎥⎥⎥⎥⎥
.

Corollary 2 If S((t + 1)n0 P(t)) ≥ 1, then R(P) ≥ 1.

3 Properties of Equilibrium Points: RandomGames

In this section, we study random games. For two-player social dilemma games, we calculate
the probability of having a certain number of equilibria when S and T are uniformly dis-
tributed. For multi-player games, we compute the expected number of equilibria when the
payoff entries are normally distributed.
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3.1 Probability of Having a Certain Number of Equilibria in Social Dilemma Games

We consider two-player social dilemma games in Sect. 2.2, but T and S are now random
variables uniformly distributed in the corresponding intervals. In this section, pGk , where
G ∈ {SD,H,SH,PD} and k ∈ {1, 2, 3}, denotes the probability of a game G having k
equilibria. According to the analysis of Sect. 2.2, all of the games have at least one equilibrium
at the origin. In addition, the SD-game always has two equilibria, that is

pSD1 = pSD3 = 0, pSD2 = 1.

We also know that the H-game has either one or two equilibria. The probability that it has
one equilibrium is smaller than the probability that S+T = 1. Since S+T has a continuous
density function, it implies that pH1 = 0. Thus, we also have

pH1 = pH3 = 0, pH2 = 1.

For the SH-game and PD-game, we are able to calculate the probability of having two
equilibria explicitly since its condition on T and S is simple which depends only on a convex
combination of T and S. The conditions on S and T for these games to have one equilibrium
or three equilibria are much more complex since they involve � defined in (10), which is a
nonlinear function of S and T .

SH-Game Suppose that S ∼ U ([−1, 0]), T ∼ U ([0, 1]). Then,

qT ∼ U ([0, q]), fqT (x) =
{

1
q if 0 ≤ x ≤ q,

0 otherwise
;

(1 − q)S ∼ U ([q − 1, 0]), f(1−q)S(y) =
{

1
(1−q)

if q − 1 ≤ y ≤ 0,

0 otherwise.

We now compute pSH2 explicitly. The probability that the SH-game has two equilibria, pSH2 ,
is the probability that h(0)h(1) < 0. Since h(1) < 0, we have

pSH2 = Prob(h(0) > 0) = Prob(qT + S(1 − q) > 0) =
∫ ∞

0
f SHZ (x) dx, (21)

where f SHZ is the probability density function of the random variable Z := qT + (1 − q)S,
which is given by:

f SHZ (x) = ( fqT ∗ f(1−q)S)(x) =
∫ ∞

−∞
fqT (x − y) f(1−q)S(y) dy

= 1

1 − q

∫ 0

q−1
fqT (x − y) dy

(∗)= 1

1 − q

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ x
q−1

1
q dy if q − 1 ≤ x ≤ 2q − 1,

∫ x
x−q

1
q dy if 2q − 1 ≤ x ≤ 0,

∫ 0
x−q

1
q dy if 0 ≤ x ≤ q,

0 otherwise
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Fig. 2 Probability of having two
equilibrium points for Prisoner’s
Dilemma (PD) and Stag Hunt
(SH) games, according to
analytical results obtained in
Sect. 3. Both functions are
increasing; pPD2 is always bigger

than pSD2 ; the maximum of pPD2
is 1 while the maximum of pSD2
is 1/2. These results also
corroborate the simulation results
using samplings in Fig. 3

= 1

1 − q

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x+1−q
q if q − 1 ≤ x ≤ 2q − 1,

1 if 2q − 1 ≤ x ≤ 0,
q−x
q if 0 ≤ x ≤ q,

0 otherwise.

Note that to obtain (∗), we use the fact that fqT (x − y) is 1/q if 0 ≤ x − y ≤ q and is zero
otherwise. Thus, the domain of the integral is restricted to

D = {(x, y) : q − 1 ≤ y ≤ 0 & 0 ≤ x − y ≤ q},

which gives rise to the cases in (∗). Substituting the formula of fZ into (21), we obtain

pSH2 =
∫ ∞

0
f SHZ (x) dx = 1

1 − q

∫ q

0

q − x

q
dx = q

2(1 − q)
.

It follows that q → pSH2 is an increasing function. We plot this function in Fig. 2.

PD-Game Suppose that T ∼ U ([1, 2]) and S ∼ U ([−1, 0]). Then,

qT ∼ U ([q, 2q]), fqT =
{

1
q if q ≤ x ≤ 2q,

0 otherwise;

(1 − q)S ∼ U ([q − 1, 0]), f(1−q)S(y) =
{

1
(1−q)

if q − 1 ≤ y ≤ 0,

0 otherwise.

Similarly as in (21), we have

pPD2 =
∫ ∞

0
f PDZ (x) dx,

where f PDZ is the probability density function of Z = qT+(1−q)S. To calculate this function,
we need to consider two different cases 0 < q ≤ 1/3 (hence q − 1 ≤ −2q ≤ −q < 0) and
1/3 ≤ q ≤ 1/2 (hence −2q ≤ q − 1 ≤ −q < 0). For 0 < q ≤ 1/3, we have

f PDZ (x) = ( fqT ∗ f(1−q)S)(x) =
∫ ∞

−∞
fqT (x − y) f(1−q)S(y) dy

= 1

1 − q

∫ 0

q−1
fqT (x − y) dy
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= 1

1 − q

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ x−q
q−1

1
q dy if 2q − 1 ≤ x ≤ 3q − 1,

∫ x−q
x−2q

1
q dy if 3q − 1 ≤ x ≤ q,

∫ 0
x−2q

1
q dy if q ≤ x ≤ 2q,

0 otherwise

= 1

1 − q

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x+1−2q
q if 2q − 1 ≤ x ≤ 3q − 1,

1 if 3q − 1 ≤ x ≤ q,
2q−x
q if q ≤ x ≤ 2q,

0 otherwise

Hence for 0 ≤ q ≤ 1/3, we have

pPD2 =
∫ ∞

0
f PDZ (x) dx =

∫ q

0
f PDZ (x) dx +

∫ 2q

q
f PDZ (x) dx

= 1

1 − q

( ∫ q

0
1 dx +

∫ 2q

q

2q − x

q
dx

)

= 3q

2(1 − q)
.

For 1/3 ≤ q ≤ 1/2, we have

f PDZ (x) = 1

1 − q

∫ 0

q−1
fqT (x − y) dy

= 1

1 − q

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ x−q
q−1

1
q dy if 2q − 1 ≤ x ≤ 3q − 1,

∫ x−q
x−2q

1
q dy if 3q − 1 ≤ x ≤ q,

∫ 0
x−2q

1
q dy if q ≤ x ≤ 2q,

0 otherwise

= 1

1 − q

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x+1−2q
q if 2q − 1 ≤ x ≤ 3q − 1,

1 if 3q − 1 ≤ x ≤ q,
2q−x
q if q ≤ x ≤ 2q,

0 otherwise

Hence for 1/3 ≤ q ≤ 1/2, we have

pPD2 =
∫ ∞

0
f PDZ (x) dx =

∫ 3q−1

0
f PDZ (x) dx +

∫ q

3q−1
f PDZ (x) dx +

∫ 2q

q
f PDZ (x) dx

= 1

1 − q

( ∫ 3q−1

0

x + 1 − 2q

q
dy +

∫ q

3q−1
1 dy +

∫ 2q

q

2q − x

q

)

= 3 − 1

2q(1 − q)
.

In summary, we obtain

pPD2 =
{

3q
2(1−q)

if 0 < q ≤ 1/3,

3 − 1
2q(1−q)

if 1/3 ≤ q ≤ 1/2.
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Fig. 3 Probabilities of observing a certain number of equilibrium points for each social dilemma game, for
different mutation strengths, q. S and T are drawn from uniform distributions. The results are averaged over
sampling 106 pairs of S and T drawn from the corresponding ranges in a social dilemma. All results are
obtained using Mathematica

It follows that q → pPD2 is also increasing. We also plot this function in Fig. 2. Moreover, in
Fig. 3, we numerically compute the probability of having a certain number of equilibria for
each game by averaging over 106 samples of T and S. The numerical results are in accordance
with the analytical computations. In the H-game: p2 = 1 (hence p1 = p3 = 0) for all values
of q . In the SD-game: when q = 0, p3 = 1 (hence p1 = p2 = 0) but p2 = 1 (hence
p1 = p3 = 0) for all q > 0. In the PD-game: when q = 0, p2 = 1 (hence p1 = p3 = 0) but
when 0 < q < 1/2, all p1, p2andp3 are positive although p3 is very small; p2 is increasing
and attains its maximum 1 at q = 1/2. In the SH-game: when q = 0, p3 = 1 (hence
p1 = p2 = 0). When 0 < q < 1/2, the picture is more diverse: all p1, p2 and p3 are
non-negligible; p2 is increasing and attains its maximum 1/2 at q = 1/2. Moreover, note
that for q > 0, there is at least one equilibrium (x = 0) in all cases, where the remaining
ones are internal equilibria. To the contrary, when q = 0, PD and H games always have two
non-internal equilibria (at x = 0 and x = 1), while SH and SG games have three equilibria
(two non-internal and one internal).Withmutation (q > 0), x = 1 is no longer an equilibrium
in all cases. Therefore, the SD-game has the same number of internal equilibria (one) while it
gains one more internal equilibrium in H-game. In the PD-game, the probability of having at
least one internal equilibrium increases with q . In the SH-game, the probability of having two
internal (i.e. gaining one more compared to the no mutation case) is high. In short, except for
the SD-game, introducing mutation leads to the probability of gaining an additional internal
equilibrium (thus increasing behavioural diversity) in all social dilemmas. This probability
is 100% in the H-game, increases with q in the PD-game (reaching 100% when q = 0.5)
and is roughly 40–60% in the SH-game.

3.2 Expected Number of Equilibria of Multi-Player Two-Strategy Games

We recall that finding an equilibrium point of the replicator–mutator dynamics for d-player
two-strategy games is equivalent to finding a positive root of the polynomial (17) with coef-
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ficients given in (18). In this section, by employing techniques from random polynomial
theory, we provide explicit formulas for the computation of the expected number of internal
equilibrium points of the replicator–mutator dynamics where the entries of the payoff matrix
are random variables, thus extending our previous results for the replicator dynamics [4–7].
We will apply the following result on the expected number of positive roots of a general
random polynomial.

Theorem 3 [8, Theorem 3.1] Consider a random polynomial

Q(x) =
n∑

i=0

αk x
k,

where {αk}0≤k≤n are the elements of a multivariate normal distribution with mean zero and
covariance matrix C. Then, the expected number of positive roots of Q is given by:

EQ = 1

π

∫ ∞

0

( ∂2

∂x∂ y

(
log v(x)TCv(y)

)∣∣
y=x=t

) 1
2
dt, (22)

where

v(x) =

⎛

⎜⎜⎜⎝

1
x
...

xn

⎞

⎟⎟⎟⎠ , v(y) =

⎛

⎜⎜⎜⎝

1
y
...

yn

⎞

⎟⎟⎟⎠ .

Defining

H(x, y) =
n∑

i, j=0

Ci j x
i y j , M(t) = H(t, t), A(t) = ∂2xy H(x, y)|y=x=t , B(t) = ∂x H(x, y)|y=x=t ,

then EQ can be written as:

EQ = 1

π

∫ ∞

0

√
A(t)M(t) − B(t)2

M(t)
dt . (23)

We now apply Theorem 3 to the random polynomial P given in (17) and obtain formulas
for the expected number of equilibria of the replicator–mutator dynamics for d-player two-
strategy games. It turns out that the case q = 0.5 needs special treatment since according to
Remark 1 x = 1/2 is always an equilibrium point.

3.2.1 The Case q �= 0.5

Suppose that ak and bk are independent standard normally distributed random variables with
mean zero. Then, for q �= 1

2 , the random vector c = {c0, . . . , cd+1} defined in (18) has a
(symmetric) covariance matrix C = (Ci j )0≤i, j≤d+1 given by:

Ckk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q2 for k = 0,

2(q − 1)2 + q2(d − 1)2 for k = 1,

q2
(
d − 1

k − 2

)2

+ 2(q − 1)2
(
d − 1

k − 1

)2

+ q2
(
d − 1

k

)2

for k = 2, . . . , d − 1,

2(q − 1)2 + q2(d − 1)2 for k = d,

q2 for k = d + 1;
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Ckk+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(q − 1) for k = 0,

q(q − 1) + q(q − 1)(d − 1)2 for k = 1,

q(q − 1)

(
d − 1

k − 1

)2

+ q(q − 1)

(
d − 1

k

)2

for k = 2, . . . , d − 2,

q(q − 1)(d − 1)2 + q(q − 1) for k = d − 1,

q(q − 1) for k = d;
Ci j = 0 for 0 ≤ i < j ≤ d + 1 : j − i ≥ 2.

Using the convention that whenever k < 0 or k > n then

(
n
k

)
= 0, we can simplify C as:

Ckk = q2
(
d − 1
k − 2

)2

+ 2(q − 1)2
(
d − 1
k − 1

)2

+ q2
(
d − 1
k

)2

for k = 0, . . . , d + 1,

(24)

Ckk+1 = q(q − 1)

(
d − 1
k − 1

)2

+ q(q − 1)

(
d − 1
k

)2

, for k = 0, . . . , d, (25)

Ci j = 0 for 0 ≤ i < j ≤ d + 1 : j − i ≥ 2. (26)

Applying Theorem 3, we obtain the following result.

Proposition 1 Suppose that ak and bk are independent standard normally distributed random
variables with mean zero and that q �= 0.5. We define

H(x, y) =
d+1∑

k=0

Ckkx
k yk +

d∑

k=0

Ckk+1(x
k yk+1 + xk+1yk),

M(t) = H(t, t), A(t) = ∂2xy H(x, y)
∣∣
y=x=t , B(t) = ∂x H(x, y)

∣∣
y=x=t ,

where the coefficient Ci j , 0 ≤ i, j ≤ d+1 are given in (24), (25) and (26). Then the expected
number of equilibria of a d-player two-strategy replicator–mutator dynamics is given by

E = 1

π

∫ ∞

0

√
A(t)M(t) − B2(t)

M(t)
dt .

3.2.2 The Case q = 0.5

The case q = 0.5 needs to be treated differently since in this case, according to Remark 1,
x = 1/2 is always an equilibrium. Other equilibrium points are roots of the average fitness
of the whole population f̄ (x) = 0 due to Remark 1, that is

0 = f̄ (x) = x f1(x) + (1 − x) f2(x)
(12)=

d−1∑

k=0

ak

(
d − 1
k

)
xk+1(1 − x)d−1−k

+
d−1∑

k=0

bk

(
d − 1
k

)
xk(1 − x)d−k .

Since x = 1 is not a solution, by dividing the right-hand side of the above equation by
(1 − x)d , and let t := x

1−x , then we obtain the following equation:
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P(t) =
d−1∑

k=0

ak

(
d − 1
k

)
tk+1 +

d−1∑

k=0

bk

(
d − 1
k

)
tk

=
d∑

k=0

[
ak−1

(
d − 1
k − 1

)
+ bk

(
d − 1
k

)]
tk

=:
d∑

k=0

ckt
k,

where

ck = ak−1

(
d − 1
k − 1

)
+ bk

(
d − 1
k

)
, for k = 0, . . . , d.

Suppose that ak and bk are independent standard normally distributed random variables with
mean zero. Then, the random vector c = {c0, . . . , cd+1} has a (symmetric) covariance matrix
C = (Ci j )0≤i, j≤d+1 given by:

Ci j =
((

d − 1
k − 1

)2

+
(
d − 1
k

)2
)

δi j ,

where δi j is the Kronecker delta. Applying Theorem 3 and noticing that x = 1/2 is always
an equilibrium, we obtain the following result.

Proposition 2 Suppose that ak and bk are independent standard normally distributed random
variables with mean zero and that q = 0.5. We define

H(x, y) =
d∑

k=0

((
d − 1
k − 1

)2

+
(
d − 1
k

)2
)
xk yk,

M(t) = H(t, t), A(t) = ∂2xy H(x, y)
∣∣
y=x=t , B(t) = ∂x H(x, y)

∣∣
y=x=t ,

Then, the expected number of equilibria of a d-player two-strategy replicator–mutator
dynamics is given by:

E = 1 + 1

π

∫ ∞

0

√
A(t)M(t) − B2(t)

M(t)
dt .

In Fig. 4, we show that the results obtain from analytical formulas of E corroborate with those
obtained fromnumerical simulations by averaging over a large number of randomly generated
payoff matrices. Figure 4 also reveals that the expected number of equilibria exhibits several
interesting behaviours. We will elaborate more on this point in Sect. 4.

4 Conclusion and Outlook

Understanding equilibrium properties of the replicator–mutator dynamics for multi-player
multi-strategy games is a difficult problem due to its complexity: to find an equilibrium, one
needs to solve a system of multivariate polynomials. In this paper, employing techniques
from classical and random polynomial theory, we study the number of equilibria for both
deterministic and random two-strategy games. For deterministic games, using Descartes’
rule of signs and its recent developments, we provide a method to compute the number of
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Fig. 4 (Left panel) Analytical vs. simulation sampling results of the average number of internal equilibrium
points (E) for varying q and for different values of d. The solid lines are generated from analytical (A) formulas
of E . The solid diamonds capture simulation (S) results obtained by averaging over 106 samples of the payoff
entries (normal distribution). Analytical and simulations results are in accordance with each other. (Right
panel) Plot of E for increasing d and for different values of q. In general, E increases with d. E is always
larger when q > 0 than when q = 0. Also, E is largest when q is close to 0 (i.e. rare mutation). All results
are obtained using Mathematica

Fig. 5 Plot of log(E)/ log(d + 1)
for varying d. For different values
of q, this quantity converges to
the same value. All results are
obtained using Mathematica

equilibria via the sign changes of the coefficients of a polynomial. For two-player social
dilemma games, we compute the probability of observing a certain number of equilibria
when the payoff entries are uniformly distributed. For multi-player two-strategy random
games whose payoffs are independently distributed according to a normal distribution, we
obtain explicit formulas to compute the expected number of equilibria by relating it to the
expected number of positive roots of a random polynomial. We also perform numerical
simulations to compare with and to illustrate our analytical results. We observe that E is
always larger in the presence of mutation (i.e. when q > 0) than when mutation is absent
(i.e. when q = 0), implying that mutation leads to larger behavioural diversity in a dynamical
system (see again Fig. 4). Interestingly, E is largest when q is close to 0 (i.e. rare mutation),
rather than when it is large. In general, our findings might have important implications
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for the understanding of social and biological diversities, where biological mutations and
behavioural errors are present, i.e. in the study of evolution of cooperative behaviour and
population fitness distribution [22,26,31]. Furthermore, numerical simulations also suggest
a number of open problems that we leave for future work.

Asymptotic Behaviour of the Expected Number of Equilibria When the Number of Players
Tends to Infinity In [5], we proved that

lim
d→∞

ln E(d)

ln(d − 1)
= 1

2
, (27)

where E(d) is the expected number of internal equilibria of the replicator dynamics for d-
player two-strategy games, in which the payoff entries are randomly distributed. To obtain
(27), we utilized several useful connections to Legendre’s polynomials. In Fig. 5, we plot
ln E(q,d)
ln(d+1) , where E(q, d) is the expected number of equilibria for the replicator–mutator
dynamics, as a function of d for various values of q . We observe that they all converge to
the same limit as d tends to infinity, but in different manner: for q = 0, it increasingly
approaches the limit, while for q > 0 sufficiently small, at first they are decreasing and
then for sufficiently large d , they also increasingly approach to the limit. Thus, it is expected
that there is a phase transition. Proving this rigorously would be an interesting problem. The
method used in [5] seems not to be working since there is no direct connections to Legendre’s
polynomials.

Asymptotic Behaviour of the Expected Number of Equilibria When the Mutation Tends to
Zero The classical replicator dynamics is obtained from the replicator–mutator dynamics by
setting the mutation to be zero. Thus, it is a natural question to ask how a certain quantity
(such as the expected number of equilibria) behaves when the mutation tends to zero. Both
Figs. 4 and 5 demonstrate that the expected number of equilibria changes significantly when
the mutation is turned on. In addition, using explicit formulas of the probability of observing
two equilibria for the SH-game and the PD-game obtained in Sect. 3, we clearly see a jump
when q approaches zero:

lim
q→0

pq,SH,PD
2 = 0 �= 1 = p0,SH,PD

2 .

Both observations suggest that these quantities exhibit singular behaviour at q = 0. Charac-
terizing this behaviour would be a challenging problem for future work.

Bifurcation Phenomena of the Replicator–Mutator Dynamics for Multi-Player Games In
[25], the authors proved Hopf bifurcations for the replicator–mutator dynamics with d = 2
and n ≥ 3 and characterized the existence of stable limit cycles using an analytical derivation
of theHopf bifurcations points and the corresponding first Lyapunov coefficients. In addition,
they also showed that the limiting behaviours are tied to the structure of the fitness model.
Another interesting topic for further research would be to extend the results of [25] to multi-
player games.
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